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Abstract
Mangroves are among the most threatened and rapidly vanishing natural environments worldwide.
They provide a wide range of ecosystem services and have recently become known for their
exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-
cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing
market mechanisms to credit mangrove conservation projects for associated CO2 emissions
reductions. These efforts depend on robust and readily applicable, but currently unavailable,
localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28
countries by 61 independent studies, to develop a global predictive model for mangrove soil
carbon. Using climatological and locational data as predictors, we explore several predictive
modeling alternatives, including machine-learning methods. With our predictive model, we
construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution
grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00± 0.94 Pg C
(assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of
carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38MgC ha−1)
is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor
mangroves (approximately 272 ± 49Mg C ha−1). Considerable within country variation in
mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon
stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon
per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from
mangrove conservation and designing mangrove conservation policy. Additionally, the results can
be used to project changes in mangrove soil carbon stocks based on changing climatological
predictors, e.g. to assess the impacts of climate change on mangrove soil carbon stocks.

S Online supplementary data available from stacks.iop.org/ERL/9/104013/mmedia
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1. Introduction

Mangroves have long been recognized for the broad range of
ecosystem services they provide, including serving as primary

nursery habitat for many species of fish, crustaceans, birds, and
marine mammals, and protecting coastal communities from
coastal erosion and damage from storms and other natural
hazards (Mumby et al 2004, Spalding et al 2010, Twilley
et al 1996, Shepard et al 2011). More recently, mangroves
have also received attention for their capacity to store large
volumes of carbon (Donato et al 2011, Pendleton et al 2012,
Siikamäki et al 2012). For example, on average, mangroves
contain three to four times the mass of carbon typically found
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in boreal, temperate, or upland tropical forests (Donato
et al 2011). Much of this carbon storage, however, is at risk of
being lost, because mangroves are among the most threated
and rapidly vanishing ecosystems globally, with habitat loss
rates similar or greater to those in tropical forests (UN Food
and Agricultural Organization 2007, Valiela et al 2001).

Recent studies point to mangrove conservation as a
potentially low-cost option for reducing CO2 emissions
(Pendleton et al 2012, Siikamäki et al 2012). For example,
Siikamäki et al (2012) find that in most mangrove areas of the
world, protecting mangroves achieves emissions reductions at
a lower cost than reducing emissions elsewhere in the econ-
omy. Accordingly, there is growing interest in developing and
implementing market-based mechanisms such as carbon off-
sets, to credit mangrove conservation for associated emissions
reductions, using a framework similar to the REDD (reduced
emissions from deforestation and degradation) programs
designed to protect tropical forests. The purpose of these
programs is to provide market incentives to reduce emissions
from deforestation by, for example, encouraging developing
countries to reduce deforestation in return for compensation
from developed countries committed to emission reductions
(Angelsen 2008, Kindermann et al 2008).

Designing and evaluating market mechanisms for man-
grove conservation requires several spatially explicit scientific
inputs, including information on the mangrove area susceptible
to deforestation, carbon in mangrove biomass and soils, annual
carbon sequestration, the emissions profiles of mangroves
converted to other uses, and the opportunity cost of protecting
mangroves (Siikamäki et al 2013). A growing number of
researchers have recognized the need for more and better sci-
ence and are calling for continued research on the potential to
include mangrove conservation in climate change policy (e.g.
Mcleod et al 2011, Pendleton et al 2012, Siikamäki et al 2013).

A key challenge in assessing the carbon benefits from
mangrove conservation is the lack of rigorous spatial estimates
of mangrove soil carbon stocks. Unlike other tropical forests,
for which the bulk of carbon storage is in biomass, mangrove
carbon is primarily stored in the soil. For example, Donato et al
(2011) estimate that soil carbon comprises 49–98% of carbon
in mangrove forests. Siikamäki et al (2012) developed the first
spatial estimates of global mangrove soil carbon, using country
and regional level mean estimates of soil carbon concentrations
derived from the literature. While this provides an important
first step, the estimates do not capture the fine-scale variation in
mangrove soil carbon concentrations and, therefore, the fine-
scale variation in potential benefits from mangrove conserva-
tion in different locations.

We address this data gap by developing a predictive
model of mangrove soil carbon to estimate global mangrove
soil carbon concentrations (mg C cm−3) and stocks (Pg C) on
a high-resolution grid (5 arc min). Our predictive model is
based on soil carbon measurements compiled in the meta-
analyses by Chmura et al (2003), Kristensen et al (2008), and
Donato et al (2011). These three studies combined include
data from over 900 samples collected in 28 countries, which
contain 64.4% of global mangroves. We explore several
prediction methods, including machine-learning algorithms,

to assess the generalizability and predictive performance of
alternative model specifications.

Our findings contribute to the science needed to accurately
quantify the benefits from emissions reductions achieved with
mangrove conservation. Combining results from our predictive
model with information on the spatial distribution of above-
ground biomass (e.g. Hutchison et al 2013) enables improved
estimation of the magnitude and spatial distribution of man-
grove carbon storage, thereby aiding the design and evaluation
of mangrove conservation projects. Additionally, because we
find that climatological factors are important predictors of
mangrove soil carbon concentrations, our predictive model can
be helpful in assessing the impacts of climate change on
mangrove carbon storage.

2. Methods

2.1. Data

We use mangrove soil carbon measurements from meta-
analyses by Chmura et al (2003), Kristensen et al (2008), and
Donato et al (2011). Combining data from these sources, after
removing observations where the study location is not
documented, yields a total of 932 samples that were collected
in 28 countries by 61 independent studies. The locations of
the soil carbon samples are shown in figure 1.

Observations included in Chmura et al (2003) and
Donato et al (2011) are measurements of the soil carbon bulk
density, while Kristensen et al (2008) record the per cent
organic carbon (POC) of each soil sample. To combine the
observations, we convert POC measurements into bulk den-
sity measurements following Donato et al (2011) with the
estimated relationship:

= −poc 3.0443bd , (1)1.313

where poc is the per cent weight of organic carbon in the soil
and bd is the soil bulk density measured in grams per cubic
centimeter. We then use the soil bulk density to calculate the
soil carbon content in g C per cubic centimeter.

We combine the soil carbon dataset with information on
several predictor variables that explain the carbon con-
centration in mangrove soils, including the distance of the
observation’s sampling location from the equator (the abso-
lute value of latitude coordinates to a 0.1 of a degree), several
variables describing climate conditions at the sampling loca-
tions, and regional indicators. The data are available in the
online supplementary materials at stacks.iop.org/ERL/9/
104013/mmedia.

For the majority of the soil carbon data (76% of the
observations), source studies report precise locational data,
i.e. latitude coordinates reported to the 0.1 of a degree, which
we are able to use directly. In some instances (9% of the
observations), a group of soil carbon samples were taken from
neighboring sites and only the boundary latitude and long-
itude coordinates are provided. In these cases we use the
mean latitude coordinate value for each of the soil carbon
estimates in that study. In studies where only imprecise
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locational data were provided, but a detailed map of the
sample location was included (13% of the observations), we
manually obtain a more precise location. Finally, where
locational data were reported in the meta-analysis but could
not be verified (e.g. unpublished data), we use the locational
data reported in the meta-analysis (2% of the observations).
The latitude data are used to calculate distance from the
equator, which has been linked to mangrove productivity
(Twilley et al 1992), and therefore may be an important
predictor of mangrove soil carbon, a hypothesis which we test
in our analysis.

Climate variables are from the WorldClim Bioclim data
(Hijmans et al 2005). Of the 19 variables included in the
Bioclim data, we use mean annual temperature (Bioclim 1),
mean temperature in the coldest quarter (Bioclim 11), total
annual precipitation (Bioclim 12), and seasonality in pre-
cipitation (Bioclim 15). Our choice of climate variables is
motivated by a large body of literature linking mangrove
productivity with temperature and precipitation (Ellison 2003,
Field 1995, McKee 1993) and extreme cold events (Cava-
naugh et al 2013, Snedaker 1995, Woodroffe and Grin-
drod 1991), implying that these climate variables should be
included in our model.

Finally, we include regional indicators, where regions are
defined according to the ten biogeographic regions for man-
groves developed by Spalding et al (2010) (see the SI for
countries represented in the data from each region). Our
geographic predictors (distance from the equator and regional
indicators) control for the impacts of unobserved factors on
the carbon concentration in mangrove soils, to the extent to
which the unobserved factors vary over space. For example,
mangrove soil carbon has been linked to allochthonous riv-
erine or marine material, allochthonous production of algae,
and phytoplankton (Bouillon et al 2003, Kennedy et al 2004,
Marchand et al 2003) and tidal forcing (Kristensen et al 2008)
among other things, all of which are unobserved but likely
vary systematically over space. Additionally, because

mangrove species are more homogeneous within mangrove
bioregions (Spalding et al 2010), mangrove soil carbon
concentrations may also be more homogeneous within man-
grove bioregions, which we control for with regional
indicators.

2.2. Predictive models

We develop two classes of statistical models to predict soil
carbon concentrations, including parametric predictive mod-
els and models developed with machine learning algorithms.
Constructing a robust predictive model requires balancing the
ability to explain the most variation in the data sample with
the model’s generalizability, i.e. its ability to predict out of
sample (Babyak 2004). We evaluate the alternatives models
along these two dimensions.

2.3. Parametric prediction

We first develop a parametric predictive model with regres-
sion analysis. Specifically, we estimate the following model:

α θ β δ ϵ= + + + +climatesc avlatitude region , (2)i i i i i

where sci is soil carbon content in sampling location i,
avlatitudei is the absolute value of latitude for location i
(distance from the equator), climatei is a vector containing all
Bioclim variables for site i and a squared term for average
annual temperature based on evidence of a nonlinear rela-
tionship between mangrove soil carbon and temperature (e.g.
Gilman 2008), and ϵi is an assumed mean-zero normally
distributed random error. We estimate several specifications
of equation (2), where certain parameters or sets of parameters
are constrained to equal zero. The model is estimated using
ordinary least squares (OLS).

We compare the parametric predictive models based on
R-squared statistics, signaling in-sample predictive power,
and the Akaike information criterion (AIC), indicating model
generalizability as it relates to model simplicity.

Figure 1. Locations of soil carbon concentration measurement data from the meta-analyses by Chmura et al (2003), Kristensen et al (2008),
and Donato et al (2011).
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2.4. Machine learning prediction

Machine-learning (ML) algorithms offer an alternative to
single-equation parametric predictive modeling. They involve
systematic computational learning in the model-building
process, which improves the model’s the predictive perfor-
mance and generalizability by minimizing overfitting. The
ML methods used here are also flexible in modeling non-
linearities and/or interactions between the predictors. ML
algorithms are especially useful in instances where the func-
tional relationship between the outcome variable and the
predictors is unknown, as is the case with mangrove soil
carbon concentrations (Kristensen et al 2008). ML methods
have a long history in the field of medical biosciences
(Kononenko 2001) and are rapidly gaining ground in several
fields ranging from economics (Varian 2013), to conservation
biology and ecology (Gomes 2009, Dietterich 2009).

We examine two ML algorithms as potential alternatives
to our parametric predictive model of mangrove soil carbon: a
boosted decision tree (DT) model and a bag DT model (see
Hastie et al 2009 and Breiman 1996 for a detailed description
of the two methods respectively). Both are tree-based meth-
ods, which are well suited for complex ecological data
(De’ath and Fabricius 2000), but the relative performance of
each method depends on the dataset (Quinlan 1996).

Inputs to the ML models are identical to those in the
parametric model. To compare the two ML algorithms with
our parametric model, we test the out-of-sample predictive
power of each model. In the out-of-sample prediction tests,
we first draw 1 000 datasets by taking random samples of 30
studies (and all observations from those studies) from our
original dataset, without replacement. Next, we estimate the
machine learning and parametric predictive models for each
of the 1 000 datasets. Finally, we use the estimated models to
predict soil carbon concentrations for observations in the
remaining 31 studies for each of the 1 000 datasets and cal-
culate prediction errors. The magnitude of prediction errors
indicates how sensitive the model is to the studies included in
our analysis. All models were fitted in MATLAB (2013)
version 8.1.0.604, using the fitensemble package in the sta-
tistics toolbox.

3. Results

3.1. Parametric prediction

Regression results are reported in table 1. We begin with a
simple constant-only model showing that the mean soil car-
bon content in our sample is 32.14 mg cm−3 (min.
13.48 mg cm−3, and max. 115 mg cm−3), or approximately an
average of 321Mg (tons) C ha−1 in the top meter of soil. We
gradually add controls to the model and find that climatic
variables are significant predictors of mangrove soil carbon as
are the regional controls. The regional controls contribute
substantially to the explanatory power of the model. For
example, the R-squared for Model 3 with climatic variables
but no regional controls (fixed effects) is 0.103, but after
adding the regional controls the R-squared is 0.912 (Model
4). Adding regional controls also lowers the AIC, suggesting
that overfitting is not driving the increased R-squared statistic.

Figure 2 (left panel) shows the mean soil carbon by
region, and the 95% confidence intervals around the means,
with and without controls for climate and distance from the
equator. Uncontrolled regional means are obtained by
regressing soil carbon concentrations on the full set of
regional indicator variables without any other controls. The
data show that mangroves in North and Central America
contain some of the most carbon-rich soils whereas man-
groves in East Asia are among the most carbon-poor soils.
Soils in South East Asia, where a large fraction of the world’s
mangroves are located (approx. 32.8%), have considerably
greater carbon content than mangroves soils in East Asia but
substantially less carbon content than mangrove soils in North
and Central America. However, regional constants are no
longer statistically different from each other after controlling
for climate and latitude (right panel of figure 2).

Model 4, which controls for latitude, climatic conditions,
and sample region, outperforms all other parametric predic-
tions explored here in terms of attaining the highest R-squared
and lowest AIC. Therefore, we select it as our preferred
parametric specification and compare it to the two ML
models.

Figure 2. Regional variation in soil carbon. The left panel shows regional means without controls for climate and distance from the equator.
The right panel shows regional means conditional on controls for climate and distance from the equator.
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3.2. Machine learning predictions

Table 2 contains results from our out-of-sample predictive
test, where we compare the performance of our preferred
parametric prediction model (Model 4) and two competing
ML algorithms (the boosted decision tree and the bag decision
tree). The average sum of squared errors (SSE) and mean
percentage errors (MPE) for each model are summarized in
the table.

The results indicate that both ML methods outperform
our preferred parametric predictive model by achieving
smaller average out-of-sample SSE and MPE. The improved
ability of ML models to predict out of sample suggests that
they offer distinct advantages in modeling mangrove soil
carbon. Of the two ML methods, the bag DT performs better
than the boosted DT, so we select it as our preferred ML
model.

Communicating and further using ML model results can
be challenging, as the model cannot be collapsed into an
equation. However, in contrast to parametric models we can
calculate the relative importance of each predictor variable in
the ML model (table 3) to gain insight into which predictors
explain the greatest amount of variation in the data. We find
that annual precipitation is the most important predictor,
followed by distance from the equator and geographic region.
Precipitation seasonality, mean temperature of the coldest
quarter, and annual mean temperature explain less of the
variation in mangrove soil carbon.

Table 1. Parametric predictive model regression results.

Dependent variable is: soil carbon concentration (mg C cm−3)

Model 1 Model 2 Model 3 Model 4

Constant 32.139** 31.989** −67.819**
(0.375) (0.614) (20.722)

AV Latitude 0.013 0.379** 0.150
(degrees) (0.043) (0.088) (0.102)
Average temperature 7.229** 12.210**
(Degrees C) (1.696) (2.111)
Average temperature squared −0.168** −0.389**
(Degrees C squared) (0.040) (0.054)
Coldest quarter temperature 1.747** 5.399**
(Degrees C) (0.357) (0.783)
Annual precipitation −0.005** −0.006**
(Millimeters) (0.001) (0.001)
CV Precipitation −0.164** −0.101**
(Unitless) (0.022) (0.028)
East Africa −137.311**
(Indicator) (24.868)
South Asia −126.397**
(Indicator) (24.281)
Southeast Asia −132.857**
(Indicator) (24.764)
East Asia −122.571**
(Indicator) (24.621)
Australasia −122.765**
(Indicator) (24.275)
Pacific Ocean −131.672**
(Indicator) (25.086)
North and Central America −120.463**
(Indicator) (25.229)
South America −141.921**
(Indicator) (25.241)
Observations 932 932 932 932
R-squared 0.000 0.000 0.103 0.912
AIC 7190.905 7192.809 7101.155 6990.568

Standard errors in parentheses
** P< 0.01, * P< 0.05

Table 2. Comparison of OLS and ML models using the out-of-
sample sum of squared errors (SSE) and mean percentage error
(MPE), on average, from 1 000 random divisions of independent
studies in the data.

Method Average SSE Average MPE

OLS (Model 4) 5.69 e05 53.84
Boost DT 1.27 e05 36.99
Bag DT 0.844 e05 32.26
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Using our ML predictive model along with mangrove
land cover data from Giri et al (2011), we construct a global
dataset (available online from the authors) of estimated
mangrove soil carbon concentrations (mg C cm−3) and stocks
(Pg C) on a high-resolution grid (5 arc min). Standard errors
for all of our estimates are calculated from the standard
deviation of predictions from 10 000ML models constructed
from 10 000 random samples (bootstrap samples) of our pri-
mary soil carbon dataset. Figure 3 maps the predicted soil
carbon concentrations for the world’s mangroves and figure 4
maps mangrove soil carbon concentrations in Indonesia (and
neighboring countries), a country that contains roughly 19.5%
of the world’s mangroves. The figures illustrate considerable
spatial variation in mangrove soil carbon concentrations.

To estimate global carbon stocks we assume a carbon-
rich soil depth of 1 meter, as common in the literature (e.g.
Donato et al 2011, Pendleton et al 2012, Siikamäki
et al 2012). Table 4 lists the estimated global and country-
level stock for the top-20 countries. Globally, we estimate that
mangrove soils contain 5.00 ± 0.94 Pg C and that about 80.5%
of the pool is contained in 20 countries, which is roughly
proportional to the per cent of the world’s mangroves these
countries contain (81.3%).

Our results document considerable geographic variation
in soil carbon. We estimate that global mangrove soils contain
369 ± 6.8Mg C ha−1 on average (in the top meter). However,
we estimate that the amount of carbon per hectare in the
world’s most carbon-rich mangroves (the highest grid cell
prediction is 703 ± 38Mg C ha−1) is roughly 2.6 ± 0.14 times
the amount of carbon per hectare in the world’s most carbon-
poor mangroves (the lowest grid cell prediction is
272 ± 49Mg C ha−1). We also find substantial within-country
variation in mangrove soil carbon. For example, in Indonesia,
the country with globally the largest mangrove soil carbon
stock, we estimate that the most carbon-rich mangroves
contain 1.5 ± 0.12 times as much carbon per hectare as the
most carbon-poor mangroves.

When examining country averages, we find that the
country with the highest average soil carbon concentration
has roughly twice the amount of soil carbon, per hectare, as

the country with the lowest estimated soil carbon concentra-
tion. Interestingly, none of the top 20 countries, when ranked
by soil carbon concentrations, overlap with the 20 countries
with the largest carbon pools (table 4). In fact, the 20 coun-
tries with highest average soil carbon concentrations contain
only 1.2% of the world’s mangroves, but as a consequence of
their relatively high soil carbon, these countries account for
1.5% of global mangrove soil carbon.

4. Discussion

Here we develop a predictive model and global dataset of soil
carbon concentrations, which documents and provides infor-
mation on the spatial distribution of mangrove soil carbon. Our
results indicate that the variation in soil carbon is systematically
determined by several climatic variables but that locational
variables are also significant predictors of mangrove soil carbon.

Some of our results call for added discussion. First,
although Chmura et al (2003) find that soil carbon decreases
with temperature, in our analysis, which includes and expands
beyond the data in Chmura et al (2003), the (parametric)
results show that, on average, carbon content increases with
temperature, albeit at a decreasing rate. Our results are con-
sistent with studies that find mangrove productivity increases
with temperature up to a threshold (Ellison 2003, Field 1995).

Second, our findings are consistent with several studies
that find that extreme cold events have a significant impact on
mangrove productivity (Cavanaugh et al 2013, Sneda-
ker 1995, Woodroffe and Grindrod 1991). For example, our
(parametric) results show that a 1 degree C increase in tem-
perature during the coldest quarter leads to an increase of
5.4 mg cm−3 of soil C, all else constant, or a 16.8% increase
relative to the mean value of mangrove soil carbon con-
centrations in our sample.

Third, we find that ML algorithms perform substantially
better than simple parametric predictions in predicting out of
sample. Therefore, they may offer substantial gains in accu-
rately estimating mangrove soil carbon concentrations based
on available data. On the other hand, the parametric model is
exceedingly practical for predictions and, as such it offers a
useful first-order approximation.

Finally, to obtain the highest-quality predictive model
given available data, we explored several predictive modeling
techniques and compared their performance along several
dimensions. Nonetheless, as with any predictive model, the
quality of the predictions depends on the quality of the
underlying data. For example, if the secondary observations
used in this analysis targeted sampling locations based on
characteristics that are unobservable to us but correlated with
soil carbon concentrations (e.g. oversampling of pristine
mangrove forests), then the underlying data would not be
representative of the population and any predictive model
would contain selection bias. The possibility that soil carbon
measurements oversample pristine mangrove locations is
speculated about in Kristensen et al (2008) and Hutchinson
et al (2013). Although there is no actual evidence of sampling
bias, it cannot be completely ruled out.

Table 3. Predictor importance in the bag DT ML model. The
importance score is calculated as the change in mean squared error
due to splits on each predictor and then dividing the sum by the
number of branch nodes. The relative importance normalizes the
importance scores by the sum of importance scores over all
predictors.

Variable name Variable description
Relative

importance

Bioclim 12 Annual precipitation 0.2092
AV Latitude Absolute value of latitude 0.1967
Region Geographical region

category
0.1732

Bioclim 15 Precipitation seasonality 0.1532
Bioclim 11 Coldest quarter mean

temperature
0.1347

Bioclim 1 Annual mean temperature 0.1331
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5. Conclusions

This analysis adds to the science necessary to design and
evaluate mangrove conservation options. We develop a model
to predict mangrove soil carbon, explaining substantial spatial

variation in the carbon concentrations of global mangrove
soils. Our predictive model is based on a rich dataset of
mangrove soil carbon measurements, including over 900
observations collected in 28 countries throughout the world,
which represent the majority of global mangroves. Using

Figure 3. Global map of predicted mangrove soil carbon concentrations.

Figure 4. Map of predicted mangrove soil carbon concentrations for Indonesia (and neighboring countries).
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the model predictions, we produce a high-resolution and
spatially explicit global dataset of mangrove soil carbon
concentrations. These data can help examine current man-
grove conservation projects and direct future mangrove con-
servation efforts, thus providing an important scientific input
to mangrove conservation assessments.

Because mangrove soil concentrations are determined by
climate conditions, our predictive model can also help assess
the impacts of a changing climate on carbon in mangrove soils,
i.e. our model can be used to predict changes in mangrove soil
carbon concentrations that result from changing climate con-
ditions. This will allow for a more complete understanding of
the impacts of climate change on mangroves.

Mangrove carbon storage varies substantially over space;
therefore, the benefits from mangrove conservation depend
critically on the location of the mangroves conserved. In
principle, our results enable the targeting of mangrove con-
servation to maximize benefits from avoided carbon emissions.
We note, however, that a more meaningfully defined con-
servation strategy should consider the full range of benefits
from mangrove conservation, not only avoided carbon emis-
sions. Moreover, it is not clear a priori how similar or different
a more multi-objective targeting strategy would be relative to a
carbon-focused targeting. Although previous research (Sii-
kamäki et al 2012) suggests that, in general, carbon-focused

mangrove conservation will target areas that are also high in
biodiversity, the relationship between carbon and biodiversity
may vary at a finer spatial scale than has been considered thus
far in the literature. Additionally, it is unclear whether the many
other benefits, such as shoreline protection or the provision of
nursery habitat for fish, from mangrove conservation are
strongly and positively correlated with the potential for carbon
offsets in mangroves. Therefore, to develop a more compre-
hensive understanding of mangrove conservation, future work
is needed to evaluate the full array of ecosystem services that
mangroves provide. Our results can be an important input into
these future comprehensive assessments.
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