THE ROLE OF MARINE RESERVES AS FISHERIES MANAGEMENT TOOLS
A REVIEW OF CONCEPTS, EVIDENCE AND INTER RATIONAL EXPERIENCE

Trevor J. Ward
Dennis Heinemann
Nathen Evans

A Weight of Opinion

A selection of recent published opinions from marine fisheries managers, scientists and conservationists
"Marine protected areas thus provide the sociological anchor for averting the "tragedy of the common" and fostering a sense of stewardship for ocean resource and ocean space among the people who most rely on healthy, intact coastal system." (Agardy 1994)
"... possibly high costs relating to exclusion of certain users, the mechanics of boundary delineation, scientific uncertainties relating to identification of ecologically critical areas, lost opportunity and the spill-over of potentially increasing fishing pressure outside the limits of the closed area all necessitate that managers evaluate costs and benefits carefully before using closed areas to complement other forms of fisheries management" (Agardy 2000)
"Reserves will be essential for conservation efforts because they can provide unique protection for critical areas, they can provide a spatial escape for intensely exploited species, and they can potentially act as buffers against some management miscalculations and unforeseen or unusual conditions." (Allison et al. 1998)
"To date, most reserve design and site selection have involved little scientific justification." (Allison et al. 1998)
"Marine reserves are a critical component of a conservation strategy but must be coupled with other, complementary efforts." (Allison et al. 1998)
"...it is not a forgone conclusion that a MPA will adequately protect populations of fish or invertebrates from the effects of exploitation outside its borders, or allow populations to recover from previous exploitation" (Attwood et al. 1997b)
"The most compelling reason for implementing a spatial protection approach is that other traditional approaches... habitually fail because they do not effectively control effective fishing effort" (Ault et al. 1997b)
"Marine fisheries management is trapped by two assumptions. First, that fishing must be allowed everywhere until demonstrable problems occur. Second, that detailed scientific data on fish stocks can define and then solve these problems in some acceptable way. In fact, there is no convincing factual evidence for either assumption, and the first would prevent the operation of the second, even if the latter was true (no unconfounded controls on which to base valid analysis)" (Ballantine 1995b)
"'No-take' marine reserves offer a new and additional form of fisheries management." (Ballantine 1997)
"The concept of marine reserves is simple: if protected from human interference, nature will take care of itself" (Bohnsack 1993)
"No-take marine reserves are an essential, but underutilized tool in precautionary fishery management" (Bohnsack 1999)
"Overexploitation, stock collapse, and loss of biodiversity are growing problems because of open access fisheries, increased fishing power, habitat damage from fishing, loss of natural refuges, and an inability of traditional methods to effectively control fishing effort and mortality" (Bohnsack 1999)
"Although marine harvest refuges have the potential to contribute an effective tool for fishery management, they should probably be viewed as a supplement for other more conventional management schemes" (Carr \& Reed 1993)

THE ROLE OF MARINE RESERVES AS FISHERIES MANAGEMENT TOOLS

A REVIEW OF CONCEPTS, EVIDENCE AND INTERNATIONAL EXPERIENCE

Trevor J. Ward* Dennis Heinemann** Nathan Evans***

Institute for Regional Development, Institute for Regional Development,
University of Western Australia, Perth (formerly of CSIRO Marine Research)
** National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, USA (formerly of CSIRO Marine Research)
${ }^{* * *}$ Agriculture, Fisheries and Forestry Australia, Canberra (formerly of Bureau of Rural Sciences)
© Commonwerth of Austrdia 200
ISBN: 0642475504
This work is copyright. Thecapsight ACT 1968 pemits fair delling for study, reserch, news reparting, aiticism or review. Seleted paseges, tables or diagrams may bereproduced for such purposes provided adknowledgements of the source is induded. Major extrats or the entire document may not bereproduced by any process without written permission of the Exeative Director, Buree of Rura Siences PO BOX E11, Kingston ACT 2604

The Bureau of Rurd Siences (BRS), is the soientific buremu within the depatment of Agriculture Fisheries and Forestry - Australia (AFFA). It's role is to ddive effective, timdy, policy-relevant sientific advice, wessments and tods for deision-making an profitable, competitive and sustanable A ustrdian industries and ther supporting cormunities

Posta address
Burean of Rurd Soiences
PO Box E11
Kingston, ACT 2604
Copies available from:
PO Box 6103
West Footscray VIC 3012
Tefephone 1800244129
Fax: 1800244130
Email: sdes@brsgov.au
Intenet: http://www.brsgov.au
Prefered way to dite this publication:
Ward T. J., D. Heinemenn and N. Evans (2001) The Role of Marine Reseves as Fisheries Management Tools a review of concepts, evidence and intemationd experience Burem of Rurd Siences, Canberra Austrdia 192pp

This publiction does not represent professiona advicegiven by the Commonwedth or any other person acting for the Commonwedth for any paticular purpose It should not berdied on a the bais for any deision to takeaction on any matter which it covers Repders should mekether own enquiries and obtain professiond advice, where approprize, beforemaking such decisions

FOREWORD

Fisheries managers have a number of tools at their di sposal to achieve the aims of conservation and management of marinefisheries Among thesetools is the practice of dosing ares to extractiveactivities, and paticularly to exploitation by commerial fishers This practice obviously reduces catches in theshort term but can have longe-term benefits that are not immedi td y apparent. Recently, the concept of protecting arees of the marineenvironment with the objective of conserving environmental values hæ been promoted around Australia and the benefits of maine protected aress to fish catches are becoming more often discussed.
input/output control fisheries management regimes require a high levd of biologicad and fishey information, and aredifficult and costly to enforce Altenative management regimes therefore warrant consideration. There apper to bemany benefits of managing fisheries through reseves compared with conventiona input/output control methods. These beneits may ind ude protection of spamming stocks, supply of recuiting fish enhancement of catches in adjacent arees, a reduction in the need for biologicd and behaviourd information; and emee of enforcement of statutes and regulations. The pressureto expand the marine reservesystem nationwide is poised to intensify into thefuture, driven by the requirement for multiple use, conservation and fish habitat presenvation. Australia's Ocems Policy commits to the cretion of maine protected arem, and the Commonwelth is in the process of increesing their area and number. State and teritory govemments are also devdoping and implementing their own marine reserve programs.

Despite a lot of enthusiæm about the establishment of marine protected arems, there has been little empirica work undertaken to evdute their worth in achieving conservation objectives, and less on their effects on adjacent fish stocks. Regardless of the potential beneits of marine protected arees, there is a risk that the god of adhieving sustainable efishing can be undermined if these arees are established as a response only to reduring fishing capaity. The use of marine protected arem as fish refuges may be a simple tool to hep resolve a complex problem that requires a number of responses

This report provides a review of intemationd experience with mainereserves and promotes the understanding necessary to enabl earees reserved for fisheries management purposes to be established on scientifically defensiblegrounds.

Peer O'Brien
Executive Director

THE AUTHORS

Trevor Ward

Trevor Ward is a marine biodi versity spedidist and ecological consultant based at the University of Westem Austrdia His current reseerch interests indude the design and implementation of marine protected arees, design of monitoring and peformance indictors for sustainable fisheries management, and community-bæed conservation in small istand nations Trevor was formely Program Manager for environmental reseerch in CSIRO's Division of Fisheries

Dennis Heinemann

Dennis Heinemann is a quantitaive marine ecol ogist. He has investigted the ecology of high latitude marine birds, the impacts of oil spills and development on marine bird and mammal populations, the foraging behaviour and ecol ogy of endangered ters, the interactions between fisheries and marine birds, and the ecology of marine fisheries reserves Currently, Dennis is working in the United States for the Nationd MarineFisheries Senvice, studying the conservation and population dynamics of exploited reef fishes

Nathan Evans

N athan Evans is an oceens law and environmenta policy practitioner. He has worked in the Austraian Department of Agriculture, Fisheries and Forestry in both sience and policy arees His interests and expertiseare in bycatch policy with paticular emphasis on approaches for mitigating fishery interations with seebirds, sharks, turtles and other spedies considered at risk. At the time of publication, N than had just taken up a reseerch and teeching position in oceens law and policy at the Uni versity of the South Padific, Suva, Fiji.

PREFACE

This document is the report of ajoint BRS-CSRO review of the role of marine reserves as tools in fisheries management. Thereview was conducted as the basis for deve opment of policy in fisheies management in Australia but considered the worldwideliterture and experience where it was approprite

The objectives of thereview were

1. review and assess the effectiveness of marine reserves in Austraia, New Zeland and south-est Asia a fisheries management tods and for the conservation of marine resources and biodiversity;
2. identify, describeand make a preliminary evduation of approaches and modds that have been used to identify sites for marine reserves for fisheries management purposes and conservation of marine resources and biodi versity, in Austrdia and dsenhere
3. adviseas to the potentid environmenta and socid costs and benefits of notiond marine protected arees

Initial funding for thereview was provided by the Fisheries Resources Reseerch Fund, and resources to bring thereview to completion were provided by Agrialture, Fisheries and Forestry Australia the Institutefor Regiond Development, University of Westem Austrdia and CSRO MarineReserch.

Comments from interested readers are we come
Plemeemail comments, questions or updates to:tward@ird.uwaedu.au

ACKNOWLEDGEMENTS

This projet has been largely funded by the Fisheries Resources Reserch Fund. Many reserchers worldwide have made available their draft manuscripts and papers from conferences in advance of publication in the open literture, and wegratefully adknowledge this support in this rapidly evolving area of reseerch and ppinion Thereview has dso benefited from direct discussions with many reserchers, induding:

Gary Allison, Oregon StateUniversity, USA
Col in Buxton, Tæmanian Aquacultureand Fisheries Institute, Australia
Jenny Dugan, Uni versity Califomia at Santa Barbara USA
SteveGaines, Uni versity Califomia at Santa Barbara USA
SylvieGuenette, University of British Columbia Canada
Simon J ennings, Centrefor Environment, Fisheries and Aquaculture Saience, UK
J ane Lubchenco, Oregon State Uni versity, USA
Tim McClandhan, Cord Ref Conservation Project, Kenya
Michele Paddadk, Uni versity California at Santa Barbara USA
Tony Pitche, Uni versity of British Columbia Canada
Nicholas Polunin, Uni versity of Newcastle, UK
Callum Robets, University of York, UK
The report, or portions of this report, has been revieved by Derkk Staples, Geoff Williams and Kery Trudove (BRS), and Alan Butle, Tony Smith, and Keith Sainsbury (CSIRO), and weadknowl edge their support and inputs Louise Gali (AFFA) provided asistance in compiling pats 5 and 6 of thereport. Wealso acknowledge thesupport of the Project Stering Committee, established by BRS. He pful comments on the drat have been provided by Marc Mangd, NevilleBarett, Colin Buxton, Alan Butler, Rod Fujita, Nic Dunlop and BurkeHill.

GLOSSARY OF TERMS

Marine Protected Area
A Marine Proteted Are (MPA) is an are of sebed and ovelying waters dedicted to the protection and mintenance of bidogica diversity and of ntura and asocited alturad reaurces and managed through legd or other ffective mens (atter ANZECC 1998). MPA sare reserves that mey take many forms, and confer different leveds of protection for biodiversity depending on the uses permitted and the typeand extent of menagement applied. A MarineFisheries Sancuary is a speific form of MPA where al explaitation is prohi bited.

Marine Fisheries Sanctuary
A MarineFisheries Sanctuary (MFS) is an area of sebbed and ovelying waters that is pemmently managed as a'no-tzke' reserveas pat of an overal fisheries menagement strategy for a region. Marine Fisheries Santuaries arecontinuously in effet (not periodically open and dosed for exploitaion) and comprehensive in coverage (cover all living and non-living dements of the ecosystems within their boundaries).

Focal Species/Stock

A stock or species may be of interest in a given discussion for a variey of reesons-perhaps becauseit istargeted by fisheries, the subject of fisheries management ations, pat of the reson for the establishment of a reserve, in need of conservation attention, and/or important to the fishing industry and soidy. We usetheterm 'focd' to refer to the stock or spedies of interes in the given disaussion. Weavoid theterm 'fish' for thesimple reeson that not all exploited spedies or spedies proteted by reseves are fish, and constructions such as 'targeted fish and shelfish speies' are unnecessarily complex.

Reserve Effect

This phræe refers to a process that typically occurs ater the establishment of a reseve in an area previously subject to fishing impats, in which multiplecharateristics of individuals, populations, communities, habitas and ecosystems areattered. For example, reseves typicaly result in an increse in average age and sizes of individuds, increme in population sizes and densities, enhanced reproductive output, inceme in biodiversity, moroved habitt complexity, and shifts in ecosystem function. This phenomenon was first refered to a the 'resenve ffect', described by Francour (1989, dited in Sæed \& al. 1996), and theterm subsequently has been used consistently in the literature on Mediteraneen marine reserves (Francour 1994, Harma in \& al. 1995, Macpherson \& al. 1997, Garóa Chaton \& Peréz-Ruzãa 1999, Lamesa \& Vacchi 1999), athough apparently nowhere ise

Sanctuary Improvement

When the 'reserve effect' results, or is hypothesized to result, in an improvement in identifiable, valued components of a sanctuary (eg. incresed population sizes of fished spedies, increed biodi versity, or increed habitat compleity), we use the tem sanctuary improvement.

Spillover

Thene movement of post-settlement individuals from reseves, generaly in responseto density and habitat differences across reserve boundaries resulting from the reserve effect.

Larval Export
Thenet movement (export) of eggs and lavæe(reproductive propagules) from reseves in response to improved spaming conditions and incresed reproductive potential resulting from the reserve effect.

Stability Enhancement
Thereduction in variability of the productivity of marine reserves a mesured by their rates of spillove and laval export, or their contribution to the number of indi viduads that are reanited to the fishery.

Fisheries Enhancement

The result and process whereby reseve or senctuary etablishment causes, presumably through the processes of spillover, laval export and stability enhancement, improvements to explaited stocks, the fishers and fisheries that depend on them, and the soio-economic systems dfected by thosefisheries

Settlement
We use this term (and sometimes 'larvd settlement') to refer to the point in devd poment at which larwæmake the transition from the planktonic phæe to thejuvenile phæe, which is usually accompanied by a movement from the pdagic habitat to demersd habitat.

Recruitment

This term refers to the point at which an individuad becomes fully etablished in its juvenile habitat following the process of settlement. Recuitment may occur very shortly atte, or effectively at the sametime $\omega_{\text {, }}$ settlement. Operationally, in ecol ogical studies, recuitment is defined as the point at which recently sattled indi viduals become detetable and susceptible to speific sampl ing ger. When the possibility for confusion exists we use theterm 'ecological reauitment' to distinguish the type of rearuitment defined here from 'rearuitment to the fishery (sebdow)

Recruitment to the Fishery
In fisheries science, theterms reauitment has a very different meening, so we use the phræe 'reauitment to the fisher', or 'fisheries reanitment' to speeify the fisheries meening. This concept refers to the point at which an indi viduad reeches thesize at which it is subject to capture by a fishery. Recruitment to the fishery may occur long ater settlement and ecological reccuitment.

Overfishing

Excessivefishing mortaity that results in damege to exploited stods is cal led ovefishing. Thereare five recognised types of overfishing (Bohnsedk \& Ault 1996, Attwood \& al. 1997b).
'Growth ovefishing' occurs when themeen size of havested individuds is less than the meen size that would theoretically result in theoptima yidd based on balanaing individua growth and mortaity rates This form of ovefishing will result in a reduction in thesizelage distribution in the exploited population.
'Recuitment ovefishing' results when fishing mortaity results in a reduction in the population's reproductive potential, which can ocar dir retly if excessive numbers of spawning agdsize indi viduds are caught, or indiredly if so many prespawning agedsize indi viduds are caught that rearuitment to the spawning population is insufficient to sustain the population, and can leed to popultion collapse and, at leet, locd extirpation. In either ase thespaming biomess is insufficient to produce potential rearuits to sustain the population
'Genetic ovefishing' occurs when fishing mortaity results in geneic changes to the population, such as when the largest and fastest growing individuads are consistently removed from the population.

Ovefishing can reducestocks to the point wherefisheries can no longer economicaly target that speies In this situation, fisheries typically switch their focus to the next most desirabl espedies ‘Seriad ovefishing' ocaurs when this process results in the sequential overishing of a number of species
In somecaes, this leve of seria ovefishing can escdate to wholesd edestruction of marine communities, a process cal led 'ecosystem overfishing' or 'Mathusian overfishing' (Pauly 1988b, Pauly \& al. 1989).

CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION AND BACKGROUND 4
1.1 Marine Reserves 4
1.2 FISHERIES MANAGEMENT AND MARINE RESERVES 8
1.3 'NO-TAKE' MARINE RESERVES 14
2 METHODS AND APPROACH 19
3 POTENTIAL BENEFITS OF MARINE SANCTUARIES FOR FISHERIES 21
3.1 INSIDE SANCTUARIES (TABLE 2) 22
3.1.1 Fishing Mortality 22
3.1.2 Population Size 24
3.1.3 Population Structure 24
3.1.4 Reproduction 25
3.2 OUTSIDE SANCTUARIES (TABLE 3) 25
3.2.1 Spillover 25
3.2.2 Larval Export 27
3.3 OVERALL (TABLE 4) 29
3.3.1 Stock 29
3.3.2 Genetic Structure 31
3.3.3 Ecosystem31
3.3.4 Management32
4 A CONCEPTUAL MODEL FOR MARINE FISHERIES SANCTUARIES35
4.1 CESSATION OF FISHING 38
4.1.1 Model Expectation 38
4.1.2 Effects of Fishin 38
4.1.3 Sanctuary Effects41
4.2 DECREASED MORTALITY AND INCREASED LONGEVITY . 41
4.2.1 Model Expectation 41
4.2.2 Effects of Fishing
4.3 INCREASED NUMBERS AND DENSITY 42
4.3.1 Model Expectation 42
4.3.2 Effects of Fishing 43
4.3.3 Sanctuary Effect . 44
4.4 SPILLOVER
4.4.1 Model Expectation 44
4.4.2 Movement terms 44
4.4.3 Spillover elements45
4.4.4 Process and Pattern 47
4.4.6 Cyclic movements 53
4.4.7 Overlap movements 54
4.4.8 Migratory movements 54
4.4.9 Sanctuary effect 55
4.5 INCREASED REPRODUCTIVE OUTPUT
4.5.1 Model Expectation 56
4.5.2 Effects of Fishing56
4.5.3 Sanctuary Effects 58
4.6 LARVAL EXPOR 59
4.6.1 Model Expectation 59
4.6.2 Sanctuary Effect 59
4.7 RECOVERY FROM HABITAT DAMAGE60
4.7.1 Model Expectation60
4.7.2 Effects of Fishing 60
4.7.3 Sanctuary Effects 62
4.8 BENEFITS BEYOND FOCAL SPECIES 64
4.8.1 Model Expectation 64
8.2 Effects of Fishing 64
4.8.3 Sanctuary Effects 65
4.9 LONG-TERM BENEFITS TO FOCAL POPULATIONS67
4.9.1 Model Expectation
4.9.1 Model Expectation6767
4.9.2 Effects of Fishing 67
4.9.3 Sanctuary Effects 68
4.10 RESERVE IMPROVEMENT AND RECOVERY
4.10.1 Allee Effect 70
4.10.2 Slow growth 70
4.10.3 Species interactions
.70
.70
4.10.4 Insufficient habitat diversity 70
4.10.5 Extensive habitat damage 71
4.10.6 Lack of refugia 71
4.10.7 Unpredictability of recruitment 71
4.10.8 Poor location 71
10.9 Small size 72
4.10.10 Inadequate numbers of sanctuaries 72
4.10.11 Extreme environmental events7
4.11 PRODUCTION STABILITY ENHANCEMENT 73
4. 12 FISHERY ENHANCEMENT FROM SPILLOVER74
4.12.1 Recruitment to fisheries74
4.12.2 Fishery enhancement 74
4. 13 FISHERY ENHANCEMENT FROM LARVAL EXPORT76
4.13.1 Spatial characteristics and hydrodynamics 77
4.13.2 Networks of sanctuaries 79
4.13.3 Larval pool contribution 80
4.13.4 Placement
81
81
4.13.5 Seasonality 81
4.13.6 Adult characteristics 81
4.13.7 Larval condition 81
4.13.8 Consistency 82
4.13.9 Stock-recruitment relationships 82
4.14 SUMMARY 84
5 THE EVIDENCE 89
5.1 EMPIRICAL EVIDENCE FOR IMPROVEMENTS WITHIN RESERVES 89
5.1.1 Increased abundance of focal species 90
5.1.2 Age and size gains 93
5.1.3 Enhanced fecundity or reproductive capacity 94
5.1.4 Limitations with studies of marine sanctuary benefits 96
5.2 EVIDENCE FOR IMPROVEMENTS TO FISHERIES 99
5.2.1 Spillover effects 100
5.2.2 Export of eggs and larvae 106
5.2.3 Implications for management 109
5.3 BIODIVERSITY CONSERVATION BENEFITS OF MARINE FISHERY SANCTUARIES 112
5.3.1 Habitat recovery 112
5.3.2 Species and genetic diversity 112
5.4 SOME DESIGN ISSUES-SIZE AND AREA 115
6 THE SOCIAL DIMENSIONS OF MARINE PROTECTED AREAS 117
6.1 SOCIAL BENEFITS 117
6.2 STAKEHOLDER VIEWS 118
6.2.1 Reserve Advocates 118
6.2.2 Fishing Industry Opposition 119
6.3 MANAGEMENT CONSIDERATIONS 120
6.4 ISSUES IN RESERVE DESIGN 121
AN EVALUATION FRAMEWORK 123
7.1 EVALUATING THE BENEFITS 123
7.2 THE APPROACH 123
7.3 DEVELOPMENT OF CRITERIA AND INDICATORS 125
7.4 THE CRITERIA AND INDICATORS 126
7.5 A MINIMUM SET OF CRITERIA 129
8 CONCLUSIONS
8.1 DO SANCTUARIES HELP WITH FISHERIES MANAGEMENT ISSUES? 133
8.2 WHAT ARE THE NON-FISHERY BENEFITS OF FISHERIES SANCTUARIES? 134
8.3 HOW CAN SANCTUARIES DELIVER BENEFITS? 135
8.4 GAPS IN THE EVIDENCE 135
8.5 THE FUTURE 138
APPENDIX 1 139
APPENDIX 2 143
REFERENCES 153

EXECUTIVE SUMMARY

This report reviews the literature and experience in Australia and oversest to determine theextent to which marinereseves have been used to provide effectivesupport for fisheries management. Considerdble emphasis has been placed an gl dbal experience because experience with marine reserves for fisheries management purposes in Austrdia islimited. Thefous is on no-takemarine reserves (dso known as sanctuaries) for fisheries management purposes, and werefer to this form of reseve as a Marine Fisheries Sanctuary (MFS). Our objective is to document potential and realised beneits for fisheries, to identify key gaps in knowledge, and to outlinefuture directions that may be of benefit to fisheries managers as they consider the potential for MFSs in Australia

In generd terms, Australia's fisheries are in good shape-few can bedassified ove-fisheed. However, many fisheries arefully exploited and oversees experience shows that good fisheries management systems have not dways been able to protect fisheries from verfishing. There is a recogni sed need to adopt a precautionary approach to account for unpredided dynarics and extemdities that may at to destabilisefisheries, with the attendant risk of ovefishing. Themajor imperative for conducting this review is, therefore to ensure that Australian fisheries are kept at the forefront of ecol ogicd experience This will enable Australian fisheries management systems to adopt the best practices and approaches to fisheries management. The literdure that redtes to marine reserves used for fisheries management purposes is revieved to evduate the potential for reserves to assist fisheries management systems to becomemore precautionary and more effective in achieving ecologically sustainablefisheries

We find, as have many before us, that there is an ovewhelming body of ecol ogical theary and knowiedge that suggests that sanctuaries can provide important benefits to marine capture fisheries, provided the reserves are appropriat dy designed, sited and managed However, empirica evidenceshows that thereare very few examples where benefits to a fishery (ळ apposed to the reseve) have been well studied, and are documented and proven. Most studies have focused on reseve improvement (in the sense that the reserve tsedf is changed) when, from a fisheries perspective, the key issueis the typeand extent of benefits that are derived by the fishery, across such matters a catch, effort, profitability, soio-economic impacts in locd communities, and regiona development

To dasify the benefits that sanctuaries may bring to a fishery, a conceptud modd was assembled representing the main bio-physicd processes involved. Themodd summarises the main potentia benefits to a fishery from a sancuary, and al owed us to identify many of theissues associted with delivery of these benefits to a fishery. Baeed on this modd and approach, we develop and discuss ase of evduation aiteria that can be used by fisheries and conservation menagers to assess the benefits of fisheries sanctuaries These ariteria will permit fisheries managers to asess the performance of MFSs in terms that are meeni ngful for both fisheries managers and a broad range of stakend ders, and would enabl e a more active engagement of fisheries menagers in the current initiatives on marine protected arem

Experienœe vith marine reserves for fisheries management purposes in Australia islimited

Fisherie management systems have not always been able to protect fisheries from overishing.

Sanctuaries can provideimportant benefits to marine fisheries.

Sanctuaries have the greatest potential to enhancefully- or over-exploited populations

Sanctuaries have the potential to provide most benefit to fisheries that are presently either fully or over-expl oited. The benefits to be derived from a sanctuary are made possible by two key bio-physicd processes 'spillove'-the export of adults and juveni les of target spedies to the fishery-and 'lavd export'-thedistribution of propagules of thetarget spedies into settlement ares, from where they will eventually rearuit into the fishery. These benefits to a fishery will depend critically on the life history strategy of thetarget spedies, and the design of thesanctuary, induding its location, size and shape Thethird key benefit that we expect to be derived from fisheries sancturies is 'enhanced fisheries

Sanctuaries may providefor bet-hedging management strategies

Arobust basisfor future stakeholder engagement vith govemment and community marine oonservation initiatives.. stability'. Sancuraies provide the basis for a more precautionary and 'bet-hedging' management strategy for fisheries, and this would reduce variability associted with the interaction of fishing and environmental dynamics Themost effective design for optima beneits is likey to be a nework of sanctuaries with a mixture of large and smal individual arem Weidentify 7 key Criteria, with a range of optional Indicators, that should be used to assess the peformance of MFSs, and in particular to evdute the fishery benefits a well \ldots broader beneits for biodiversity and regional communities
The knowl edge needed to design and implement sanctuaries is al ready available for meny Austraian fisheries, and such sanctuaries could be designed and implemented now, and, supported by traditiona fisheries management tools, would belike y to provide significant fishey benefits However, given the extremey limited globd experience, optimising the performence of sancuaries and their role in the suite of existing fisheries management tools, and improving the effidiency and effectiveness of the design and implementation process for new sanctuaries, al will require some additiond information. These information needs cover 5 aress of fisheries management and 2 arees of ecol ogicd knowledge Better information in thesearees will also provide a more robust baris for futureengagement of thefishing industry and fisheries managers with govemment and community marine conservation initiatives

1) A detailed understanding of thestock-rearuitment re ationship for the focd speies, and what the variation in that redtionship in space and timemens to achieving fishery beneits from a MFS system;
2) Documented experience about the extent to which MFSs reduce the risk of fisheries collapse caused by environmental stresses, failure of thefisheries management system, or mis management of thefishery;
3) Documented experiences on the response of fishers to the design and establ ishment of MFSs intended to assist with the management of their fishery;
4) Empiricd meesurements of the benefits (such as yidd, economic, employment) that are relised by an Austraian fishery from the implementation of a nework of MFSs, and supporting evidence of the processes responsible for delivering those benefits,
5) Development of explicit procedures and modds for identifying which fisheries will benefit from MFSs, and experience with designing and implementing Australian MFSs that areoptimised across the range of competing objectives,
6) K nowledge of the processes within sanctuaries in redtion to the targe spedies for a fishery, and to their predators, prey or othemise dependent speies,
7) Detailed knowiedge of thelarval export characteristics of thetarget species in fully exploited and over-exploited fisheries, and the speries dispersal characteristics in retation to locd hydrographic and environmental charateristics

Overall, despite the lack of documented economic successes for fisheries, sanctuaries offer a major opportunity for fully and over-exploited fisheries to adopt a more precautionary and lower-cost approach to menagement that is highly likely to deliver improved benefits With careful attention to sanctuary design and management, we expect that MFSs integrated into the existing fisheries management system would provide a ne beneit to fisheries that are presently fully or over-exploited. Sancuaries dso offer the added advantages that they stand to meke a mejor contribution to locd and regiona conservation goals for biodi versity beyond exploited spedies because they are likely to have a broad range of fishery and non-fishey benefits.

Balaning the many competing interests and objectives, but still achieving strong outcomes for fisheries and fishery management, will requir consideralle design skills and capaity. To ensure that MFSs are established that have been carefully designed to optimise benefits, in addition to theseven gaps in knowledge outlined above, projects need to be initited that foous on the deve opment of modeling skills and capaity in fisheies agendes in retaion to senctuary design and implementation. This could be best achieved as pat of the demonstration projects disaussed above in points 2,3 and 4.

The major challenge cheed is to identify spedific approaches and design methodol ogies that will produce reiable marinefisheries sancuaries to best achieve these benefits in the short to medi um term In order to achieve maximum benefit for implementing MFSs, considerdble effort should dso beallocted to document and promotethis set of benefits, to ensure that experiences across Australia are appropriatdy recorded and disseminated. The important dements in the MFS implementation process are the systematic design, identification, selection, management and monitoring of the reserves This will have a high initial cost for the establishment phæe, but we expect that the routine fishery-wide management costs will ultimately be lower than at present, certainty and seaurity will beinceeed, and conflicts reduced because of the existence of demonstrated evidence of sustainability. Implementing newworks of sanctuaries for fisheries purposes will provide the capture fisheries sector with an opportunity to further demonstrate its commitment to marine conservation, and to further develop the prinaiples of precautionary management and the practice of ecol ogically sustainable devedopment within fisheries management systems in Austrdia

Sanctuaries offer a more precautionary andlower-cost approach to management. .

Otimising
sanctuary benefits requires balancing many competing interests.

Systematic design of sanctuaries is needed to achieve maximumbenefits for fisheries

1. INTRODUCTION AND BACKGROUND

1.1 Marine Reserves

Marine reseves are spatially defined arees of oceen or estuaries where naturd popultions of marine spedies are protected, ether in part or complety, from exploitation or other derrimental anthropogenic pressures Typically, reserves are creted for the conservation and restoration of high-value spedies and/or habitats (Kelener 1996, Attwood \& al. 1997a Bohnsedk 1998, Dayton $\&$ al. 2000), with management controls being used to restrict activities that are incompatible with achieving the conservation objectives for thegiven spedes or habitas.

Reserves are Marine reserves can becreted for a very broad range of remsons (Allison \& al. 1998, created for Agardy 1997), and to benefit many different types of organisms. Marine reseves in conservation Australia evist to protect icon speries and habitats (eg. dugongs and cord refs), spamming and restoration or nursery grounds of commerdally havested spedies (eg. seegrass meedows, cord ref of high-value flats, and mangroves), arem of importancefor reaetion or tourism (eg. cord refs), species or and places of culturd heritage value (eg. historic shipwredk sites, or sites for observation habitats different menagement legistation and arrangements depending on the primary purpose behind their dedaration. In addition to formal reseves, numerous smaler community-managed or-controlled locd reserves have been devedoped, paticulaly in coastal arees of tropicd Australia (J acoby \& al. 1997).

Manine reserves Marine reserves primarily dedi cated to the conservation of biological diversity are usually contribute known æ MarineProtected Arees, or just MPAs (MaNill 1994). Many marine reserves, to the both formal and informa, makeimportant contributions to the conservation of biologicd conservation diversity, but if their primary objective is, for example, the preservation of an important of biological shipwredk site, then their contribution to conservation of biologica diversity is likely to be coindidenta. In thesesituations, management is not directed spedifically to the assodited spedies and habitats that may befound within their boundaries

MPAs require Humphrey \& Smith (1990) suggested that effective marine conservation requires the commitment integration of 1) thretened-spedies protection, 2) habitat preservation, 3) mitigation from of cumul ative anthropogenic impats on environments, and 4) sustainable resource govemment exploitation; these are objectives which Agardy (1994) suggested could all be met through and the local commmity the use of MPAs Allison \& al. (1998) cationed, however, that whilemarine reserves are essential to conservation, soientifically sound design and implementation is critica to their success, and that their potential is constrained by the scd e of the processes upon which their ffectiveness depends (eg. planktonic dispersd of lavae).
MPAs may be ded ared for a variey of purposes, but noneare guaranteed to attain thei objectives In many countries, paticulaly those of thetropics, MPAs are ded ared in order to asist with thesustainable use of living resources, and patiaularly for locd communities
that depend on subsistence catches of fish and shellish (J ohannes 1978, Hesinga $\&$ al 1984, Savina \& White 1986, Alcla 1988, White 1989, Russ \& Alcda 1994, Cater \& Sedbery 1997, McClandhan \& al. 1997, Watson \& al. 1997). However, such reserves, as is the coæefor al MPAs, are exposed to violation of their management controls (Klima \& al. 1986, Savina \& White 1986, Tegne 1993, Russ \& Alcda 1994, McClanahan \& KaundzArara 1996, Wason \& al. 1997, Gribble\& Robetson 1998, Gurman \& J acome 1998, Rogers-Bennett \& al. 2000). The capadity to manage MPAs is often limited, and in addition to thetechnicd difficulties of controlling access, management controls on access and harvesting are sometimes neither implemented nor enforced. This problem is exacerbated where locd communities are exd uded from directly sharing the benefits of MPA sor cennot be convinced that those benefits will indirectly flow to their community, thus, giving them little incentive to assist in control and menagement of MPAsto achieve conservation objectives In such iroumstances, MPAs can be erily eroded, and their values lost (Alcda 1988, Russ \& Alcda 1994, McClanahan \& al. 1997, Rogers Bennett \& al. 2000). MPAs that are creeted with little or no commitment from govemment or the locd community to implement the control s identified as necessary for effective management tend to be ineffective in achieving conservation goals (J ones 1994).

Increeringly, scientists are draving the attention of fisheries managers towards the potential of marine reserves as nev tools for fisheries management (see 'Weight of Opinion' box). At thesametime, conservation and environment managers have become increesingly concerned that many arem of the global oceens, and paticularly neer-shorearem and estuaries, are poorly represented in existing MPAs. For example, a recent global andysis has identified that, athough thereare 1,306 existing MPAs in 18 regions of the world, 81 major new MPAs are required as regiond priorities to med global consevation criteia (Kellener \&al. 1995). Much of thegloba impetus is expressed in interntiond and regiond agreements and law (Attwood \&al. 1997a) induding the UN Convention on Law of the Se and the Intentiond Convention on Biologica Diversity (Ward \& al. 1997). This concem has dso resulted in various globad programs of adtion, ind uding the IUCN Marine and Coastd Arems Programme, and the UNESCO Man and the Biosphere Programme In Austraia marine reserves feeture prominently in the N ationa Ocems Policy, the Nationd Strategy for the Conservation of Biological Diversity, and the Nationa Representative System of MarineProtected Ares (NRSMPA).

Austraia's Ocens Policy (Commonweath of Austrdia 1998), which sets out the basis for achieving sustainable use of Austraia's oceens, indudes MPAs as a central dement of the implementation, together with sustainable uses in non-reserveares The N ationd Representaive System of Marine Proteted Ares (NRSMPA) program, implemented as pat of the Ocens Policy, supports theidentification, selection and dedardion of MPAs that areconsistent with national and staeleve conservation citeria (ANZECC 1998) In the Gret Barie Ref World HeritageArea existing zonings are being reviewed to identify a set of representative arees to be dedi cted for the highest levels of conservation protection. The Oceens Policy proposes that MPA sand improved implementation of Austraia's policy of Ecol ogically SustainableDevdopment in off-reservearess together
will be capable of ensuring that conservation objectives can beachieved for Austraia's oceen teritories whil emaintaining susta nable uses of our living resources.

The NRSMPA is the combined reservesystem of the Commonwedth and the states and teritories, and its objective is to establish and manage reserves that contain the range of ecosystems, habitats and speies found in Australia's marine jurisdi ction (ANZECC 1998) However, at present the NRSMPA system of reserves is very limited-less than 1\% of Australia's marinejurisdiction-and the reserves areheavily biæed towards shallow water and inshore habitas where human pressures are gretest.
Reserves designed for use in fisheries management can be considered as to beeither a subset of MPAs \equiv defined above, or a a distinct, but complementary, form of reserved areathat is se aide primarily for resource conservation. Severd terms are commonly used to denote reserve arem used for fisheries management purposes (Auster \& Mal atesta 1995, Allison \& al. 1998). They indude

- fishery, non-extrative or no-takereserve
- marine proteded area sanduary or park
- marine, harvest or fishing refugium and
- conservation zone

Only occasionally are the tems carefully defined, and rarely are they contrated with each other. Throughout this review theterm 'MarineFisheries Sanctuary (MFS) (Plan Devel opment Tem 1990) is used to identify no-take reserves spedifically creted for fisheries management purposes, and it is this form of reservethat is the foaus of this report. An MFS is equival ent to a no-take MarineFisheries Reseve (MFR), aterm used by some jurisdidions (Plan Devel qpment Tem 1990). Wehave preferred theterm 'sanctuary over 'reserve' because of its more direct everyday language implications, and because we consider that 'sanctuary' is less ambiguous in management tems. For brevity we often used theterms 'marine resenve' or just 'reserve', which may refer spedifically to MFSs or more generaly to marine reserves, depending on the contert.
Many reserves ded ared for fisheries management purposes (such as fish-habittat reseves) will mekeimportant contributions to both fisheries and to the conservation of biologica di versity more broadly, even though the conservation of non-commerial species is not their main objective Such reserves ind ude those dedi cted under areaspedific fisheries management meesures. For example, in Westem Australia these meesures ind ude fisheries dosures-dosed seesons for fishing in spedific arees-and formally dedared Fish Habitat Protection Aress (Bunting 2001). So, in addition to their contribution to fisheries management, such reserves will have other biologica values In this sense, someforms of fisheries reseves, and paticularly MarineFisheries Sanctuaries as defined here, can make a substantial contribution to broader marine conservation goals beyond just protection for exploited species

The contribution to the conservation of biologicd diversity that can beachieved within MFSs and other forms of fisheries reserves, athough rarely documented, is recognised by the most widespread dasification system for MPAs in intenationa use-theIUCN dassification of protected ares (IUCN 1994; Table 1). TheIUCN ctegories for MPAs define a range of reservetypes that could be of potentia use in fisheries management, ind uding highly protected no-takearess (Category I) and arees designed to foster the long-term sustainable use of naturd resources (Category VI). Implidt in the IUCN dasification system is the recognition that reserves that are managed for sustainable use can also meke an important contribution to conservation goads in a region.

True 'no-take' marinereserves arerare

Although MPAs are widd y accepted as an effective tool in marine conservation, most allow theextraction of somenatural resources True no-take marine reserves are rare (Ballantine 1995a Robets 1997c), they usually occur as a separtezone within alarge MPA, and their use in fisheries management is controversia (Bohnsadk 1996b, Attwood \& al. 1997a). In British Col umbia only 0.01% of coastal habitat is protected in 'no-take' reserves (Wallace 1999), and just 0.001\% of U.S. teritoria waters are dosed to all fishing (Fujita \& al. 1998b). In the U.K., except for a few small exd usion zones around Navd facilities, thereare no 'no-take' reseves (Rogers 1997). In Austrdia less than 5\% of the Great Barier Ref World HeritageAre (but about 20\% of the cord refs) is protected within 'no-take' aees, and outsidethe Great Barier Ref, probably much less than 1\% of Australia's marinejurisdiction is protected in no-takearees This world-wide rarity of no-take reserves mens that conservationists, fisheries managers and marine ecol ogists havelimited experience with them and, therefore, are uncertain about their utility for fisheries management. Amongst other things, this situation cretes a strong incentive for the reevduation of the impats of reserve ded arations in the past, and where possible on marine systems, fisheries and conservation. It also highlights the need for new reserch on the impats of reservecretion on fisheries ∞ wdl ∞ on conservation.

Table 1. Summary of the IUCN Protected Area Management Categories (IUCN 1994)

I Category	Strict Nature Reserve	Managed for mainly for science or wilderness protection
II	National Park	Managed mainly for ecosystem protection and recreation
III	Natural Monument	Managed mainly for conservation of specific natural features
IV	Habitat/Species Management Area	Managed mainly for conservation through management intervention
V	Protected Landscape/ Seascape	Managed mainly for landscape/seascape conservation and recreation
VI	Managed Resource Protected Area	Managed mainly for the sustainable use of natural ecosystem

1.2 Fisheries Management and Marine Reserves

Area and seesond dosures to assist with the management of fisheries have long been used in both atisana fisheries (eg. J ohannes 1978, Hesinga \& al. 1984, Alcda 1988, Dugan \& Davis 1993, Wilson et al. 1994), and modem, industrial fisheries (eg. Haliday 1988, Walsh \& al. 1995, McArdle 1997, Rogers 1997, Clarke 1998), for decades if not centuries (Anonymous 1921, as dited in Fogaty \& al. 2000; Garstang 1900, a cited in Fogaty \& al. 2000). Many marinefisheries dosures and reserves have been established to assist the recovery of severdy ovefished or collapsed stodks (eg. references in J amieson 1993, Attwood \& al 1997a); an Austraian example is the Tarmanian scal lop fishery (Zacharin 1989). In generd, however, the mos common forms of fisheries dosures or reserves in Australia arefor the protection of neer-shorearees considered to have important nursey, spawning or juvenile rearuitment functions and where thereare imminent threats (eg. Bunting 2001)
Peserves have While dosures can be effective fisheries management tools, they are rare y the primary been tools used to manage a ford species. Most management in commeriad fisheries has relied established to on other forms of input controls or, more often in recent yers, on output controls. assist the Controls on input are restrictions on the fishing effort, such as limits on vessed sizes, vessed recovery of numbers, or ger charaderistics. Closures are considered input controls because they reduce severely total fishing effort or mortality by restricting access to a portion of thestock. Controls on gear type aswll as spedifying configuration (eg. mesh size), may dlow limited use collapsed stocks of somegeer types, such as traps or reareationd linefishing, whil leexd uding othe types of gerr, such as demersd trawling (a form of dosure), as meesures to control fishing fffort and mortality. Output controls arelimitations on the amount of fish permitted to be caught in afishery, usually imposed as someform of quota either on total catch for thefishery (eg. total allowdble catch, TAC), the catches of individual fishers (eg. individual transferablequotas, ITQs), or the catch of sperimens within a certain category (eg. asizelimit). Thus, traditiond fisheries management has been baed on managing fishing characteristics (ffort and catch) in relation to thetarget spedes, rather then aspeds of theenvironment or ecosystems in which targe spedies may live In prindiple the traditiona approaches are designed to permit a large enough portion of thestock to escape capture long enough to reproducesufficiently to ensure adequate reauitment to sustai the popultion and desired leve of fishing. Bohnsadk $(1998,1999)$ drew the contrast between this approach, which attempts indirectly to crettea 'numerical refuge' for the spawning population, and the natura or man-madespatial refuges (eg. MPAs or MFSS) that can providemore certain protedion, and, therefore aremorestable or reiable

Mnagement in Fisheries management bæed on the traditional approaches has been successful for many commerial decades, but in recent yeers theover-exploitation and drashes of many fisheries (references fisheries has in Jamieson 1993, Wilson \& al. 1994, Ault \& al. 1997a, Garcia \& Nenton 1997), the dhanging nature of fish yiedds caused by seria over-fishing and 'trophic fish-down' (Pauly \& al. 1998a), and the losses of biodi versity and environmental damege caused by fishing (eg. Russ 1991, Alverson \& al. 1994, Dayton \& al. 1995, Roberts 1995a J ennings \& Lock 1996, Jennings \& Kaiser 1998, Thrush \& al. 1998, Hall 1999), have ateted fisheries managers and sientists worldwide to the weeknesses of traditional fisheries resource
assessment and management systems (Sainsbury 1998). This problem is exacerbated by the fat that the oceens are reaching their productivity capadity, and that many (most in some regions) stocks are now fully or over-exploited resulting in unsustainabl elevels of exploitation (J amieson, 1993, Ludwig \& al. 1993, NMFS 1993, FAO 1994, Botsford \& al 1997, Gardia\& Nevton 1997, Mace 1997, Budkworth 1998), a fact that is often mazked by technologica improvements (Clark 1996), geographic expansion of fisheries and trophic fish-down (Pauly $\&$ al. 1998a).

Adieving Solving the problem of unsustainable exploitation is difficult because of severd seemingly sustainable intractablesociologicd, politica and economic problems, such as

- the increesing need for protein sources in poor countries, driven by exponential world popultaion growth
- the increesing makd demand for, and vdue of, high quadity seffood by afluent countries
- theshort-term, stridly competitive, and sedfish behaviour of somefishers
- the over-capadity and over-capitalistion of industria fisheries
- the govemmenta subsidies provided to many fisheries
- the 'ratche' effect (exploitation is always increesed during good periods, but rarely decreed during bad periods)
- the 'shifting base ine' ffect (ech generation of scientists and managers uses the fisheries conditions and exploitation leveds extant at the beginning of their careers as the benchmark against which they asess their ations), and
- the generd inability of fisheries menagement to effectivedy control and limit fishing effort.

Thesefactors have led to, and are leeding to, ever increesing levds of exploitation and overexploitation in global fisheries (Ludwig \& al. 1993, Sissenwine \& Rosenberg 1993, Pauly 1995, J adkson 1997, Mace 1997, Buckworth 1998, Pitcher \& Pauly 1998, Sainsbury 1998, Sumaila 1998, Williams 1998b).
Modem, scientific fisheries management, deve oped in the 50 (seereferences in Smith 1998) and baed on concepts such as 'surplus production' and 'maximum sustainable yied' (MSY), hdd great hopefor thesustainable exploitation of marineliving resources However, as long ago as the 70's the promises of MSY were thoroughly debunked (Larkin 1977), and since then numerous workers have pointed to these and other problems that have prevented, and will continueto prevent, fisheries scientists and managers from achieving sustainable exploitation using the methods of the 50 (Muravski 1991, Ludwig \& al. 1993, Apoll onio 1994, Wilson \& al. 1994, Pauly 1995, Roughgarden \& Smith 1996, Hilborn 1997, Mace 1997, Jackson 1997, Robats 1997b, Buckworth 1998, Cochrane al. 1998, Flaten \& al. 1998, J ohannes 1998a Lauck \& al. 1998, Sainsbury 1998, Sumala 1998, Watters 1998, Mange 2000ab; however see Rosenberg \& al. 1993). In this reviev we refer to these methods $a s$ traditiond or dassicd fisheries management. Some of the more important soientific problems are

The promises of - thedifficulty of mathematically representing complex naturd systems
MSY have been sufficiently to makeacaurztestock predictions
thoroughly - our inadequate understanding of most naturd and human systems

- the lack of, and inaccuradies in, data needed to describeand represent thosesystems for which we have a reesonable understanding
- the use of singlespedies moded and approaches to dea with what are multi-species, multi-dimensiond ecosystem problems
- the lack of adequatenatura control sites for testing sientific hypotheses (al of theoceens areexploited and subject to the effects of fishing), and
- the meny sources of uncertainty and timelags in these systems, some of which areirreduible (i.e we will never beable to represent or account for it) or so extreme that they mesk the patterns of interes.
The crises in marine fisheries and the problems described dbove have creted an impertive to devel op innovative, ecosystem-bæed fisheries management approaches or systems that can reducetheimpat of fishing on the environment and better represent and dlow for uncertainty in both the biologica appets of a fishery and the sodio-economic basis for fisher behaviour (Edyvene 1993, Rosenberg \& al. 1993, Appol lonio 1994, Boehlet 1996, Bohnsack \& Ault 1996, Hilborn 1997, Lauck \& al. 1998, Sharp 1997, Done\& Reichet 1998, Fujita \& al. 1998a, Pitcher \& Pauly 1998, Sainsbury 1998, Walters 1998, Holmlund \& Hammer 1999, Agardy 2000). In order to devd op management systems that are more conservative in thesense that they can set reaistic levels of optimum yidd, and other controls such that major fisheries coll lapses are avoided, modem fisheries management is increesingly accepting the importance of taking and implementing holistic, ecosystem-based and 'precautionary' approadhes (Garcia 1994, FAO 1995, Botsford \& al. 1997, Hilbom 1997, Mace 1997, Myers \& Mert 1998, Sainsbury 1998, Pery \&al. 1999).

Mdem
fisheries
management is
acoeptingthe
based and
Precautionary fisheries management invol ves severd components, ind uding the use of risk-averse approadhes to the defining of optimum yidds, thesetting management targes, and in deve oping control rules (FAO 1995, Roughgarden \& Smith 1996). A criticd component of the precautionary approach is the implementation of management strategies and actions that minimise the likelihood of produang irreversibleimpats such as theextirption of locd populations, pemanent community-structureshifts, or species extinctions in theface of pressures from fishing or environmental changes (Agardy 1994, Roy 1996). Where there is uncertainty, history shows that those in control of fisheries will almost a ways maintain or raisethecurrent leve of catch (∞ catch limits), unless there is convining evidencethat those limits are unsustanable (Ludwig \& al. 1993, Hilborn 1997). Ballantine (1995b) daimed that an underlying assumption of virtually al fisheries management is that fishing should beallowed everywere, all thetime, unless it can be demonstrated that serious damege is or will be caused by that leve of fishing. Heargued that this assumption is an historica acoident, the validity of which cannot besupported
by empirical evidenceor theory. He conduded that this viev, along with another common, but unsubstantiated, assumption that the inteligent use of saientific information will leed to sustainable management, has been responsibl efor fisheries coll lapses becoming the norm and for a nearly compl \&elack of successful, long-tem sustainable management of maine fisheries Conversely, the precautionary approach, by reversing the burden of proof, would deel with uncertainty and conservation imperatives by caling for the reduction of current catch limits, or therejection of proposds to raise limits, unl ess those limits were proven to besustainable (Ludwig \& al. 1993, Hilborn 1997).

However, Hilborn (1997) cautioned that effective application of the precautionary approach depends on thesituation. Whilethe approach would be approprite for a developing fishery, if applied to a fully developed fishery it could result in an increed risk of its economic coll lapse In thelatter situation the approad would be precautionary with respect to biologica risk, but not so with respect to socio-economic risk. Although risk-averse management is likely to grealy improve the basis of fisheries management, modes and approaches will need to also integrate the socio-economic appets of fisher behaviour, an area poorly reserched or understood (Rosenberg \& al. 1993).

Peserves are Both scientists and managers are increesingly recognising that no-take reserves are considered to potentially key dements of a precautionary approach when faced with the management reduce the of over-exploited stodks (Clark 1996, Williams 1998a, Perry \& al. 1999, Bohnsack 1999) probability of Model ling efforts havesuggested the possibility that fisheries may not suffer reduced fisheries yidds due to sanctuary establ ishment, and may even experienceinceeme in yidds providingfor
collapseby (Mange 2000b,c). Marinereserves aresen to reduce the probability of fisheries collapse through bet-hedging, a well established technique used in many fieds (eg. business and economics) for coping with uncertainty and lack of knowledge in order to reduceoveral risk (Lauck $\&$ al. 1998, Sumaila 1998, Bohnsadk 1999, Fujita $\&$ al. 1998b, Fogaty $\&$ al. 2000), athough somereserchers havesuggested that the benefit will berelised only in large reseves (Clark 1996, Fogaty 1999). Severd authors have drawn an and ogy between thefishing of marine resources and finandia investment (eg. Robets 1998a). The idealy managed fishery exdusively exploits the excess production of a stock, which is seen to be equivdent of living off the interest accrued from an investment. However, when management fails to achieve this idea, fishing results in the excessive explaitation of spamming stock which lemds to recuitment overfishing, a situation and ogous to using up investment capita. The difficulty with this andogy is that while investment capitd can beregenerted from another sector of business activity, fish to replenish stocks cannot normally be regenerted in another sector ativity. Rering of hatchery-bred juveniles to replenish wild stocks is rare (eg. theAlækan Salmon fishery) and not cost effective in comparison to maintaining wild tocks tt sustainable levels. Marine reserves are a method for protecting and rebuilding spamming stock, which is seen to bethe equivdent of protecting theinvestment capitd and using a portion of theinterest to build that capital further (something akin to setting up are investment trust fund). Attwood \& al. (1997b) pointed out that MFSs, because they mey deiver economic benefits
to fisheries and conservation more broadly, may be recei ved more favourably by the fishing community than MPAs justified as pat of a precautionary menagement strategy designed to mainly beneit conservation of non-exploited speies

N-take reserves should greatly simplify complianoe and enforoement

In pradice, many fisheries are multi-species fisheries, some involving multipletarget species caught simultaneously in asingle ger type (eg. demersal trawing), while some target multiple species sequentially. Also, many fishers are diversified in their operations, moving from one species or fishey to another during the course of a yeer to maintain their income In tropical ref systems the fisheries often invol vefishers using a variey
of ger types to exploit many spedies (Pauly 1979, Munro \& Williams 1985, Appeddoom 1996, Ault \& al. 1997a). Robets \& Pol unin (1993) pointed out that fisheries controls such as regulating gerr characteristics, limiting numbers of operators, dosing arees or seesns have been devel oped mostly for the management of singl e spedies stocks in temperte regions. They question applying this approach to cord-ref fisheries because 1) they are not singlespedies fisheries, 2) the data required to detemine the most appropriate controls to useare usudly not available (Plan Devel opment Tem 1990), and 3) compliance and enforcement becomes much more complex because of the variey of species and fishing pratices invol ved. In theory, the use of multi-speies, rather than singlespecies, modds would improve the bais of management, but such efforts are conceptually and practically very demanding, there is little guarantee of success, and few fisheries aremanaged in this way (Pol unin 1990, Apped doorn 1996, Botsford \& al. 1997, Hall 1998, Rothschild \& al. 1997, Walters $\&$ al. 1998). Indeed, Lauck $\&$ al. (1998) suggeted that thegoa is not redistically attainable given the gap between current understanding, and data availability, and the requirements of multi-speies modes. Marine reserves havebeen advocated as an altemative that would not suffer these problems (eg. Roberts \& Pol unin 1991, Attwood \& Bennett 1995). No-take reserves would protect all spedes, are believed to requiresignificantly less data, and should greatly simplify compliance and enforcement.

In the pat, many marine resenves or dosures creted for fisheries purposes have been established atter target populations have been reduced to densities at which commeria exploitation is no longer viable (references in J amieson 1993, Attwood \& al. 1997a Murawski \& al. 2000), or where their fisheries are under thret (Haliday 1988, Armstrong \& al. 1993, MaN eill 1994, Piet \& Rijnsdorp 1998, Murawski \& al. 2000). Such use of reserves is for recovery of stocks from a cisis. Recently, however, there has been growing generd interest in using marine reserves to providebroader support for conventional fisheries menagement (Walis 1971, Davis \& Dodrill 1980, Plan Devdopment Temm 1990, Davis 1989, Robets \& Polunin 1991, Bohnsadk 1993, Dugan \& Davis 1993, Robets \& Pol unin 1993, Agardy 1994, Bohnsadk 1994, Rowiey 1994, Ballantine 1995a b, Robets \& al. 1995, Shackel \& Lien 1995, Bohnsack 1996a Robets 1997c, Allison \& al. 1998, Bohnsack 1998, Gribble\& Robetson 1998, Lauck \& al. 1998, Pitcher \& Pauly 1998, Robets 1998a Russ \& Alcda 1998a b, Dayton \& al. 2000, Mange 2000b, c). In addition, somescientists and managers have advocted or
discussed the use of maine reserves to improve the management of speific stocks of fishes or invetebrates (eg. Davis \& Dodrill 1980, Plan Development Temm 1990, Davis 1989, Shepherd \& Brown 1993, RogersBennett \& al. 1995, Defeo 1996). In pat, theinterest of fisheries managers is foausing on formal reserves because it has now been recognised that much of the erlier success of traditiona fisheries management resulted from the eistence of defadomarine reserves (naturd refugia)-grounds that were untrawidble or arees that were othewisetoo distant or inaccessible to fishing (Beveton \& Holt 1957, Klima \& al. 1986, Davis 1989, Dugan \& Davis 1993, J amieson 1993, Lozano-Alverez \& al. 1993, Watters \& al. 1993, Ault \& al. 1997b, Bohnsadk 1996a Watters \& Maguire 1996, Fonteneau 1997, Bohnsack 1998, Levy 1998, Watters 1998, Dayton \& al. 2000, McClanahan \& al. in press). Advances in navigation, fishing technology and knowiedge, over capitalistion, and increesing marke demand have opened these ares to fishing and effectively diminted their former defactomarine sanctuary staus It is likey that the loss of such naturd refugia has contributed to the collapse of somestodks (Tegner \& al. 1996, Waters \& Maguire 1996)

The loss of As the globa fishing industry considers how to develop and implement precautionar natural refugia approaches to fishing, marine fisheries reseves are increesingly being promoted has contributed as an important component of precautionary management, becausethey may beable to the collapse to at as insurance to help protect against stock coll apses (Edyvane 1993, Pollard 1993, of somestocks Agardy 1994, Clark 1996, Lauck \& al. 1998, Williams 1998a, Perry \& al. 1999, Bohnsack 1999, Agardy 2000, Fogaty \& al. 2000). Besides being a source of mortality, fishing has many effects on an exploited stock, induding altering the norme sizelage structure disupting reproductive behaviour, selecting for less productive genotypes, and reducing genetic diversity, all of which may render populations moresusceptibl eto catatrophic events (Dugan \& Davis 1993, Attwood \& al. 1997b, MoManus \& Meñer 1997). Persistent fishing can also erode the sustainability of stodks by destroying or degrading habitat, and atering community structure Marine reserves are considered to have a possible role in addressing all of these pressures (eg. Auster \& Shackell 1997, Attwood \& al 1997b, Bohnsadk 1998, Robets 1998a), and to help in rebuil lding collapsed fisheries (Bohnsadk 1996a).

Mddeling
suggests that
sanctuariescan
help to provide
a longterm
solution to
fisheries
management
problems

Hownuch thefact that the problem is complex and dependent on processes occurring inside area should be sanctuaries, in fished arees dsevhere, on exchanges ocourring between the two, on the protected is one response of fisheries to sanctuary establishment, and on the biol ogical charateristics of the most of the focd spedies (Mange 1998, Fogaty \& al. 2000). Waters (1998) used an and ysis important of ceses of succesful management of marine resources to propose bol dly that sustainability questions will requirethat most of the marine environment be efforded protected staus, with only facingfisheries asmall proportion availablefor exploitation. This is a management approach that so far hæs only been employed for severdy overfished or coll apsed stocks (Williams 1998a). scientists However, Sumaila (1998) countered that protecting such large proportions of a resource does not mekesensefrom an economic perspective, and could leed to an unacceptable lag period until thefishery enhancement effect fully compensates for the loss of access Furthemore, concentrating existing fishing effort into a much smaller area could result in a much large rate of damege to the environment (Parish 1999b). How much aree should be protected, or how large sanctuaries or sanctuary networks should be is one of the most important questions faing fisheries and conservation soientists.

1.3 'No-take' Marine Reserves

The convergent interests of marine fisheries managers and conservation managers on the use of dosed arees to help achieve similar sets of dbjectives is a recent phenomenon, athough some conservation biologits, marine ecol ogists and fisheries soientists have argued in this direction for many yeers (eg. Ballantine 1989, Alcda \& Russ 1990, Pol unin 1990, Bohnsadk 1993, Roberts \& Pol unin 1993). The notion of no-take reserves has evol ved to cover the various forms of area protection where all exploitation is prohi bited. In concept, no-takereserves are dosdy simila to protected aress that would bedasified as Category I in the IUCN dassification system (IUCN 1994). In this review, MarineFisheries Sanduaries (defined as 'no-take' reserves -seeGlossary) are considered to have thefollowing charateristics

- spatia bounding-arem of the seebed and water column that aredefined in spatial terms, with fixed boundaries
- temporal continuity-in place continuously and not lifted periodically or occasionally, or applied in any discontinuous manner through time
- permanence-not eesily revoked or atered, except in very exceptional circumstances or whereatterations areoccasionally required to enhance the reserve's ability to meet its objectives, and then through a comprenensive public review process, and
- comprehensiveness-coversall living and non-living resources, induding exploited speies, non-exploited speies, habitats, ecosystems, water quality and substrata
Artisanal fishers have used sesonal and pemment dosures of fishing grounds for centuries to conserve stodks of the marinespedies upon which they depend for food (J channes 1978, and references therin). Also, sesond and temporary, but rarely pemment, dosures have a ways been a pat of the industrial fisheries manage's tool box. However, it wes not until

Seasonal and the 1950s that fisheries scientists began to recognise that permenent protection from pemmenent fishing had the potential to contributeto traditional fisheries management (eg. Beverton dosures have \& Holt 1957). More recently, Gary Davis and Angd Alcda (Florida and the Philippines, been used for respectively) were the first two reseerchers to test this idea in the fied, and to discuss oenturies to therange of potentia benefits that no-take reserves could provide to heavily exploited onservestocks popultaions (Davis 1977, Davis \& Dodrill 1980, Alcda 1980, 1981, Davis 1981). Lat in the 80s and throughout the 90s, what is now a long list of potentiad beneits, and a considerdble body of research regarding the use of marine reserves for conservation fisheries management, and thefishing industry has emerged from the efforts of numerous workers, most notably:

- Neville Barett, J ohann Bell, Graham Edgar, David Pollard, Gary Russ, and Scoresby Shepherd, (Australia)
- William Ballantineand Robet Rowley (New Zeland)
- Ange Alcda (Philippines)
- Simon J ennings, Nidhola Polunin and Callum Robets (England)
- Colin Attwood, Bruce Bennett and Colin Buxton (South Africa)
- Tim Laudk (Canada)
- Juan Catilla and Carlos Moreno (Chile)
- Timothy McClanahan (Kenya)
- Enric Sala (Spain), and
- Tundi Agardy, Gary Allison, Peter Auster, J ames Bohnsadk, Lou Botsford Mark Car, Paul Dayton, Gary Davis, J ennifer Dugan, Jane Lubchenco, Marc Mange Danid Reed, Joshua Sladk Nowlis (United Staes)

An extensive and wel-organised list of potentia benefits is provided in Bohnsack 1998. Below we describe those benefits of most importance to this reviev. Briely, some core reserve beneits that have been proposed for exploited species and the fisheries exploiting them indude

- incresed abundance and spaming biomess
- incremed men ageand size
- improved reproductive potentia
- enhanced settlement and rearuitment
- protection of genetic diversity
- protection of acitical supply of reproductivestock
- maintenance or enhancement of yieds in adjacent fished arees
- reduced variability and uncestainty in fisheries yieds, and
- incresed likelihood of sustainable explaitation.

For conservation and biodiversity the potentia benefits indude

- habita protection
- incremed biodiversity, and
- protection of ecosystem structure function and integrity.

Sanctuaries
providesite

- providereferncesites wheresientific knowledge and understanding of naturd
studies
of natura populations

Sience, fisheries management, thefishing industry and public are also seen to benefit because reserves have the potentia to: popultions of target and non-target speies can beimproved

- simplify menagement regulations and compliance monitoring
- reduce data requirements for management
- protect against management failure
- reduce conflict amongst users, and
- improveopportunities for education and tourism

Peserves A central, widdy recognised prindiple behind the cretion of no-take reserves of vduefor potentially fisheries management is that they will provide permenently dosed arees that will export export fish to reproductive propagules to surroundi ing arees that are fished (usually called 'land export'). Except for pelagic, migratory or highly mobil espedies, or spedies with very short-distance laval dispersa, this effect is believed to have the potentia to enhance and sustain fisheries Reserves also have the potentid to improve fisheries by providing the conditions necessary for population growth that results in theemigration of juneni leor adult individuads from reseve to fished arees This effect (often cdled 'spillove') is believed to be unimportant for highly sedentary speies, to operte only locally, and to be much less important than larva export, but, nonetheless, may be of significant benefit in somesituations. Both processes are dependent on reserves providing protection from fishing mortality and the disuptive and destructive effects of fishing. In timethat protection is expected to result in inceesed population size and reproductive potentid in the reserve, which then arethe ultimate sources of levels of spillover and land export sufficient to enhance and sustain surrounding fisheries For management based on no-take marine reserves to be most effective, marine arees need to be carefully sed ected to ensure that they will have thegreatest potentia for building populations, providing reproductiverefugia and delivering the beneits of spillover and land export to fisheries. Below wewill disauss the variey of reseve factors (eg. size, location, habitat diversity) that influence and determine the effectiveness of no-take reserves at enhanding fisheries and consening marine ecosystems.

Peserves expor
The increaing pressure on the world's fish stocks, the numbers of stocks that are ovefished or have collapsed, the loss of naturd refugia theincresing rate of fallure propagules to of traditiona management systems, the locd and intemationa perceptions that fisheries sumroundingareas arecontributing to broad-scde degradation of the oceen, and the intensifying pressure on the world's fisheies managers to improve the effectiveness of management (Rosenberg
\& al. 1993, Safina 1995, Sutton 1997). Marine reserves, because they have the potentia to replace the lost refugia and, to an extent, reversethe effects of ovefishing on marine environments and populaions, are seen as central to the improvements that are necessary to achieve the goa of sustainablefisheries management and marine conservation.

Sanctuaries are Theover-exploitation of fisheries is expressed a effects on the target stocks and their management œeig, more effective and less risky (Dugan \& Davis 1993, Robets \& Pol unin 1993, Bohnsadk \& Ault 1996, Robets 1997b, Bohnsadk 1998, Botsford \& al. 1999, Mangd 2000b, Bohnsack \& al. manuscript). Also, in theface of ineffective dassical management strategies, themany possible benefits that no-takemarine reserves potentially bring to both fisheries and conservation management is widdy advocted assufficient evidence in itsedf of the need for broad-scde introduction of no-take reserves as pat of an actively adaptive approach to the integrated management of marine ecosystems and resources (Bohnsadk 1998, Fogaty \& al. 2000).

Despite the Despite the mounting level of opinion amongst scientists that reserves can make overuheming a positive contribution to fisheries management (seethe preface Box), there apper opinion, there to befew well documented examples of fisheries that have been shown to benefit from
arefew theintroduction of reserves Theexperiences often dited in support of reseves are limited documented
examples of fishery benefits environment, but aso in social, economic and caltural consequences for the people dependent on fishing for incomeor food. The menagement of marine fisheries is wel recognised \lesssim a highly complex problem (Rosenberg \& al. 1993). Many scientists argue that ind usion of marine reseves within management strategies will makefisheries to either the recovery of stocks from a highly depleted state, using temporary dosures of various forms, or involvemainly subsistencescdetropical ref fisheries Experiences in neither of these cotegories can bered ated directly to the world's commerdid capture fisheries, and there is little documented evidence that in a wel managed fishery, no-take reserves offer additional advantages to a fishery over and dbove those offered by better dasicd management techniques Indeed, afew fisheries sientists argue that dæsicd management tools, augmented with modem risk management procedures, can overcome the fisheries-management problems experienced in the pat (Rosenberg \& al. 1993, Mace 1997). In contrat, a growing number of fisheies scientists are disaussing and/or advocating a paradigm shift in the way marinefisheries are managed (eg. Botsford \& al . 1997, Sharp 1997, Sutton 1997, J ohannes 1998a Pauly \& al. 1998b, Pitcher \& Pauly 1998, Sainsbury 1998, Watters 1998, Williams 1998b, Fogaty \& al. 2000).

Ecosystem and precautionary approaches, and the use of no-takereserves, are key dements of the developing new fisheries management paradigm Like most new idees, marine fisheries sanctuaries have not been immedi itd y embraced by fisheries scientists, managers or fishers as the panacees they have apperred to be in the advocacy litercture Indeed, proposals for no-take reserves usudly met opposition, sometimes intense, from a varity of stakenol ders (Robets \& Polunin 1993, Gubbay 1995, Ballaine 1996b, Bohnsack 1997, Williams 1998a). Robets (1997c) pointed out that 'no-take' reserves that are incorportted
within large multi-use MPA proposds often crete the greatest difficulty in achieving acceptance of the proposal. There usually is very little controversy about whether the reserve will serveconservation of biodiversity and the environment. So, in many ways, the crux of theissue is whether the establishment of a marine reserve will have a negative or positive impact on fisheries and those dependent on fisheries for their livelihood. Fishers rightly point to theobvious loss of a portion of their fishing grounds, and the potentid subsequent loss in yidd and profit that may result (Munro \& Polunin 1997). On the othe hand, MFS and MPA proponents point to the myriad environmental improvements the reserve will almost cetainly bring, and to the potentia, if the reserve is designed intel ligently, to actually enhance medium- and long-term yidds to the fishery (Munro \& Polunin 1997). Ballantine (1995b) argued that the loss of fishing grounds and effect on displaced fishers is an 'invented problem', because it only looks at one appect of a multi-dimensiond problem His argument suggests that the key question is not what is the immediate impact on fishers, but rather what are the long-tem benefits to fisheries and other stakend ders ind uding the public interest. For these reesns, and because MFSs have a limited history in Australia (Barett \& Edgar 1998), it is important to critically examine the potentia benefits and costs of no-take reserves to fisheries and the environment. To this end, in this review we speifically consider the

- types of benefits that have been proposed in support of arguments
to use 'no-take' reserves (MFSs) as a fisheries management tool
- conceptual ways in which such benefits might be delivered to fisheries
- empirica evidence that exists to providesupport for the delivery of such benefits to a fishery, or the existence of the component processes, and
- citeria by which thetangiblebenefits of MFSs might beevduted in the future

2. METHODS AND APPROACH

This section discusses an approach to evaluating the literature and experience with marine reserves.

There is a vast globad information base on thetopic of maine reseves, and the potentia role that they may play in fisheries management. Theliterature spans theformal journa literature, the published reports of government agendes, and the unpublished reports and internd documents of agendies and reserch institutions. Many marinefisheries and conservation scientists have direct experience of efforts to protect and manage arees And there are many defactoresenves and refuges that exist both within fishing grounds and neer installations where public access is prohibited (such as neer defencefacilities). Further, the litercture is rapidly expanding, with a number of major initiatives under way in 2001 that areexpected to lead to a substantia incremein technicd interest and knowledge (such as the specid issue of the Ecol ogicd Society of America's journal Ecological Applications devoted to marine protected areb).

The approach taken in this review was to consider the Australian and globd literture and experience with marine reserves to assess what evidence existed that would support the contention that marine reserves beneit fisheries, and to identify what processes might have been operting to crete and ddiver those beneits. Thereview takes a broad view of global experience, without a speific foaus on Australian literature, because of the limited experience with reserves for fisheries management in Austraia

To condud this review we assembled a three pat strategy to try to ensure a comprenensive coverage of thesubject materia:

1. assemble and review in detal the per-reviewed scientific literature on marine reserves for fisheries purposes,
2. make persond contact with reseerchers to find unpublished or obscure reports and/or data of importance (the 'grey literture);
3. make persond contact with leøding reserchers to document the most current trends in thinking and andysis, and what initiaives are in the planning stages. This induded attendance at a major intemational symposium, and persond inteviews with selected reserchers.
This review is structured in thefollowing way:
4. We consider the nature of biological processes that operate in and around reserves that might potentially bring benefits to a fishery;
5. We develop a conceptual modd for how these processes interact and how such benefits might potentially bedelivered into afishery;
6. Consider theexisting data and experienceon benefits that have been demonstrated for reserves fisheries interactions, or the component processes,
7. Briefly consider approaches used in the literaturefor building of modes to assist with the design or evaluation of reserves, or to predid/assess benefits,
8. Develop a set of evduation criteria for assessing the evidence for fishery benefits that stand to be delivered from no-take reserves,
9. Draw from this a synthesis and cond usions about the demonstrated impact of reserves on fisheries;
10. Discuss somefuture directions to guide reseerch, and development of reserves that will provide benefits to Austrdian fisheries

3. POTENTIAL BENEFITS OF MARINE SANCTUARIES FOR FISHERIES

This section details the potential benefits of marine sanctuaries for fisheries management purposes.

Marine reserves, protected ares or sanctuaries may be established for very generd purposes such as presening biodi versity, or highly speific remons such asthe conservation of a paticular valued speies or habitat. In the cese of no-take marine reserves, advocates of their use in the management of marine fisheries point to a diverse array of potentia beneits They arguethat benefits from no-take reserves can flow to:
exploited spedies

- theenvironment
fisheies
management agencies
- thepublic, and/or
assodited sectors of the sodio-economic system

Of primery interest is thequestion of what roleMFSs, as refugia for exploited spedies, can play in delivering benefits to marinefish stocks, fisheries, and the fisheries and sodid systems that depend on them (Hockey \& Branch 1997). Recent reviens and cormmentaries have listed alarge number of potentia benefits that may, or have been shown to, result from the establishment and effective management of no-take marine resenves Most of the proposed beneits aresupported by logicd or theoreticd arguments baed on our sdientific knowledge and undestanding of marine ecosystems and fisheries In some coses, those arguments are upported by fied studies or moddling studies In this section we will describe most of the potentia benefits that have been identified in theliterature

Underlying and connecting the various potentia benefits are physica, ecol ogica, fisheries, economic or soia ements, dimensions or processes of thesystem Our desaription of potentiad benefits is organised to reflet their functiona redtionships, and we dasify them by:

- spatid dimension (insideversus outside the reserve)
- tempord dimension (short-, medium- or long-term)
causd dimension (direct or indirect effect)
- system (exploited stock, generd environment, fishery, ecc), and
- biologicd component (population, reproduction, genetics)

Thefull list of potentiad fishery beneits is provided in Tables 2, 3 and 4. The list was constructed primarily from the lists and discussions provided in the following references Plan Devel opment Temm 1990, Robets \& Polunin 1991, Buxton 1992, Car \& Reed 1993, Agardy 1994, Bohnsack 1994, Rowley 1994, Novaczk 1995, Robets \& al. 1995, Shackel \& Lein 1995, Auster \& Shackel 1997, Hockey \& Branch 1997, Robets 1997, Bohnsack 1998, and Robets 1998a, athough most papers in the literature mention at leat the main benefits This section desaribes the benefits using these papers as sources without diting them for each benefit. Benefits are described from the perspedive of thetargeted spedies/stocks, the fisheries exploiting those speies/tocks, or the agendes responsiblefor managing thosestocks/speies and regulating thosefisheries Discussion of support for meny of these potential benefits is provided in Sections 3.2-3.7. Section 5 reviews theempiricd evidencethat redtes to the potentia beneits discussed here in Section 3.

3.1 Benefits Inside Sanctuaries (Table 2)

3.1.1 Fishing Mortality

Rtes of direct fishing mortality (capture of targeted species and sizelage dasses) can be intense, sometimes reaching severd times natural mortality rates (eg. Plan Devedopment Tem, 1990, after Raston 1987), resulting in the ove-exploitation or collapse of numerous stocks in recent yers (eg. Robets 1997b). The fundamenta, and intended, change brought dbout by the establishment of no-take reserves is the dimination, or at leat substantial reduction, of direct fishing mortality within the reserves. Fisheries menagement controls are designed to control fishing mortality in order to ensure a sustainable, optima or maxima yidd of targeted stodks, depending on the approad taken. The no-take fisheries reserve (MFS) represents another method, in addition to thedassicd input/ffort and output/catch controls, for regulating theoveral rate of mortality on a stock by reduing that rateto zero on a portion of the fishing grounds. The MFS is usually not intended to bean altemative to traditiond controls, as is often assumed, but rather æan additional control to be integrated with the others (Car \& Reed 1993, Robets 1997b, Allison \& al. 1998, Bohnsack \& al. manuscript).

The capture of targeted sizelage dasses of focd speies is only one form of mortality that ocaurs as a result of fishing adtivities Other sources of mortality arethe

- bycatch of illega-sized individuals by thefisheries targeting that spedies
- bycatch of the focd speies by fisheries not targeting that spedies
- indidental mortality directly due to fishing gerr (eg. trawl nets) and practices (eg. using explosives), and
- indidental mortality indiredly through damage and destruction of habitat or remova of prey species essential to thesurviva of thefocd spedies (Hall 1999).

Of the total world fisheries catch, roughly onethird is bycatch and discards, of which the largest contribution comes from shrimp fisheries (Alverson $\&$ al. 1994). Marine fisheries sanctuaries are expected to benefit focd species by providing refugia from these other types of mortaity. Because bycatch can significantly contribute to population dedines (eg. Dayton $\&$ al. 1995), and can have a large impat on species whose juveniles are
vilnerable to being caught by other fisheries (eg. thebycatch of juvenile fish by prawn trawling), sanctuaries established in habitats of thejuveniles are expected to be very beneficial to the impacted spedies (eg. Auster \& Shackell 1997, Walsh \& al. 1995). Likevise, the protection of spamming grounds or sites may becritica to maintaining stodks of some spedies (eg. groupers, J ohannes 1998b, Bets \& Friedl ander 1999). These are direct beneits that occur immediat dy on sanctuary etablishment.

Table 2. Potential fishery benefits of marine fisheries sanctuaries that occur primarily within a sanctuary.

FISHING MORTALITY (direct short-term benefits; realised immediately)

- Eliminate mortality to targeted species and size/age classes
- Eliminate bycatch mortality
- Eliminate incidental mortality directly caused by fishing gear/practices
- Eliminate indirect mortality caused by the damage/destruction of habitats caused by fishing gear/practices
- Eliminate indirect mortality caused by fishing mortality of prey species
POPULATION SIZE (direct short- to medium-term benefits)
- Increase abundance, density and/or biomass of the focal species
- Increase abundance and/or density spawning individuals, or spawning biomass, of the focal species

POPULATION STRUCTURE (direct short- to medium-term benefits)

- Increase mean size/age of individuals of the targeted species
- Restore/maintain 'natural' size/age structure in reserve populations

REPRODUCTION (direct short- to medium-term benefits)

- Increase potential and actual reproductive output
- Protect portion of the stock's spawning biomass
- Enhance settlement/recruitment

HABITAT ‘QUALITY' (secondary medium- to long-term benefits)

- Protect and allows recovery of 'natural' habitat characteristics
- Increase biodiversity
- Protect against loss of keystone species, and cascading or indirect effects of fishing on community structure
- Re-establish 'natural' community composition, trophic structure, food webs, and ecosystem processes
- Improve amenities and resources for other non-fisheries sectors of society

3.1.2 Population Size

Sanctuary establishment is expected to result in an increee in the number of individuds and, therefore an increese in density and biomess, of the population within the reserve. This change is a direct result of the change in fishing mortality, and is expected to occur in the short- to medi um-term depending on the processes responsible Severe y overished stocks have been observed to show orders-of-magnitude increeses in biomess following reserve establ ishment or in comparison to arees outside reserves (seeH a pem in press, Section 3.3). The potential for incress in the biomess of spamming sizefage dasses, a change commonly observed in studies of marine reserves, is a particularly important benefit of marine fisheries sancuraies

3.1.3 Population Structure

In addition to changes in population sizeddensity/biomess, there are expected to be changes to the population structure of focd spedies inside sanctuaries A direct result of the dimination of fishing mortaity will bethat individuals are expected to live longer and grow larger. Thus, populations within reserves are expected to show increeses in the number/density of larger sizes, and older age dasses in the short- to mid-term An espeidly important benefit of the 'maturing of the population' is considered to bean increee in the numbers/density/ biomess of reproductively active individuds, thus increeing the reproductive potentia of the sanctuary (sebdow).

Fishing mortality typically is sedective with respect to the size and age of individuals in the targeted specie (eg. J enni ngs \& Lock 1996). In the short- to medi um-tem, this process removes individuds of spedific sizes/ages from the population disproportionat y to their abundance in the population. Thus, the natura sizelage structure of the population is altered, usually so that, compared to unexploited populations, the numbers of large/dd individuals are reduced, someimes severdy, relative to the numbers of smal/young individuds (eg. Rice \& Gisæon 1996). Thedimination of theexploitaion causing theatteation of natura sizelage structure is expected to result in dhanges in the populations in reserves moving them 'badk' toward their 'naturd' or 'norma' sizelagestructure, which is expected to enhancethe reproductive output of reserves This change will result diredly from the cessation of fishing mortdity, but it will probably berealised in themedium-term

3.1.4 Reproduction

Fishing mortality frequently is gretest in the largest size dasses, which are responsibl efor themejority of the population's reproductive potential (eg. Trippe \& al. 1997). A direct result of the changes at the individua and population leveds described above, is that on a per-area basis retive to areatsidesantuaries, or before sanctuary establishment, reproduction is expected to be much higher in sanctuaries With increeed numbers of individuds, which areolder, larger and more densely packed, reserves are expected to have more spaming ativity, increed fetilistion success for spedies with external fertilistion, and a gretter production of eggs and lavæe Sanctuaries are considered to increme spawning biomess, as described above, and, thereby, to provide protection to a portion of a stod's spamming individuds. This is hypothesised to be akey to the ultimetesuccess of sancuaries as a meens to enhance fisheries (see below). Further, because of improvements in thequality of habitas in sanctuaries that are expected to occur in the absence of the immediate effects of fishing (seebelow), rates of lavd settlement and 'ecol ogicd' recuitment are expected to improve, an indirect effect expected in themedium-term

3.1.5 Habitat Quality

Many fishing practices and geer types are destructive to habitas (eg. trawling, drive netting, or use of poisons and explosives) (eg. J ennings \& Kaise 1998), reduaing properties such a structura complexity and biodiversity (eg. Gray 1997). In arees where destructivefishing has altered/damaged habitats, the establishment of marine sanctuaries is expected to result in the improvement of the heat th of habitats required by the focd speies for their survival and reproduction. [Weareavare of the difficulty in rigorousy defining thetem 'habitat hedth', but it is used in this litedture, and wesimply takeit here to refer to those habitat components required by, or aitically important to, theorganisms in question.] In many species, oneor more age dases may depend on paticular habitas (eg. nursery or spamming habitas), or on paticular, traditional spaming sites (eg. sites used yerr after yer by many tropica ref fishes). Aggregations of individuds in these habitats or sites may be especially vul nerable to targeted or incidental fisheries mortaity (eg. Penn \& al. 1997, J ohannes 1998b, Beets \& Friedl ander 1999). Sanctuaries established on, or ind uding such habitas, will beneit populations within, and potentially far beyond, the boundaries of thesanctuary.

Eliminating the destruction of essentiad habitat will benefit focd spedes in themenner just described, and further, should leed to the generd improvement of habitat quadity within the senctuary. It is expected that habitat complexity will incees, that the 'naturd' balanceor interplay of ecologicd dements and processes will bereestablished, and that habitas and ecosystem in generd will becomemorestable [Again, here we arefollowing usege in the literture, athough we are avare of the debate concerning the useful ness of the concept of 'ecosystem stability'; wetzkeit to refer to fettures such as resistance to natural and anthropogenic pressures and the capaity for sedf-maintenance within the domain of stability, or the role played by key spedies in organizing ecosystem structure and function. This is not to infer that 'naturd' ecosystems arestable and predictable, but they may be more resilient to pressures within a domain of stability, and more resistant to sudden dhanges to altenativestaes (Holling 1973, 1996)].

Most importantly, biodi versity is expected to increme within sanctuaries, spedificaly with respect to the suite of species subject to exploitation, and generdly at the genetic, population, species, community and habitat levels (Bohnsadk 1996a and references therein). Shifts in diversity and spedes composition that have occurred through exploitation and the destructive impats of fishing are expected to bereversed. The restoration of a 'natural stateor balance to reserve habitats is expected to beespedally dramatic wherekeystone speies have been subject to heavy exploitation (eg. McClandhan 1995).

3.2 Benefits Outside Sanctuaries (Table 3)

3.2.1 Spillover

Because of the population dhanges occurring within sanctuaries (greter density and biomess), and the differences in habitat quality between aress inside and outside reserves, it is expected that there will be a net movement of juvenileand adult individuals out of sanctuaries This process is refered to in the literature as 'spillove', and to derly contratt it with 'lavd export' (seebdow), we consider it to be the net movement of post-settlement individuals (juvenil les and adults) out of sanctuaries, regardless of whether they were produced within the sanctuary, or were produced outside and settled inside We will carefully definethetem
and fully describethe process (something that harn't been done in the litedture) Iter in Section 4.4 Fev studies have examined the process of spillover, athough there is abundant evidence of thetype of contrasts between inside and outside reserves that are expected to produce spillover (see Section 3.3).

For themost part, spillover is not expected to have a beneficia affect on fisheries outsidesanctuaries except dose to their boundaries This is primarily becausefishers areexpected, and commonly have been observed, to respond to the establishment of marine reserves by concentrating fishing effort dose to boundaries Therefore, most spillover individuals are expected to be caught adjacent to sanctuaries Becausethesize of individuals emigrating from sanctuaries is expected to belarger, on the average than thosethat settled in fished ares outsidesanctuaries, spillover is consdered to be able to crete the availability of a high-value resource to commerial fisheries and/or the opportunity for the devd opment of recreational trophy fisheries (Bohnsack 1996b).

Table 3. Potential fishery benefits of marine fisheries sanctuaries that occur primarily outside a sanctuary.

SPILLOVER (direct medium-term benefits)

- Result in net emigration of juveniles and adults from reserves
- Increase catches of larger, more valuable individuals near reserves
- Increase abundance of trophy-sized fish near reserves

LARVAL EXPORT (direct medium-term benefits)

- Result in net export of eggs and/or larvae to fished areas
- Enhance recruitment to fisheries (i.e. fished stocks) outside reserves

FISHERIES (indirect medium to long-term benefits)

- Increased catches, fisheries yields, profits
- Decreased variability in catches, fisheries yields, profits
- Reduce conflict between fisheries/fishers
- Reduce conflict between different users
- Maintain diversity of fishing opportunities
- Sustain fisheries for vulnerable species
- Increase likelihood that existing fishing effort levels are sustainable
- Increase long-term stability of fisheries

3.2.2 Larval Export

If the enhanced reproductive output expected for marinesanctuaries is reelized, then it is expected that there will be a ne movement of eggs and lavæout of sanctuaries, a process that is often refered to in the literature ∞ 'land export'. In other words, if weviev the population structure ∞ an array of sources and sinks with respect to reproducive output or potential reauits, then propely designed sanctuaries are expected to be sources of reproduction, and they have the potential to be very important sources It is expected that wdl designed MFSs will enhancefisheries stodks, because the net land export will result in inceesed settlement, ecological rearuitment, and subsequent fisheries reacuitment.

3.2.3 Fisheries

Advocates of marine reserves arguethat the processes of spillover, and espedialy lavd export, from welldesigned sanctuaries will incresefisheries reauitment, and thereby produce higher fisheries catches and yidds ove time It is expected that such enhancement will at leest compenstefor the loss of catch due to the reduction in fished area and probably result in higher catches and yidds than under traditiond management controls (i.e before sanctuary establishment). This effect is expected to be most pronounced for those spedies that have been ovefished and have the lifehistory dharateristics that would most enable them to benefit from the creetion of a spatial refuge from fishing. Those benefits should berelized in higher fishing profits to individual operators, which should haveflow-on effects to the industry in generd, and, possibly, to assodited sectors of the soio-economic system and the public. Increed yidd and profit could result diredly from incresed availability of fish, from an inceese in thesize and quality of availablefish, or from a deceese in the varidility in catches across arems or yers.

Irrespective of whether fishey yidds are incremed, it is expected that marine sanctuaries will increme the diversity of fishing opportunities avalable to the industry and public. For example, species that have been overished areoften those that are the most desirable and valuable In theovefished state, they aregeneraly available in only small quantities, and the most valuable, large individuads may not beavalableat al. In extreme ces, thestodk may be economically extind, and, therfore, complet dy unavailable to the make. MFSs may enable the sustainable harvest of stocks, which could not exist othewise, except pehaps at very low catch levels In addition, a very similar process may cretestable recreationa fisheries for species that aresought by trophy fishers (Bohnsack 1996b), or fishers supplying high value, speidty markets
In the long-term, it is expected that yer-to-yer variation in catch and yidd, and the probability of population collapse, should dearese(Lauck \& al. 1998). A more predi dabl estock size is expected to trans te into economically more viable fisheries, and to avoid the boom and bust cydes so typicd of many ineffectivedy managed fisheries

A range of indiret benefits to fisheries that haveredively little to do with catch and yidd are also expected to be relized as benefits from sanctuaries A major problem with the multitude of input and output controls currently imposed on marinefisheries, is that it is very difficult to equitably balance the impat of existing and new regulations on different sectors of theindustry. It has been argued that MFSs will minimizethis problem, because idedly, all fisheries and fishers will besimilary affected in losing access to a portion of the fishing grounds Of course, equitably reestablishing and redistributing rights to fishing in the non-reseved ares may deete conflicts, but in generd, the establishment of MFSs is expected to reduce conflids between different fishery sectors (Bohnsadk 1993).

Conflicts can ocaur when one fishery imposes a heevy indidental or bycatch mortality on thejuveniles of the species targeted by another fishey (Alverson \& al. 1994), or when there are ger incompatibilities (eg. pot and travl fisheries, Someton \& J une 1984, Pol unin 1990, Armstrong \& al. 1993). Well-designed sanctuaries areexpected to reduce this type of conflict between fisheries. This argument relies on the assumption that al sectors/fisheries made equal use of the sanctuary area prior to its establishment, which would often not bethe cese In situations in which a sanctuary is etablished in a location that is critical to one fishery but merginal to anothe, the former would belikey to fed most disadvantaged, at leet in the short-tem In addition, it is considered that MFSs are more likely to consistently reduce conflid between fishers targeting the same species, but in different ways or as pat of different fisheries (eg. travl versus linegeers, or commerial versus rearetiond fisheries). The likeihood that the use of MFSs as a fisheries management tool will cretemore equitable allocation of fishing rights may be incresed if the fisheries enhancement effect al lows a generd reaxation of other fishing control soverdl. It should be noted, however, that it is possiblefor reserve ettablishment to have the opposite effect by increesing theovelap of effects of fisheries on eech other because if they are forced into a smaller aree with increed competition for resources, or interactions of geer types In this situation, equitableallocation of resource use rights becomes audid.

A moreemily defended benefit is the expectation that conflids between fisheries and non-consumptive users will bereduced (Polunin 1990). For example rearetional and commerial fishing on cord refs can remove many of the speies and most of the individuals of grettest interest to non-consumptive users of the resource, such a di vers and snorkellers, leøding to conflids with the tourism industry. The establishment of MFSs may ceetea win-win situation, in that tourists will haverdatively pristineares to visit and fisheries will experience someor all the benefits described above, and conflict between the two industries will be reduced or diminated.

3.3 Overall Benefits (Table 4)

3.3.1 Stock

Moddling reserch has suggested that redively modest amounts of fishing grounds, if compledy protected from fishing, could adt as significant reproductive sources for the stock as a whol eand result in higher leveds of stock available to fisheries than under traditiond input/output controls. This phenomenon would bemost pronounced for those stodks that have been ovefished. If sancuaries produce a higher rate of recruitment to thefishery, then it has been suggested that stocks may beable to sustan a higher leve of fishing mortality. Of course, the purpose of establishing sancuaries could besubvetted if the extra productivity were to be immediat y exploited, thus keeping ovefished stock at depressed leveds It is expected that a major beneit of sanctuaries will beto use the improved productivity to dlow stocks to recover from ovefishing.
In addition, ceeting sources of high and predi ctable reproductive output is expected to provide an important protection to stocks vul nerdble to ovefishing, such as species with highly locdized and dense spawning aggregations (eg. orange roughy, Kosow \& al. 1997; most groupers, Thresher 1984, Shapiro 1987; and many othe tropicd ref fishes, Domeer \& Colin 1997). This function should extend to reduring the probability of stock collapse under the pressures of intensefishing mortality, large scal eenvironmental dhanges (eg. global warming), and the high environmenta variability and uncertainty that speies in some environments experience Because sanctuaries would att as predictabl esources of rearuits subject only to environmental variability, it is expected that stock recovery atter a collapseor severe ded ine would bemore likely and rapid. All of this together, suggets that large variations in stodk leveds, a major problem with the current menagement of many stocks, could be minimised. Of course, naturd processes and variability would continueto cretevariation in rearuitment levds, but such phenomenon would not be as severely affected by fishing pressure

Table 4. Potential fishery benefits of marine fisheries sanctuaries that are not restricted to areas inside or outside a sanctuary.

POPULATION (direct medium- to long-term benefits)

- Increase size of stock available to fisheries
- Possibly permit increased fishing mortality
- Have greater success than traditional controls at maintaining sustainable fisheries
- Reduce overfishing of vulnerable species
- Protect species vulnerable to overfishing
- Protect from incidental mortality on spawning or nursery grounds
- Protect/buffer against stock collapse, or serious decline, from overfishing
- Protect/buffer from natural recruitment failure
- Improve probability and rate of recovery after serious decline or collapse
- Reduce variance in stock size and, therefore, in fisheries yield
- Improve prospect of long-term sustainability of stocks
- Improve predictability of recruitment under environmental uncertainty
- Reduce impacts of variation/extremes in natural conditions on stocks/fisheries

GENETIC STRUCTURE (indirect, mostly long-term benefits)

- Protect genetic diversity of focal species
- Reduce risk of loss of genetic information from gene pool
- Reduce effects of fishing selection
- Select for beneficial behavioural changes

ECOSYSTEM (secondary, mostly long-term benefits)

- Reduce risk of disruption of ecosystem structure and function

MANAGEMENT (tertiary, short- to long-term benefits)

- Simplify regulations making compliance enforcement easie
- Avoid difficulties of observing and enforcing size and gear regulations
- Allow violations to be more easily detected
- Reduce need for data collection to support management
- Provide resource protection without detailed stock/system data
- Protect against management failure (precautionary approach)
- Provide a basis for rebuilding stock (bet-hedging strategy)
- Provide areas for study of natural/anthropogenic processes in absence of fishing mortality/effects
- Provide sites with minimal disturbance for study of effects of fishing, natural/anthropogenic environmental pressures, and/or harvest strategies

3.3.2 Genetic Structure

When stocks are reduced to low levds through overfishing, the effects of environmental extremes (eg. epidemics, El Nino or dimate change), or a combination of thetwo, geneic information may belost through random processes (known as genetic drift) as stocks pass through low-popul ation bottlenedks (Smith 1994, Bergh \& Gez 1989). This is a paticular concem with respect to rare aldes and alles that may be criticd for responses to extremeenvironmental stresses Thus, reserves areseen as potentially providing protection to the gene pool by ceeting a refugethat will rarely, if ever, go through low-population bottlenedks Of course this protection would probably not be reelized in small reserves or systems naturally subject to very high levds of environmental variability. It is well understood that only very smal migration rates are necessary for this geneic reserve ffect to be beneficid to the focd speies as a whole, not just to the populations in reserves (Hubbell 1997), and most exploited marinespedies have pegaic lavæeand, therefore, very high rates of gene flow (Shulman 1998).

Because most fisheries aresizesdective, ether because of regulations, ger/practice characteristics, or the redtive distribution of fishing effort in retaion to that of different sizeagedasses, fishing mortality can at as astrong atificid selective pressureon target species (Policansky 1993). The reduction of theaveragesize of indi viduals in speies subject to intense fishing is widespread and, at though many such changes could aso be due to environmental effects, afew studies have shown that these changes have a genetic component (J ennings \& al. 1999). In addition, fishing sed ection may affect other charaderistics, such a growth rates, sizelage at maturity and reproductive rates (Policansky \& Magnuson 1998). This process may lead to the nonrandom loss of genetic information. Marine reserves, by protecting a portion of thefocd populations from this selective pressure, areexpected to reduce thetendency for populations to besusceptible to this pressure, and possibly reverse it in some coses Finally, because marine resenves at as refugia from fishing pressure it is possiblethat selection will occur for characteristics that may enhance the effectiveness of reserves as sources of reproductive output, eg. selection for reduced aggressiveness or restricted movement of adult individuals (Nuhfer \& Alexander 1994, Bodilet 1996)

3.3.3 Ecosystem

Extremefishing pressureon widdy abundant and important spedies can causesevere disuptions of the state and functioning of ecosystems. The loss of top-levd predators from a community may 'reme' other species from predation, resulting in an inceese in their abundance (reviens in J ennings \& Kase 1998, and in Hall 1999). The removd of 'keystone' speies can have coscoding effets within its ecol ogicd cormunity (Stened 1998), and potentially result in regimeshifts in community composition (eg. McClandhan 1995, Estes \& al. 1998). With protection from fishing it is expected that further impacts of these types will be avoided, and changes caused by pat fishing may bereversed, within reserves It is also possiblethat changes within sanctuaries will have a beneficia effect on ecosystems beyond the boundaries of those sanctuaries

3.3.4 Management

Fisheries management plays an integral pat in detemining the heath of exploited stocks, and therfore ultimatey in the economic viability of the fisheries Changes in fisheries management brought about by the ind usion of MFSs in themanagement tod box will therefore haveimpats on fisheries. Determining thenature of thoseimpads can be difficult. A benefit to management will not dways result in a benefit to fisheries or other stakenolders. Nonetheless, severd potentially important benefits to management, which may, in tur produce benefits to fisheries, have been identified in the literature

First, as described dbove, it is expected that to theextent that MFSs are used in lieu of other controls, fisherie regulation will besimplified. Paticularly, with respect to the sancuaries themselves, it is expected that enforing compliance with the control, namdy not fishing within the sanctuary, will be much eeier than typically is the cose with most other controls. For example many input controls involve very detailed spedifications or limitations of the geer that can be used or fishing practices that may beemployed, and detecting non-compliance can be difficult, timeconsuming, and expensive Altemativey, ensuring compliance with no-takeregulations may beaccomplished simply by monitoring fishing activity with radar or a Vessd Monitoring System (VMS: provides for automatic and remotelogging of vesse positions). Nonetheless, entry done into a reserve would not besufficient to represent a violation (because usually therights of innocent passage of vessds are not restricted), leaving the difficulty of intepreting radar or VMS data to determine if fishing ativity had occurred.

Often, the effective application of traditiond controls, espedialy output controls, relies on detailed knowledge of stock dynamics and fisheries behaviour. That knowledge is built, and relies, on large data sets describing thestock, catch and covarites. Inadequadies and uncertainties in such data sets, as wal as in their useand intepretation, have often been dited as contributing to fisheries management failures (eg. Botsford \& al. 1997, Ludwig \& al. 1993, Walters 1998). It has been argued that the implementation of marine reserves as a menagement control does not requiresuch data and knowiedge Against this viev, however, it has been argued that achieving thepotentia benefits of marine reserves requires their configuration (eg. size, shape, location and number) to beright, if not optima (Fogaty 1999), and to achieve this requires a substantid investment in design optimisation and verification. However, reserve proponents have daimed that someresource protection and benefits to fisheries can berealized even if reserves are not optimally configured. If this is true then reserves could greatly reduce the need to obtain system data and knowledge, which can be very expensive, and providesome protection against the kind of management failures mentioned above (J ohannes 1998a). In this sense, MFSs areseen to represent a precautionary approach to the management of exploited marine spedies (Clark 1996, Lauck \& al. 1998, Bohnsadk 1999).

Earlier we described how marine reserves are expected to enhance the likelihood and rate of stock recovery ater a serious ded ine or collapse This provides management agencies with the opportunity to implement bet-hedging strategies by imposing different controls on different segments of thestock (no-take inside sanduaries, and traditiond input/output controls outside), with theintention being that if control soutside the sanctuaries fail to function as intended the protected portion of the population inside the reserves will prevent collapse of thestock, or at lensure entime y recovery (Lauck \& al. 1998).

Increesingly, it is being recognised that a major difficulty facing fisheries scientists and managers striving to improve their effectiveness is theladk of aress that arefreefrom the effects of fishing. For example prope essessment of the affects of habitat destruction by ger on thefocd spedies, other expl ited speies, or unexploited components of the ecosystem depends on the comparison of fished with unfished arees, and/or ares beforeand after the onset of fishing. Becausedmost al of themarineenvironment is open to fishing, and because the evol ution of fishing technol ogy has diminted most 'naturd' refuges available to exploited speies (Bohnsack 1998), it can bevery difficult, if not impossible, to now make these comparisons Over time a naturd conditions reestablish themod ves in marine sanctuaries, it is expected that the sanduarie will providecruid referencesites needed for such observationd or experimental studies Stock-assessment modes requireestimetes of naturd mortality rates (i.e mortality in the absence of fishing). A serious vulnerability of such modds is that naturd mortaity rates often cannot be obtained for the reesons just described, and they have to be derived from aggregate mortality rates Becausefishing mortaity would be diminated in MFSs, they may provide cuuda reference aress where natural mortaity rates could beesimated and monitored, which could leed to improved stock-assessment modd predictions, and therefore better management of exploited stodks (Bohnsadk 1999). In addition, MFSs may att as referencesites where other important parameters of natural fish populations can beestimeted in order to improvestock assessments. Such parameters could ind ude estimates of size at age, feaundity, growth rate, and natura population structure Accurate estimtes of many genetic and population parameters for 'virgin' or preexploitation populations are becoming incresingly difficult to obtain because of the ‘sliding bæd ine' phenomenonreference conditions are restrided to only recent experience and data ignoring the likelihood that historic conditions and non-fished populations may bevery different from those currently dbservable (Pauly 1995, Moreno \& al. 1986, MadDiarmid \& Breen 1993). Reserves are considered to beable to provide important fisheies independent data that could improve fishery modes (Bohnsack 1998) and to help detemine better restoration targets for over-fished stocks by assisting to establish the 'naturd' charateristics of their populations (Dayton \& al. 1998).

Moregenerally, fisheries menagement is expected to benefit because MFSs will providearees not diredly influenced by the effect of fishing, and these aress could then be used:

- for studies of natura popultion, cormmunity or ecosystem processes
- in the investigation and monitoring of pattens of variation in natural populations
- as referencearees to compare with aress subject to anthropogenic pressures, and
- for conducting experiments designed to evduate different havesting straegies with respect to their resourcesustainability (Davis 1981, Agardy 1994, Arcese\& Sindair 1997, Murray \& al. 1998, Dayton \& al. 2000).

All of these benefits would be expected to improve fisheries management, and therefore, indirectly thestodks and fisheries themsedves

Beyond this, most authors have listed and discussed a suite of potential benefits that extend beyond stodks, ecosystems, fisheries and management agenies (see Bohnseck 1998 for extensivelist), examples of which are

- provides opportunities for basic reserch and education
- crettes sites for non-exploitative recretion activities and ecotourism
- enhances wildemess and æesthetic experiences, and
- stabilises the economy.

These benefits may feed badk to enhance fisheries indiredly, but we do not and yse these potentia benefits any further here
The benefits described in this section are wide ranging and potentially very important to the success of marine sanctuaries and fisheries Support for the benefits from empiricd studies, moddling and yses and theoretice treatments varies from strong (eg. sizeand abundance increses in reserves), to moderate (eg. increesed reproductive potential), to week or non-existent (eg. reduced variance in yidd) (Bohnsadk 1998). Later we reviev evidencefrom empirica studies (see Section 5). Wefind, as have numerous other reseerchers, that direct support for reserve improvement is reesonable, but there is virtually no empirical support for the key benefits beyond what happens in reserves-spillover, lavd export, production stability and fisheries enhancement outside reserves. Assuming theexistence of thefirst three processes, moddlers have extensively explored the conditions under which fisheries enhancement could occur, but their modds have not evol ved to the stage where they can maketestabl e hypotheses about adual systems. Thus, to a large extent, convinaing stakenolders of the potential of marine reseves to enhancefisheries depends on theoretical or logicd arguments based on our basic knowledge of marine ecology. Most authors have offered at lemt a minimal logica/theoreticd argument to justify a daimed or proposed benefit of no-takemarinereseves, and some have goneto great lengths to examine the processes and conditions necessary for a benefit to berelised (eg. Plan Devdopment Tem 1990, Roberts \& Pol unin 1991, Car \& Red 1993, Rowley 1994). In some cees the links bewwen different processes have been identified and discussed, and various model ling efforts have numerically investigted the redtionships between some of the most important processes In Section 4 we provide a single conceptual modd that attempts to identify and connect the processes that are necessary for the establishment of a marinefisheries sancuary that will provideenhancement of fisheries

4. A CONCEPTUAL MODEL FOR MARINE FISHERIES SANCTUARIES

In this section we present a conceptual model for how benefits from sanctuaries may be delivered to fisheries. The model is presented graphically in Figure 1, and its components and links are described in this section of the text.

Empirica studies haveshown that 'senctuary improvement' is a nerly universd effect, athough it does not apply to al speeies and it is difficult to prediit which ecosystem components will be affected and to what degree they will be affected. Modelling has shown that thereis greet potentid for sencturies to enhance fisheries but this reserch has not evolved to the stage of producing modes that can be used to predict the behaviour of real systems Support for the daim that senctuaries enhance fisheries is bæed primarily on theory, logic and strategic modds, rathe than empirical reserch or menagement experience (Attwood \& al. 1997b) Herewe construct a conceptual mode that atempts to trace potential chans of cave and-effet from the inception of a sanctury through to impacts on fisheries and æsocited humen institutions Our fous is on the dhain, rathe than the individud links, those being the components and processes of the bidogica, ecologica and humen systems Numerous a thors have and ysed and revieved the evidencefor individuad links (eg. lavd dispersd) and theredtionships between various links (eg. reproduction and habitd quadity). Wewill dite and briefly summarise their work, whiletrying to illustrate how it fits into the redionship between sencturies and fisheries
Theetablishment of a sancuary is believed to initite a series of changes that cescade through the sanduary's ecosstem The crscade may extend to ares beyond the reserve, and ultimety dfect the fisheries and corrmunities that depend on the resources of the senduary. Some changes may occur inmediatdy, but others may occur in the shat-tem (<5 yerr), medium-term ($5-15$ yerrs), or long-tem (decades). Most changes that occur within such sencturies areexpected to bebenficial to the organisms and environment of the reserve and, asuluing the sanctuaries are propely deigned and managed, the benefits have the potentia to extend to fisheries that operte outside the senctury.

Describing thefull extent of potential dhanges is not possible due to the complexity of naturd systems We present asimple conceptud modd that describes some of the primary and secondary mechanisms through which thosechanges could dfect ecol ogicd components of reserves, explited populaions, and the humen systems dependent on thoseresurces (Figure 1). Overall, the modd cen besen कoccupying threereams:

- the ecologica, biological and physica processes occurring within the reserve
- the ecologica, biological and physica processes occarring outside the reserve and on the fishing grounds, and
- the humen processes assoided with the fisheries and linked sectors of society.

Because of differences in knowledge about the effects reserves have on other systems, we will discuss the first ream (inside reserves) in the greetest detai, identify and discussjust themajor dements of the second ream (outside reserves), and only briefly identify some of the important factors of the third realm (human systems).

The modd presented in Figure 1 shows the changes occurring inside a sanduary as a result of its establishment, what we cal 'sanctuary improvement', and thethree processes primarily responsible for transfering those changes to ares outside the sanctuary. This modd reflets, on one hand, baric ecologica knowledge of marinesystems and the effects of fishing on those systems, and, on theother, an hypothesis about how they will respond to senctuary establishment. The modd was constructed not to show al the effects reserve establishment could have, but rather to illustrate how a sanctuary could deliver beneits to fisheries operating outside the sanctuary. The modd will apply to any exploited spedies, but will be most applicable to spedies with planktonic dispersd phaees and to those popul ations that have been overished.

The process of delivering beneits to fisheries must begin, paradoxically, with the cessation of fishing in the areadesignted to be the sancuary.

Figure 1.
Conceptual model showing the pathways by which the establishment of a MFS could lead to environmental enhancement within the reserve and potentially to enhancement outside the sanctuary through the processes of spillover, larval export and stability enhancement. The large upper box represents a sanctuary, and the lower box represents the fished areas outside the reserve. Each text box within the sanctuary box represents an event, state or effect within the hypothesised cause-effect pathways; numbers are referenced in the text. The size of arrows roughly indicates the hypothesized importance of that pathway to the potential for fisheries enhancement. Very roughly, the time frame within which these events/states/processes might be expected to occur, following sanctuary establishment, increases from 'Immediate' on the left to 'Long-term' on the right. Text boxes 5-7 are grouped together to indicate that they are the processes involved in increases in population abundance, the most obvious manifestation of the process of sanctuary improvement (see text). Text boxes 17-19 are grouped because they are the processes responsible for the long-term changes to sanctuary populations, which along with the short-term abundance changes, are responsible for the improvements in population stability and resilience. The large blue and green arrows indicate poorly defined or understood pathways. For example, improvements to population structure have been hypothesised to feedback to improve population abundance, but the mechanisms have not been clearly identified. Similarly, it is believed that the general improvements to the ecosystem and human institutions will in some ways contribute specifically to sanctuary improvement at the population, community and habitat levels.

4.1 Cessation of fishing

4.1.1 Model Expectation

The cascade of changes initited by sanctuary establishment would begin with the cessation of fishing ativity within thesanduary (Figure 1—Box 1), usually the immediate objective of a no-takemarinefisheries sancuary. That event should have two immediatemani festations within the reserve First, fishing mortality to target species would bediminated (Box 2), and second, further damege to theenvironment and othe species from fishing activities would cese (Box 12).

Thesemenifestaions would, of course, bedependent on compliance with no-takeregulaions (Fogaty \& al 2000). Modelling has shown that redaively low levels of illegal or unintended fishing in sancuaries can diminate the potential for those sancuaries to deliver fisheries benefits, and experience has shown that poaching can be a cause of MFS failures (Tegner 1993, Attwood \& al. 1997b, Gribble \& Robetson 1998, Guzmen \& J acome 1998, Murray \& al. 1999b, Rogers-Bennett \& al. 2000; however, seeJ ennings \& al. 1996).

4.1.2 Effects of Fishing

Eliminating fishing mortality is criticd to sanduary success becausefishing can havelarge impacts on exploited populations, either directly on those popul ations or indirectly through impacts on marine ecosystems (serevieus by Plan Devedopment Tem 1990, Russ 1991, Jennings \& Lock 1996, Jennings \& Kaiser 1998, Goñi 1998, Hall 1999). Populations that areoverexploited:

- can be driven to extremdy low densities
- older, morefecund size desses can be nerly diminated, and
- norma behaviord patems can beseverdy disupted;
all of which can greatly reduce the reproductive potentia of those populaions (eg. Pauly 1979, Davis 1981, Alcala 1988, Haliday 1988, Kos ow \& al. 1988, J amieson 1993, Rowley 1994, Sebens 1994, Robets 1995a Hutchings 1996, Sluka \ddagger al. 1996b, Zabala $\&$ al. 1997, Shumway 1999, Stephens \& Sutherland 1999, Robets \& Hankins 2000).

Although many of the most notorious fisheries collapses were preipitated by intensefishing pressure (eg. the coll apse of theAtlantic cod stocks, Hutchings 1996; Australian gemfish, Rowling 1997; or Alækan ardb and shrimp populations, Orensanz $\&$ al. 1998), for some species, popultion dedines have been caused by redtively low exploitation levels (Shepherd \& Brown 1993, Munro \& Pol unin 1997, Robets 1997b, 1997c, McClanahan \& al. in press). Pauly (1997) suggested that large, long-lived predatory spedies with annuad mortdity rates on the order of 10-20\% cannot sustain exploitation rates greter than 10% (alow fishing mortality rate) without being in danger of suffering reauitment ovefishing. In such speies a reatively smal number of very large, feaund individuds are responsible for most of a populaion's reproductive output, and those indi viduds would be removed very quidkly by anything more than very low fishing pressure Conversdy, somefisheries seem to defy logic by being able to sustain extrendy high fishing mortality rates (eg. F>5.0, J amieson 1993).

Ove time, the effects of fishing may significantly reduce the resilience of exploited populations by reducing their numbers, changing their population and geneic structure, and atering their communities and habitas, thus making them more vul nerable to coll apse and extinction (Attwood \& al. 1997b, MaManus \& Meñez 1997). However, not al species are affected by fishing in the sameway. A spedies lifehistory dharaderistics have a gret dea to do with how it responds to fishing pressure (Adams 1980, J ennings $\&$ al. 1998, Tegner \& Dayton 1999, Fogaty \& al. 2000). Many, if not most, of the speies that aremost desired and valued by fisheries are ' K-splected' spedies Thesespedies share a common suite of life history dharateristics, some of the moreimportant are

- Sow somatic grow rates
- delayed maturation
- largeadult size
- low naturd mortaity rates
- long lifespan
- show astrong site attachment
- Iow reproductiverates
- sporadic rearuitment, and
- smal popultion sizes

This suite of charateristics is assodited with the following impats or effects

- rapid population dedine in responseto fishing pressure and sow recovery when that pressure is ees (Adams 1980, Robets \& Pol unin 1991, Jennings \& al. 1998, Russ \& Alcda 1998b)
- greater vulnerability to ovefishing (eg. Adams 1980, Brander 1981, Thorpe \ddagger al. 1981, Munro \& Williams 1985, Russ \& Alcda 1989, Plan Development Temm 1990, Robets \& Pol unin 1991, J amieson 1993, Tegner 1993, Dye $\&$ al. 1994, Dayton $\&$ al. 1995, Trippe 1995, Adams $\&$ al. 1997, Kos ow $\&$ al. 1997, Robets 1997b, Jennings \& al. 1998, Russ \& Alcda 1998b, Pitcher \& Pauly 1998, J ennings \& al 1999), and
- an increed probability of the locd extirpation of populations or even extinction of spedies (Russ 1991, Dayton \& al. 1995, Robets \& Hawkins 1999).

Many of these spedies and their fisheries possess other characteistics that are thought to exacerbate their vul nerdbility to these impats (J amieson 1993, Robets 1995b, Adam \& al. 1997):

- aggregativebehavior
- sedentarity
- teritoriaity
- sequentia hemaphroditism
- living in shallow waters
- ladk of natura refugia
- restricted geographic range
- ready availability to human population centres
- eily caught
- high commeriad velue and marke demend
- mobilefisheries, and open markets

Spedies with suites of charateristics like those above have been driven to economic extinction by fishing pressure in many places around the world (eg. seereferences in Robets \& Pol unin 1991, J a mieson 1993, Roberts 1995a), a process that may proceed quiterapidly (Roberts \& Pol unin 1991, Conrad 1997, Rowling 1997, Jennings \& al. 1998). For example, the discovery by commerial fishers of large prespanning, migratory aggregations of the highly valued gemfish (Reem sdandi) dong the continental shef break of south-etem Austraia was followed by their intenseexpl itation, which leød to thestock's collapse just afew yers late (Rowling 1997).

Most marine species of fish and invertebrates have what is known as an qpen popul ation structurerearuitment to loced populations is not dependent on (and is decoupled from) reproduction in that population by a planktonic dispersal phæe(Caley $\&$ al. 1996). Theexistence of theopen popul tion structure, among other charateristics (eg. high levels of feaundity), of marine organisms has led to the view that their populttions should behighly resilient to environmental and anthropogenic pressures. As a result, the possibility that anthropogenic pressures could cause the extinction of a marine spedies has long been thought to be extremdy low (Carton 1993, Culdta 1994, Huntsman 1994, Tegner \& al. 1996, Robets \& Hawkins 1999), espedally as the result of ovefishing (J amieson 1993). Fogaty \& al. 2000 point out that severd marine mammalian and avian spedies have been driven to extinction by human exploitation, and recent work has uncovered severd examples of neer extinctions, or what have been temed aypto, functional or economic extinctions (sereferences in Culatta 1994, Robets \& H awkins 1999, and Dayton \& al. 2000), some of which deally have been significantly contributed to, if not caused by, ovefishing (eg. whiteadodone in Southem Califomia Davis \& al. 1996, 1998; bamdoor skatein thenorth Atlantic, Cæey \& Myers 1998).

Theoverfishing of stocks is not restricted to ' K -sdected' species In some coses, ' r-slected' spedies may be highly valued, pehaps becausethey areabundant and, therefore, targeted by fisheries. The high potentia for popul ation growth cettanly makes these spedies less susceptible, but not immune, to ovefishing. In some ircumstances, the loss of the most desirable spedies from a system (usualy large top predators) is followed by the fishing-out of less vaduable, usually lowe-trophic-levd species (Munro \& Williams 1985, Lock 1986, Russ \& Alcda 1989, Dugan \& Davis 1993, Ault \& al. 1997a Orensanz \& al. 1998, Pauly \& al. 1998a), a process that has been termed 'serial ovefishing' and 'fishing down thefood web'. Theimpads of ovefishing Iowe-trophic-levd speies can be catastrophic, as illustrated by thewdl-known collapses of sardine and anchoyy populations in the Padific Ocen (see Botsford \& al. 1997).

4.1.3 Sanctuary Effects

Populaions protected within marine sanduaries and, therefore, remed from the impats of fishing pressure, should revert to being structured by naturd mortaity rather than fishing mortality (Bohnsadk 1992). This relemetypically results in population increes (Stephenson \& Kornfied 1990, Myers \& al. 1995, Ha pem in press). In these ircumstances, thestaus and condition of onceexploited populations that are now within
sanctuaries will markedly improve, a process dependent on a suite of processes described bedow. Whilemarine reserves should contribute to the improvement and recovery of most over-exploited populations, Roberts and collegues have argued that they may bethe best, perhaps theonly, management tod that can prevent the dimination of the 'K-sdected' spedies that are vul nerdbleto ovefishing (Robets \& Pol unin 1991, 1993, Roberts $\&$ al. 1995)

4.2 Decreased mortality and increased longevity

4.2.1 Model Expectation

The cessation of fishing mortality within sanctuaries (Box 2) should result in individuals of targeted speeies living longe than they would in a fishing regime(Box 3), and in overal mortality rates deceering within sanctuaries (Box 4). Increesed longevity within sanctuaries will immediatdy result in incresed average age of individuals, and because in most exploited populations a large proportion of individuals are smalle than thesize at which their growth would stop or sow to negligible leves, it will also result in increes in meen size of individuals (Box 5).

4.2.2 Effects of Fishing

Most fishing targets the large individuals within a population (Robets \& Pol unin 1991, Russ 1991). Under intense fishing pressure mature individuals are removed quickly (eg. Borisov 1978, Davis \& Dodrill 1980, 1989, Rice \ddagger al. 1989, Plan Devel opment Tem 1990, J amieson 1993, Trippe \& al. 1997). In addition, fater growing indi viduds tend to suffer a higher mortality rate because they reauit to the fishery sooner (eg. Parma\& Deiso 1990, Russ 1991, Rice\& Gisæon 1996), thus a fishery slects for sow-growing indi viduads (Beggh \& Gez 1989). Both impats result in an immedi ate and continuing reduction in the meen age and size of individuals in the population (sereferences in Robets \& Pol unin 1991, Buxton 1992). Fishing that is intenseenough to remove indi viduals before they have a chance to grow to the optima size for havesting istemed 'growth ovefishing', a common phenomenon in marinefisheries. Russ (1991) dites numerous examples of growth overfishing in cord reef fishes Overfishing may also produce a sal ective pressure on the population, 'permanently' reduing size over many generations (see Section 4.9). For example, Tripped \& al. (1997) dited data showing a dedine in 'ageat-maturity and 'sizeat-maturity' for severd groundfish species subject to fishing pressure in the Northwest Atlantic
Severd compenstory processes mey operte in fisheries to reduce the impact of thesetrends. First, the bycatch of juveniles, which are younger and usualy smaller than mature individuals, will tend to increse the average size and age of individuals in fished populations Second, Iavæe in the planktonic stage and immedi ady after settlement typicaly experiencehigh rates of natura predation (Sale\& Ferrel 1988, Car \& Hixon 1995,
 because of their shorter period of vil nerability (Shepherd \& Cushing 1980, Houde 1987, Miller \& al. 1988), and this therefore counterats the tendency for fishing mortality to seded against fast-growing individuals Third, the loss of large individuads could result in a density-dependent increse in the growth rates of younger indi viduals, perhaps due to a decreme in the intensity of intrexpedific competition, which would result in a ‘sizeat-agé increese (Russ 1991).

In extreme cass, the removal of mature indi viduds can reduce a population's reproductive potential, so that the number of propagules produced, and therefore reanuits, becomes a factor limiting population growth (examples in Russ 1991). This is a process refered to as 'rearuitment ovefishing'. It can result in the dimination of whol eage dasses, thus increesing variation in reauitment and potentialy leeding to occurrences of yerrs with littleor no catch, and the concomitant impacts on fishers (Pauly 1987, Palumbi manuscript). Extremerearuitment overishing can leed to the catatrophic, long-term collapse of stocks, a has happened recently with North Atlantic populations of cod and other groundfish (Hutchings 1995, 1996, Roughgarden \& Smith 1996, Myers \& al. 1995, Roy 1996, Sindar and Murawski 1997, Myers 1997b, Fogaty \& Murawski 1998, Shetton \& Heley 1999). Although there has ben considerabl edebte regarding the causes and contributing factors behind the groundfish population coll lapses, it is generally agreed that overfishing was at leat a mejor factor. Even if an environmental factor played a mejor role (Hutchings 1996, Hofmann \& Powdl 1998), it is important to recognize the rol eplayed by ovefishing. High leved of fishing that aresustainable under normal environmental conditions, may be unsustainable under abnormal conditions (Plan Deve opment Temm 1990, Rosenberg \& al. 1993, Lauck \ddagger al. 1998), such those as asodited with cydones, ENSO events, or largescel eenvironmenta change, and assodited regimeshifts in ecosystems and community structure(Frandis \& Hare 1994, Bakun 1998, Haward 1997).

4.2.3 Sanctuary Effects

Therd exe from fishing mortality is expected, in most ces, to result in a large increes in the men age and size of individuds of overished species within just a few yeers, and, most importantly, in the proportion of large feaund individuds in the population (seereferences in Roberts \& Pol unin 1991, references and and ysis in Hapem in press, and thereviev of empirical studies in Section 5). The resultant change in a popul ation's agestructure is likely to be a key to the success of a marine sanctuary, because olde, large individuals make a much larger contribution to the population's reproductive output than do younge, smalle individuads (Plan Devel gpment Team 1990; see Section 3.2).

4.3 Increased numbers and density

4.3.1 Model Expectation

The dedine in overal mortaity rates should result in the number and density of individual sincreesing and, consequently, an increse in population biomess (Box 6), athough the later also will also increese because of the increed meen size of individuads Considering these changes and those occurring at the individua leve (see Section 4.2), it is expected that reserves will be populated by greeter densities of individuads that tend to be older and larger than areextant in arees outside sanctuaries In aggregate, thespawning biomess, and perhaps total biomess, of targe spedies should increse within sanduaries (Box 7).

Because we are deling with a fixed are((the sanctuary), we can discuss numbers or densities interchangeably Changes in numbers will typically produce changes in biomess, but theform of that reationship will depend on other factors (eg. growth rates). In situations where we do not need to draw the distinction between how sanctuaries could affect numbers/densities versus biomess, we use theterms 'dbundance' or 'size'. In other words, phroees such as 'population abundance' or 'popul ation size' will refer to absol ute number/density and/or biomess, without having to spedify how they will differ.

4.3.2 Effects of Fishing

There is ampleevidence that extremefishing pressure will reduce population abundance (eg. Kostow \& al. 1988, Russ \& Alcda 1989, Plan Devel opment Tem 1990, Russ 1991, Sdbens 1994, Robets 1995a, Hutchings 1996, MaManus \& Meñes 1997, Goñi 1998, McClanahan \& Arthur 2001). As disaussed dbove, this effect may beexpressed to different degrees in different age/sizedasses. Fishing typically reduces the abundance of the most desirable/valuable members of the popul ation-the oldest and largest individuals which, because they aresexually mature, can have an effect on the populations reproductive potentia (see Section 4.5). Altemativedy, unintentional fishing mortality, such asthat caused by thecatch and discarding of unde-sized individuals, or the bycatch of juveniles by other fisheries, has the potential to reduce the abundance of immetureage dæses This reduction will not have a direct effect on reproductive potential, but may reduce reproductive potentiad in the long-run if it cretes a limiting shortage of reauits to the spamming population. Independent of the agedistribution of fishing mortality, extremeovefishing can leed to locd extirpation and even extinction of exploited popul tions (Robets \& Hawkins 1999).

4.3.3 Sanctuary Effects

It seems logiced that establishing a marine sanduary in an areathat has been severe y overished results in abundance incees within that area and numerous studies comparing populations inside and outside reserves support this expectation (see the evidence presented in Section 5). Howeve, it is possible that popul tions that have been subjected only to low or moderdeleveds of fishing could respond to protection with a decreese in abundance in a reserve A central theoreticd and operational premise of theexploitation and management of living resources is that maximum population productivity will occur at intemediate mortality rates The premise is based on the assumptions that resources (eg. food, space, shette, etc) are limiting and that competition for those resources will limit the abundance of younger age dasses Spedies that experience very low mortality rates will havere atively high numbers of large mature indi viduds which will competitively limit the number of smaller, younger individuds that can enter the population, when the popultion is neer carrying-capaity. Theremoval from a population of a number of large individuads 'remes' resources, which enables an even greter number of smaller individuals to enter the population (Plan Devel opment Tem 1990). Subject to reduced competition, thesmalle individuals are ableto achievefatter growth rates, and because most of their non-maintenanceenergy is used for growth (as opposed to reproduction), a greeter population biomess is reached for the given leved of resource availability. Thus, following sanctuary establishment in this scenario, the abundance of largeld reproductive individuds would inceese fewer young, immeture individuals would enter the population, and the population size would deceese Howeve, from the vienpoint of the vdue of the population to non-extradive human activities and its reproductive potential, such changes in the population structure and shift in biomass distribution may beimportant benefits to the population
as a whole
Thequestion of how a population will respond to changes in mortality rates is pat of a broader question about population regulation. The regulation of populations of marine organisms such asfish and invertebrates has been the subject of considerdbledebate and controversy in the last decade (eg. Sissenwine 1984, Keaugh 1988, Hixon 1998). It is generdly agreed that if populations are regulted, they must besubject to densitydependent controls (Murdoch 1994, Turchin 1995). Howeve, there is a lack of generd agreement about whether those controls will operte primarily on pre or post-settlement-phæse individuads. Although, the
controls may beineffectiveor absent during someperiods, for somelifestages, or in somelocations, they must operate on the popul ation as a whole (Chesson 1998). It is apparent that the response of a population to the cesstion of fishing mortality will be dependent on its current state, the megnitude of that mortality, other population processes, and, as we shal seelate, on interactions with other spedes. Nonetheless, whethe locd popultion sizes are ultimatdy controlled by reauitment or post-recruitment density-dependent processes, it is reesonable to expect that, at leest in coses of overishing, incremes in number, density and/or biomess will occur commonly in response to the cessation of fishing mortality. Howeve, increes in abundance fol lowing sanctuary establishment will eventually be constrained by limits imposed by some process or processes, such as insufficient rearuitment, excessive predation, or availability of space, food or shetter. Although it may be difficult to predict what that limit will berdativeto pristine conditions or to those conditions existing before sanctuary etablishment, or which spedies will respond positive y, it is likely that many exploited speeies will bemore abundant inside than outside sanctuaries

However, the problem may beeven more complex than this. Modds constructed by Botsford \& al. (1999) suggest that the effectiveness of mainereserves established to protect red sea urchins in Northem Cal ifornia will depend on the form of the retaionship between larva settlement rates and subsequent survival. Parish (1999b) argued that the effectiveness of marine sancuaries will dependent on which life stages are subject to density-dependent processes Post-settlement density dependence would enhance the effectiveness of marine sanctuaries, but density dependence operating on adult growth or reproductive rates could eesily reduce their effectiveness (Parish 1999b, Mange pers comm).

4.4 Spillover

4.4.1 Model Expectation

If population improvements occur within sanctuaries in the absence of fishing (one aspect of 'sanctuary improvement'), then a disparity in density and/or biomess bewwen arees inside and outside reserves will becreted. In this situation, 'dl other things being equal', therate of emigration from sanctuaries should begreter than therate of immigration into sancuaries, especially if it is driven by density-dependent processes operating inside reserves. The resulting net movement of individuds out of reseves is expected to devate densities in the vidinity of reserves and increme the availability of stock to fisheries This process and pattem is typically refered to as 'spillove' (Box 8), the first of three processes that are hypothesised to leød to the enhancement of fisheries operating outside sanctuaries As well, it can arise in other dircumstances and by other processes (sebblow).

4.4.2 Movement terms

We use the term 'trans-boundary movement' to refer to movements that takean individuad across a reserve boundary, without respect to the direction. Thetems 'excursion' and 'incursion' are used to refer to directional movements across reserve boundaries

4.4.3 Spillover elements

Thereareat lett four dements to spillover

- themovement of individuds out of reserves, redaive to movements into reseves, and the causes of those movements
- the effects those movements have on population densities outside reserves
- the reauitment to fisheries of those indi viduads that haveleft (i.e the effect they have on stock size), and
- the degreeto which fisheries areenhanced (eg. inceesed yidds).

Spillover terms

Wecan think of the exarsions as the 'process, the changes to populations and stocks as the 'patten', and the impacts on fisheries as the 'ffect'. In the literture theterm spillover is used typicaly to refer to the 'process', the 'patten' and, at lest the potential for, the 'effect' of spillover. To failitate discussion of these dements, we will usetheterm 'excursion' when focussing on the process, and theterm 'spillove' when focussing on the process and the pattem and/or effect.

In this section, we consider excursions, their causes and their density effects (i.e the 'process' and 'pattem' of spillover), and later (Section 4.12) discuss the potentia for spillover to enhance fisheries (i.e the 'effect' of spillover). Disaussion of the 'patter' of spillover will besplit with thereationship between the spillover process and dhanges to population sizes/densities dealt with in this section, and the changes to stock sizes deat with in Section 4.12

4.4.4 Process and Pattern

The process dement of spillover is usually described as the net movement rate of individuals out of reserves (net exaursion rate) as a result of, or in responseto, a density difference or gradient. However, what distinguishes spillover, as defined above, from other exaursions, is the population density pattem it produces, and, ultimaty, its effect on fisheries It is not necessary that there bea net exaursion rate or that the cause is a density gradient for there to be spillover, athough they can play an important role What is key is that excursions at leat result in changes to populations outside sanctuaries and stocks in fished arees From the point of view of the indi vidua, thekey is whether theexarsion involves recoction to ares autsidesanctuaries and/or exposureto fishing-mortality risk. For example, large numbers of individuals leaving onesanctuary (eg. a nursery habitat) and settling in another sanctuary (adult habitat) could represent a substantia net excursion ratefrom the first reserve, but those movements may havelittle to do with density gradients and would not constitutespillover, unless those individuals were at risk of being caught by fishers whiletraveling between sanctuaries In addition, it is important to beder about the timeframe within which spillover is being considered. For example, large, highly mobile, pelagic spedes will belikely to exhibit high incursion and exaursion rates within short timeframes, compared to small, site attached, reef spedies Howeve, if the latter spedies go through a developmental habitat shift then they may exhibit similarly high exaursion rates within longe timeframes

The distinction between an excursion and the process and patten of spillover, mey seem academic, given that any exarrion from a reserve would sem to atter the sizes of populations and stocks However, thetimeframe of that alteraion can vary from a few minutes to therest of the lifetime of the individual, and what the individual does will deteminethe 'effective' contribution it makes to the popultion or stock. Very short excursions (eg. to visit a dening station), would result in such a minor, transitory change in extend populations/stocks or to the individud's risk of being caught, that they would only technically constitute spillover. More to the point, themagnitude of spillover exaursions should beconsidered to bethe product of at lest three components-'rate, 'intensity and 'duration'. The 'rate issimply the number of individuds making excursions per unit time The 'intensity' could be meesured as the degreeto which the individual became integrated into extend populations or stocks, or therisk of fishing mortality per unit time The 'duration' would bethelength of timetheindividual would belong to theextend populatior/stock or would be exposed to the fishing mortality risk.

Exarsions from sanduaries can occur for a variety of functions, such as feeding, spawning or visiting deaning stations, or under a number of dircumstances, such ϖ dispersion in responseto high competition or predation, or as pat of an ontogeneic habita shift. As well, excursions can occur on a range of spatial and tempord scdes (Williams 1991), and the movement scdemay be dosely redted to thefunction of the movement. For example, an excursion to visit a deening station would usudly occur on a very different spatiad and tempord scde from the movements associted with a seesond or annual spawning migration. In addition, severd other factors have the potentia to influence trans-boundary movements (Krame \& Chapman 1999), most of which can show density-dependent variation. Some of the most important arelisted bdow.

Spedies charaderistics.

- size
- mobility
- habitat requirements
- population charaderistics
- sex ratio
- social interaction rates
- densities inside and outside reserves

Community daracteristics

- competitive interation rates and intensities
- predation rates
- availability of prey or food resources

Habita dharacteristics

- suitability insideand outside reserves
- availability of spatial resources, such as spamning sites, teritories, and shettering sites
- patch distribution outside resenes

Roberts \& Hankins (2000) suggest that thefollowing six key factors will detemine the spillover rate from no-takemarine fisheries reserves

- reserve protection (determines degree of sanduary improvement)
- reserveage (detemines strength of density-dependent forces)
- fishing pressure outside reserves (contributes to density gradients across reserve boundaries)
- organism mobility (determines potentia dispersal distances)
- boundary length (proportiond to the number of individuals that could leme the reserve), and
- boundary porosity (redted to suitability of surrounding habitas for dispersd and settlement).

We will identify four situations or scenarios that can leed to potential spillover, describethe associted spatia and temporal scdes, and discuss the factors influending the exarsion rateand the effect it hæs on ares outsidesanctuaries

4.4.5 Relocation movements

This scenario applies to site attached spedes, and probably is the one that most authors disauss first when they describe spillover. Benthic, and somemid-water spedies, in many habitats aresiteatached, meening that they occupy teritories or well defined homeranges permanently or for long periods of time (Kramer \& Chapman 1999 and references therein), the dassic examples being numerous fish and invetebrate species living on coral refs (eg. Ehrlich 1975, Sale 1980b). Kramer \& Chapman (1999) pointed out that thetraditiond view that relocations should be uncommon in strongly site attached speeies is changing as evidence to the contrary accurmultes (seereferences therein). Some of themost compeling evidence comes from numerous atificidref studies that have recorded rapid colonization of new atificia habitat by post-settlement individuals (Cliff 1983, Bohnsadk 1989, Bohnsadk \& al. 1994, Cummings 1994, Golani \& Diament 1999). Recoctions occur when these individuds leme their homesite, make a one way movement and permenently reestablish themsel ves at another site (Robetson 1988, Kramer \& Chapmen 1999), which may be in the same habitat patch, an adjacent patch or afor-distant patch (Williams 1991). We recognizetwo types of relocations First, reccations by individuds may occur in responseto density-dependent processes, such as high leveds of competition, predation or disturbance, and/or low resourcelevels Such processes may be extreme on an dosol ute scde (i.e individuads moveto escapefrom a poor environment), or on a retaive scde (i.e indi viduals recocte to take advantage of a better environment). Wemight term these 'pasture relocations-leaving a pasture because it is 'brown' (and, hopefully, finding onethat is less 'brown') or moving to another because it is 'greene'. Second, many spedies undertzke ontogenetic shifts in resource use that typically involve a relocation to another habita (references in Car \& Reed 1993, Robets 1996, and Robetson 1998); we will call these 'ontogenetic reloctions'.

How are excursions assodited with 'pasture recations' affected by the factors listed in the dot-points above? We consider a simple scenario in which a sanctuary is established in an area of uniform fishing pressure, population density and habita, with thelater two having been negatively impacted by fishing. If we assume that there is d ways some leve of pasturerecoction going on in the population, then there would be nomina rates of excursion and incursions. Because these movements result in resettlement they have the potentia
to change population sizes, and, therefore, we can refer to theexarsions as spillover. At first, we would have no reeson to expect that therates of theexaursions and incursions would be different on the average Therefore, the net trans boundary movement rate would bezero and there would be no net spillover. Because every excursion would be bal anced by an incursion, on the average the excursions would have no affect on population densities outside reserves However, severd factors could alter this ided ised scenario over time First, we can reesonably assumethat densities would increse with in the sanctuary due to the process of 'sanctuary improvement' (see above). Second, if we assume that fishing pressure outside the sancuary remained a significant source of mortality for the population, then we would expect to see a density difference established between inside and outside the reserve This pattem done, assuming the random diffusion of individuds, or something approximeting such a process, would beenough to constitute the process of spillover, a more individuds would move out of the sanctuary and resttle outside on the average than would do thereverse (Bennett \& Attwood 1991, Raitin \& Krame 1996, Krame \& Chapman 1999).

We would expet this simple random-diffusion process to beenhanced once densities inside sanctuaries reeched levds at which density-dependent processes affecting movement probabilities become appreiable (Krame \& Chapmen 1999). At high densities we would expect a shortage of resources such as teritories, shelters, mates, breeding sites, and/or food to result in an increese in competitive interadions. In addition wewould expect that predator numbers would increese in responseto greter prey numbers and generd improvements to the environment. Both processes would increme mortality rates and reduce the quality of the habitat, which would induce more individuals to re ocate There ationship between density and the relocation rate would depend on the speies, communities and habitats invol ved. Ault \& J ohnson (1998) suggested that a common responseto resource competition or predation is emigration to arees with lower competitive or predation pressure It is possible that density-dependent pressure would besufficient to induce indi viduals to re ocate, but it is reesonable to expect that the availableatenatives for relocation would aso ffect the process It is this viev that results in the emphasis given to ne spillover by many authors. Assuming that ares outside sanctuaries are more suitable (eg. more resources, fever predators), relocation could besen to be a responseto high densities insidesanctuaries and the density difference between arees insideand outside sanctuaries Again, movements would be expected to occur in both directions, but because of the density gradient and associted suitability differences, theexaursion rate would begreter than the incursion rate, creting a net spillover rate

Two important factors, habitat quadity and predation risk, could affect this process strongly. First, the assumption that arees outside sanctuaries would be more suitablemey not betenable Although it is most likely that there would lower densities of competitors and predators, given thefocd-spedies density difference, that does not guaranteethat the arem outside a sanduary would be moresuitable The suitability of arem surrounding reserves for thesettlement of recocting individuals will depend on the inherent quadity of habitats. For example, a sanctuary established on a set of cord refs would provide idea habitat, at lest in time, for a range of cord-ref spedies If the sanctuary was surrounded by non-reef habitat, there would not be suitable habitat for relocating cora-ref spedies to settle neer to the reserve, thus fording those indi viduals to travel long distances to find suitable habitat. Even if inherently suitable habitat was located dose to a sanctuary, it may have been degraded by fishing impats, thus lowering its suitability. The avoidance of low-suitability habitats outsidesanctuaries could leed to lower rates of spillover than would be expected given differences in the densities of the foca spedes (Robets \& Pol unin 1991, Rowley 1994, Kramer
\& Chapman 1999). Second, the processes of movement and resettlement themsed ves are likdy to expose relocating individuals to inceed predation risk, the largest component of which may often befishing mortality. If indi viduals haveto cross habitats of significantly higher predation risk than they experience within sanctuaries, or if settlement outside the sanctuary exposes them to higher predation risk than it would within the reserve, then the likelihood of recation would beeven lower than expected given the differences in habitat quality and focd-species density (Kramer \& Chapman 1999). A similar phenomenon could occur if the nerest suitable recoction habitt patches were a long way from a sanctuary, thus creting a large energetic cost to recoction or a significant total predation risk, even in the situation where there was only a sightly higher instantaneous predation risk.

When applied to non-teritorial speies, this balance of factors is commonly represented with the use of frequency-dependent 'ided freedistribution' modds (Frewell \& Lucas 1970). In these modes individuds select or choose the habitat patch with the highest quadity. Thequality of a patch is detemined by all thosefactors affecting the expected fitness for that individua, which, in turn, is detemined primaily by its expected survivorship and reproductive capaity in that patch. These expectations are assumed to be a function of the interaction between the individua's phenotype and environmental factors such as habitat quality, predation risk, food availability, density of competitors (especially conspedifics) and potentiad mates If we consider a hypotheticd situation in which thereare two patch types that differ in ther 'intrinsic quality', onehigh and theother low, the modd predids that at first al individuds introduced to this environment would choose to settle in the high-quality patches Howeve, as individuals enter the environment they alter thequality of patches they occupy. Increes in density within a patch will reduce its 'relised quality' through severd processes, such as reduaing the availability of essential resources and creeting competition for those resources, increesing cannibalism rates, atracting more predators or paraites, increesing diseme infection rates due to crowding, or degrading the habita. Thus, as the density of individuals in the preferred patch type incres, its realised quality decees until eventually it reaches that of the 'low quality' patch type At that point individuals would enter both patches or move between patches in such a manner that the quality, i.e fitness expectation, remained roughly equal. Thus, thechoice of patches is dependent on the frequency distribution of individuds in the patch types, which controls the relised patch quality or suitability through within-patch density-dependent processes

We can see the pardld between this modd and asituation in which an environment has fished arees and protected sanctuary ares-high ('inside') and low ('outside') quality patch types, reepectivedy. Thepatch types differ in quality, assuming they do not differ intrinsically, because of 1) the destructive effects of fishing reduce habitat quality outsidethereserve, and 2) mortality rates are greter outside reservearess due to fishing. Thus, much like the modd above we would expect individuals to settle inside reserves in preferenceto outside, until such timethat densities had built up to the point that outsidearess would bejust as attradive This suggests the establishment of an equilibrial state (a prediction of simple 'ided freedistribution' modds) in which the movements between patches areequal. Therefore, at equilibrium there would be no ne spillover, assuming that an individuds impatt on patch suitability was the same in both patches Furthemore themode predids that as the system progresses toward equilibrium there would bea net incursion rateas individuals move from the low quality to high quality patch, or what wemight term 'spillin' (note, we do not need to draw the distinction between 'potential spillin' and 'realised spillin' becauseit can only affect population densities inside reserves, affecting stock sizes or fisheries has no meening inside reserves).

The 'ided freedistribution' modd does not seem to beableto account for the process of spillover without theindusion of additional factors. Themost important missing factor is the ongoing effect of fishing on populations outside sanctuaries If we assume that 1) there are habitas remonably doseto sanctuaries that are intrinsically suitable 2) those habitas have not been too severely dameged by fishing, 3) fishing has not removed necessary food resources, 4) individuals that have left sanctuaries are replaced by rearuitment from within the reserve, and 5) fishing mortality keeps focd-species densities low; then we would expect to see a steødy-state net spillover rate in response to density-dependent pressures within sancuaries

The first assumption is not unreesonable as many reserves are established within a matrix of simila, suitable habita. The second and third assumptions will hold for somesituations but not others. The fourth assumption is required to avoid thesituation in which an exaursion is balanced by an incursion, as predicted by the mode. In that situation, there would be no net change in densities outside the sanctuaries and, therefore no spillover. This assumption is not unreesonable given that we expect sanctuaries to trend towards high productivity, rearuitment, and growth rates Thefifth assumption is logicd because we were considering the situation in which fishing pressure had been strong. The evidencesuggests that individuals that leave sanctuaries may beremoved rapidly by fishers who lem very quidkly to concentrate their efforts in the immediate vidinity of sanctuary boundaries-an activity known as 'fishing the line' (Davis \& Dodrill 1989, MacDiarmid \& Breen 1993, McClanahan \& K aundaArara 1996, Pi\& \& Rijnsdorp 1998, Robats 1998a, Walls 1998, J ohnson \& al. 1999, Fogaty \& al. 2000, Roberts \& Hankins 2000, McClanahan \& Mangi 2000). Thus, it is possible that a frequency-dependent habitat sedection process as represented by 'ideed freedistribution' models, coupled with the effects of fishing mortality outsidesanctuaries, may explain the process and effect of spillover in the cose of 'pasture reloctions'.

We can expect the rate of spillover to vary among species, depending on their mobility and innate propensity to relocte In generd, the balance of density-dependent pressures within sancturies and the attradiveness of $\begin{aligned} \text { rees outside sanduaries will bedifferent for different spedes Species that are highly vul nerdble to }\end{aligned}$ predation whiletravel ling between patches may have very low reloction rates, even when experiencing intense density-dependent pressures and/or higher quality habitas are availabl e neerby. The calculation for teritoria speies must indude the additional cost of acquiring a teritory in the new patch, a process that can involve energetic costs and therisk of injury. On theother hand, the saturation of sanctuary arems with teritories at high population sizes could forcejiveni les to recote to other ares to acquireteritories, thus increeing the spillover rate beyond what it would befor a non-teritoria spedies (Paddadk \& Estes 2000). Spedies with low mobility may have lower spillover rates becauserd atively long-distance movements are energetically costly, risky and/or dependent on certain substratetypes
Spillover should be considered on an age/sizespedific baris. As described erlier, spillover is usually defined in tems of a net excursion rate An implidt assumption of such definitions is that the ne spillover applies to a given speeies or population and that the meesure of spillover is numbers of individuds. This view is simplistic because it impliditly describes the movement of a homogeneous pool of individuals. In fact, during the process of senctuary improvement, those individuals emigrating from sanctuaries may be very different than those immigrating into sanctuaries Theemphasis on the ne excursion rate of al individuds can be miseeding. For example, imegine asituation in which there is a high exaursion rate of prefisheries rearuitment juveni les from a scturated' reseve in seerch of teritories, and a low incursion rate of large mature indi viduads attrated to the reserve because of its undamaged habitats and absence of fishing pressure Clealy,
there would be a net exaursion rate, but it is not obvious that it would constitute spillover. There would be devated population densities in fished arees, but thereactually would be a decreme in stock size (i.e numbers of individuals that have rearuited to the fishery). Even if the juveniles were large enough to have rearuited to the fishery, it is possible that their value would beless than therdaively smal number of large, high value individuals that were lost to thefishey (i.e stock biomess would have dedined). Indeed, spillover is expected to be a benefit to fisheries in somesituations (eg. severe overfishing), predisdy because sanctuaries have the potentia to produce a re atively steedy supply to adjacent fisheries of large high quality individuals, which usually cannot be caught in fished arees avay from sanctuaries (Plan Devd opment Team 1990, Bohnsack 1996b, J ohnson \& al. 1999; Section 4.12). Thus, spillove in its fullest meening may be best thought of a the movement of individuals from senduaries to fished arees that increes the availability of stock-t-ageto fisheries

Spillover will be influenced by the dispersd distance of individuals undetaking a 'pasture re oction'. For a given environmental situation (eg. density gradient and habitat suitability distribution), dispersd distance should vary with the size and mobility of the speiedindividuals in question. Highly sedentary spedies such as gatropods are likety to have much shorter dispersal distances than mid-water fishes, for example For spedes with equivdent mobility, dispersd distance is like y to be proportiona to body size or homerangetteritory size, notethat body size is highly corre ted with homerange or tenitory size (Kramer \& Chapman 1999). In generd, the areaver which sanduaries produce a spillover patem or 'density halo' will beafunction of the habitat distribution, fishing intensity, species mobility and size, and thesize of theindividuals that are dispersing.

The interaction between dispersd distanceand the size and shape of a sanctuary is a so believed to influence spillover rate (Robets \& Polunin 1991, Rowley 1994, Munro \& Pol unin 1997). For a species with a dispersd distancethat is a small fration of the sanctuary diamete, it would be only those individuals very neer the boundary that would have the potential to recate outside the reserve, and thus constitute spillover. Converse y, for a highly mobil espedies, or one with a large homerangetteritory size redtive to resevesize, indi viduds over a much larger portion of the reserve would be potential spillover dispersers. Thus, spillover rates for highly sedentary speies would be expected to vary very little with sanctuary size over a broad range of sanctuary sizes (Rowley 1994, Bohnsack 1996a), but would increse sharply for highly mobil espedies as reservesize decresed below a threshold retaed to their home rangesize (Rowley 1994, Auster \& Maltesta 1995, Krame \& Chapman 1999). For any given spedes, the large theperimete-to-arearatio, as a result of a complex shape, the large the proportion of individuds that would leeve the sanctuary a a result of relocation dispersd (Plan Development Tem 1990, Rowley 1994). Howeve, Roberts \& Havkins (2000) pointed out that sanctuaries with large interiors would providebetter protection and, therfore achieve afaster rateand higher degree of sanctuary improvement, which, in time, would tend to increse spillover rates Finally, spillover rates would dso be affected by the interation between shape and the distribution of surrounding habitas. A long, lineer sanctuary on a fringing ref would belikety to have substantially different spillover characteristics compared to a large patch ref within a matrix of other such refs (Munro \& Polunin 1997). Similarly, spillover dharateristics will be influenced by the location of the sanctuary in reation to suitable habitat patches, or the inteface between suitable and unsuitable habitat (Robets 2000, Roberts \& Hawkins 2000).

As described above the spillover of targeted sized aged dases would beexpected to be influenced by denitydependent processes, which would increese in importance as senctuary improvement progressed. Therfore, it is resonable to expect that spillover charateristics would change ove time ar a sanduary devd ops Thetimeit would take before density-dependent processes would careasignificant inceere in the spillover rate would depend on factors affecting the growth rates of individuds, reanitment rates therde of increse in population density, and habita differences inside and outside sancuraries It could occur within months or beddayed for yers \propto populations and habitds recover from overishing. Russ \& Alcda (1996b) provided severd simple modds for dhange in fish density ove timein senctury and non-senctury arees They considered the possibility of liner or exponentid populdion growth rates both within and outside a senctury, which, in combination provided four modds Dła from their sytem (Sumilon and Apo Isand Reserves, Philippines) supported a modd showing a liner increse within the reseve and an increme outside the reserve that only became apparent yers İf. These results are consistent with the assumption that spillover would bedriven by density-dependent processes within the reserve that would not becomeimportant until densities had built up to ner carsing-capaity levds
Many spedies show ontogeneic shifts in resourceuse assoited with changes in habita or diet (seeRobets 1996, Auste \& Shackel 1997, Robetson 1998, and references therein). Classic examples are the meny ref speries that settleal lavæein caatd habitas such ∞ segrass beds or mangroves, and laer ajiveniles migrate to refs where they complede devdopment and spend their adult lives, athough there is some question about the prevdence of this pattem (Parish 1989, Williams 1991, Robets 1996). These movements constitute the second typeof relocation dispersd-wetem theee 'ontogentic redocations. 'Ontogeneic reloctions have the potentia to produce much highe spillover rates than is the cæe for 'pature re octions. Because these movements are driven by the devdopmenta process of individuds, they may not be as strongly reded to density-dependent processes We sugget that the exarsion rate will be most trongly influenced by the recruitment rate to the senctuary and suitability of habitas for thesurvival and development of juveniles J iveniles will leave the nursey habitat when they have reached the appropriatestage of development, athough it is possible that thetiming may be effected by density-dependent processes Theexarsion raeshould beafunction of the number of jivenile in the sanctuary, and, therefore influenced by the number of reanits settling in the senctury, their growth rates and survivd rates As will be discoussed l\&er, reanitment rates will depend on the condition of populaions in the rees, the placement of reserves, thequality of reservehabitas, and the predaion rates on newly settled lavee Although the recuitment of cord-ref fishes was once thought to be a lagdy density-independent process, it is now recognized that the influences of habita quaity and predaion on settling and nevly settled rearuits can bea densitydependent process in somedraumstances Furthemore, it is likey that in meny situations the survivd and development of juveriles is density dependent. Thus, it is quite possible that theexaursion rate from reserves etablished on nursery grounds will beinfluenced by therdative importance of incees in predator densities and habitd improvements, both of which would result from the process of 'reseve improvement'. Popultion improvements are likey to proceed more rapidly than habita improvements (Robets \& H awkins 2000). Therefore, it is possiblethat excursion rates would actually dedinefor a period of timeater sanduary etablishment æ predator densities incred, the dedine would then sow and eventualy increme habita quadity incres became important. Nonehdess, sencturies established on nursery habitas are expected to havevery high rates of spillove a a result of ontogeneic recoctions (Rowley 1994, Krame \& Chapman 1999).

Theextent of spillover of this type will depend on the distribution of habitas In some cases, nursery and adult habitats may be adj acent to each other, but in others they may be 10's or 100's of kilometres apart (Parish 1989). Under cettain dircumstances ontogenetic recations will not creete spillover, such as when both habitats are within asingle sanduary. Similaty, spillover may be reduced if both habitas are in separde senctuaries In this situation, individuals will beleaving a senctuary area and relocaing to another senctuary area The potential for a spillover effect is transient, and dependent on the vul nerability of the indi viduads to being caught by fishers whil e in transit. It is concei vabl e that the move could be mede during a period when there was no fishing effort (eg. at night), in which cose there would be no risk and, therefore, no spillover despite a net excursion ratefrom the first sanctuary. It is more likely, howeve, that because of responses of fishers to spillover that these individuals will experience considerablerisk, assuming that they arelarge enough to betarged.

4.4.6 Cyclic movements

The second scenario we consider is that of regular movements out of and badk into sanctuaries that do not involverdocation. Somespedies will exhi bit occasional or cydicd movements among habitat patches for the purposes of deening, feeding, or reproduction (eg. references in Hobson 1973, Parrish 1989, Hutchings 1996, and Robets 1996). Return-trip movements will differ in their degree of regularity, varying from highly regular (eg. feeding excursionstimed to tida, did, lunar or seesond cydes, eg. Hobson 1973, Ogden \& Quinn 1984, Williams 1991, Holland \& al. 1993, 1996, Hutchings 1996, Robets 1996) to sporadic or random (eg. excursions medeto expl oit ephemerd feeding opportunities, Kramer \& Chapmen 1999; or to visit deening stations, Samoilys 1997). These movements will vary in duration from minutes (eg. deening station visits), to hours (eg. tidd feeding), to days or weeks in the coee of migratory movements associated with reproduction.
As with recoctions, we would expect thesemovements to beinfluenced by environmental factors In many ces, excursions for the purposes of feeding or reproduction may be obligatory because of spedific habita requirements or the use of traditional spamning sites In other cases, density-dependent pressures may increme the likelihood of individuals making thesetypes of movements. High densities vithin sanduaries may be associted with increed parasite loads, thus requiring more frequent visits to dening stations, and, perhaps, visits to more distant stations to 'avoid long queues. Food resources may beless available at high densities, which would crette the incentive for indi viduals to forage bejond their norma homerange Howeve, the exaursion rate assoided with spaming may begreatest at low densities, as individuds have to seerch more widdy for mates or spawning aggregations. Of course, as before, the distribution of habitats around reserves will influencean individua's stendency to meke habitat-dependent exaursions.
We would dso expect these movements to be influenced by the intensity of fishing outsidesanctuaries As with all types of exarsions, intensefishing pressure will restrict thetendency of individuds to leeve reserves, assuming that they are capable of detecting and responding to fishing-mortaity risk. In addition, effects of fishing on habitas will havean influence on this type of spillover. Reductions in food/prey resource leves or damage to the habitt characteristics necessary for spamming will at as a disincentive to individuals that might otherwisemekeexarsions.

Again, body size will affect therate and extent of spillover, at leet with respect to feeding exarsions The increesed energy demands of large spedies/individuals will requirelonger foraging exarsions to meet demands, on the average In addition, predation rates may beinversely retaed to size, thus making therisk of long excursions less for large indi viduals, although the opposite is likely to be true with respect to fishing mortality. The interation between body size and sanctuary size will aso influence spillover. The likedihood that an individud's feeding or spawning movements will result in an excursion from the reserve would be expected to deareme with sanctuary size In large sanctuaries, it would be only those indi viduads living neer the boundaries that would belikely to makeexcursions In addition, the shape or perimete-to-arearatio of the sanctuary will affect theexaursion rate The absol ute number of individuds meking an excursion would inceese with the length of its perimete, but the proportion of reserveindividuds making excursions would incremeæ a function of the increesing perimete-to-arearatio.

It is important to ask whether cydic movements will produce spillover. Such movements would not represent a net movement when integrated over periods longe than a single cyd eand, therefore they might not appeer to crette a potential for spillover. However, during each trip there is the potential that the individuad 1) will contribute to the dynamics of populations/stodks outside sanctuaries, and 2) will beexposed to the risk of being caught by fishers. Therefore cydic movements have the potentia to produce substantia levels of spillover.

4.4.7 Overlap movements

The third scenaio arises because fine scele, short-tem movements by indi viduds whose home ranges or teritories straddle sancuary boundaries will result in pat of their timebeing spent outside the sancuaries (K ramer \& Chapman 1999). For a given individua, the probability that its home range or teritory straddles a reserve boundary would increse with its home rangelteritory size, which is strongly corredeed with body size (eg. Sale 1978, Goeden 1978, Larson 1980, Leum \& Chot 1980, J ones 1984, Samoilys 1997, DeMarini 1998, K ramer \& Chapman 1999), or with inceesing perimete-to-arearatio, but would deceese with increeing sanctuary size As sanctuary size and perimeter length incees or homerangefteritory size deceeses, the number of homeranges or teritories straddling boundaries will increes and therefore the number of individuads spending pat of their timeoutside the sanctuary will increse Thespatial extent of this form of spillover would berdatively quitesmall. Nonethess, the spillover ratecould be high unde cetain circumstances If fishing intensity was high right up to sanduary boundaries, then we could expect indi viduals straddling the boundaries to beremoved rapidly. Assuming that sanctuary productivity and densities were high, individuds lost at the boundaries would bereplaced from the interior, thus maintaining the spillover. Thestrength of this effect (inteior replacement) would increme with sanctuary sizeand the sizeto-perimeter ratio. In small sanctuaries, it is possible that the removal of boundary individuals could have a negative affect on sancuary improvements, draining the reserve of asignificant portion of its productivity.

4.4.8 Migratory movements

Highly mobil espedies such as pelagic, nomadic or migratory speies, may not beexpected to stay in sanctuaries long enough to build up their numbers, and, thus, would receivelittleor no protection (Parish 1999b). Their distributions are not expected to bered ted to sanctuaries and, therefore, spillover is not an issuefor these speies. Barett \& Edgar (1998) suggeted that this may apply to many soft-bottom
fishes as well. Although, they may spend timein sanctuaries and dross sanduary boundaries, theexcursion rate would not be directly dependent on thesanctuary. This is not to argue that sanctuaries do not have the potential to benefit highly mobilespedies (however, seearguments in Robets 1998a Robets \& Hankins 2000), but it would belike y to occur through other mechanisms. For example, Robets has argued that migratory spedes may benefit maximally from sancuaries established at sites where they are at greatest risk of being caught by fishers (eg. geographic bottlenedks or spawning aggregations). Populations protected in this manner would be expected to maintain larger sizes, and, therefore, thenumbers of individuds passing through the sanctuary would begreter than if the reserve did not exist. Although, this does not stridtly constitutespillover, as defined dbove, it would havea similar effect on fisheries, which would beexpected to take advantage of the higher densities doseto the sanctuary and concentrate ther fishing effort dong sanduary boundaries Because themost important fundion of the sanctuary in this scenario is protection of thestock for pat of its annual cyde, it mey be thesize of the reservethat is citical to its success and, therefore, to its 'spillove' rate In some cases, habita quality may a so be of importance, such as when the sanctuary is sited on a spamming ground.

4.4.9 Sanctuary effect

Weseethat the amount of spillover arises from severd processes and is dependent on a variey of species or indi viduad-speeific and environmental fators (Holland \& al. 1993, Rowley 1994, Holland \& al. 1996, Zeler 1997, Kramer \& Chapman 1999). In generd, we can expect that spedies that occoupy well defined teritories or home ranges (seereferences in Kramer \& Chapman 1999), and do not tray beyond their boundaries, or have very limited mobility (eg. gadropods) will show the lowest degree of spillover. Spillover is expected dso to bea redivel y unimportant process for mid-water and palagic species, espedialy those that are migratory or nomedic Spedies of intermediate mobility may generate the gretest amount of spillover-showing enough site attachment and spending enough time within sanctuaries to benefit from reserve protection but moving far enough at sometimes or lifestageds) to have a high probability of leaving the sancuary (eg. Davis \& Dodrill 1989, Kramer \& Chapman 1999, Parish 1999b, McClanahan \& Mangi 2000). In generd, therate and extent of spillover will increme with body size and homerangeor teritory size Environmental factors, such as the intensity of density-dependent processes operating inside sanctuaries, damege to resources and habitas caused by fishing outside sanctuaries, and thesize and shape of sanctuaries will all have a strong influenceon spillover.

Despite the potentid importance of spillover, a lees locally, very few studies have attempted to detect or meesure the rate of spillover from reserves (Russ \& Alcda 1989, Attwood \& Bennett 1994, Rakitin \& Kramer 1996, Kramer \& Chapman 1999, McClanahan \& Mangi 2000; seereview in Section 5).
As described, spillover is expected to result from, and beenhanced by, sanctuary improvement, at leest in some situations. However, it has the potentia to feed badk on the process of sanctuary improvement. Spillover will tend to reduce the build-up of densities within reserves, perhaps as pat of density-dependent processes control ling population size within the reseve (K ramer \& Chapman 1999). In cetain dircumstances this effect could bestrongly accentuated. For example, high fishing pressure on alarge, high-mobility species focussed dong the boundaries of a sanctuary, could effectively remove most spillover individuals and reduce densities well inside of the sanctuary (Kramer \& Chapman 1999). This situation could prevent the build-up of such spedies in sanduaries and, by removing those individuals with the greetest reproductive output, diminate the potential for the sanctuary to enhancefisheries through lavd export (seebedow; Rakitin \& Kramer 1996).

4.5 Increased reproductive output

4.5.1 Model Expectation

The generd process of 'sanctuary improvement' should result in inceesd numbers/density of reproductive individuds, and an inceeme in the averagesize of those individuads (see above). Further, sanctuary improvement should promoteor result in an incremed reproductive activity, incremed reproductive output by larger individuals, and inceed reproductive efficiency (Figure 1-Box 9), ∞ discussed below, all of which should contributeto an increse in the reproductive output of the sanduary on a per-area or per-individual bars (Box 10).

4.5.2 Effects of Fishing

Fishing pressure can impar thereproductive peformance of individuds and the reproductive potentia of populations in a number of ways. Becausereproduction does not occur until individuals have reeched a certain age sizeand/or condition, ovefishing can severdy reduce thesize of the spavning popultion eithe by removing mature individuals and/or reducing the number of individuds rearuiting to the spawning population. In extreme coes the size of the spaming stodk is reduced to the point at which recuits become limiting to population growth ('recouitment ovefishing').

Fishing mortality can alter the charaderistics of the spamning population. For example Grimes $\&$ al. (1988) found that during a period of rapid growth of a tilefish fishery, which resulted in a 50% reduction in population size, meles spammed at significantly smaller sizes and younger ages. Reduction in 'age at-maturity and ‘size at-maturity' is a common feture of heavily exploited fish stocks (Trippd \& al. 1997). To some extent, this and other compenstory effects (eg. increme in size spedific feaundity), which are expected to operte in populations subject to density-dependent control, will limit the reduction in reproductive potential caused by ovefishing (Trippd \& al. 1997, Mange pers comm). For example orange roughy inceesed in meen feaundity by 20% when popul ation size was reduced by 50% (Kosow \& al. 1995).

In many speies (eg. groupers, labrids and scarids), individuads undego a sexual transformation at some poin during devel opment (sequentia hemaphrodism). The point of transformation may be detemined by retaive size of individuds and/or thesex ratio in the population (Ross 1990). In severdy overfished popul ations significant numbers of individuals may be caught before they reauit to reproductive stages of the population or before they have a chance to undergo asex change Theremovd of large indi viduds may have a much larger fffect on productivity in protandrous speeies (males becomefemiles) than in protogynous species (femeles becomemes) (Cart \& al. in press). If transformation is redtivel y fixed and dependent on size or age (endogenous control), then over-fishing of larger individuads (older age dases) could produce a significant shortage of onesex and highly skeved sex ratios (Robets \& Pol unin 1991, Russ 1991, Robets 1995b, references in Jennings \& K aiser 1998), which mey inhibit normal reproductive behavior and limit the reproductive potential of the population (Rowiey 1994, Shumway 1999). On theother hand, if transformation is soially dependent (exogenous control), as may bethe case in groupers (Shapiro \& al. 1994), then remova of the larger sex (miles in this cese) would inducetransformation of femeles, thus ating to compenste the effect of fishing on thesex ratio (Russ 1991, Fererra\& Russ 1995, Sluka \& al. 1996b, Sluka \& Sullivan 1998) and stabilise reproductive potential. Noneheless, intensefishing still can producedramatic changes in the
sex ratios of these spedies (eg. Bets \& Friedlander 1999). These changes in the availability of onesex have the potential to lead to gametelimitation (eg. sperm limitation in groupers, Sluka \&al. 1996b, Suka \& Sullivan 1998) and, therfore, to rearuitment overfishing and population collapse (eg. Caribbeen grouper, Robets \& Polunin 1993).

The dlocation of non-maintenance resources in individuds typically shifts from growth to reproduction as they age (Edwards 1984). In the ceæe of spedies with indeteminate growth, size and feaundity increes continuously a the individual grows olde, athough at a decreaing rate (i.e growth and fecundity aymptote). Thereproductive output of many species incremes disproportionate y a size increes (Plan Development Temm 1990, Robets and Pol unin 1991, MacDiarmid \& Bren 1993, Rowley 1994), which meens that the proportiond contribution of larger (older) individuals to the reproductive output of the population is greeter than their proportiond contribution to the population's spamning biomess For example, the per-unit-mess fecundity of alarge (12.5 kg) red snapper (Lujanus campenanus) is 18.7 times greter than that of a smal individual ($1.1 \mathrm{~kg}, 11.4$ times smaler) (Plan Deve opment Tem 1990). Robets \& Pol unin (1991) provideseverd similar examples of fish species in which fecundity scdes to a power of body length. In addition, it appers that larger individuads spanm more often and for longer periods of time(Roberts \& Havkins 2000). Therfore, theremoval of mature individuals can havean effect on reproductive output that is disproportiond to the biomess of those individuals.

Reproductive adivity dso can beredted to population density. A disproportionatereduction in reproductive pefformance at low popultion sizes or densities is known as the 'AlleEffect' (Alle 1931); strictly speeking it is the per-capita rate of inceæe in the population that is reduced (Courchamp $\&$ al. 1999). The reduction in pefformance can result from reduced reproductive ativity and/or efficiency at a given leve of ativity. At low population densities, spawning activity may be disproportiontely low, perhaps becauseencounter rates are too Iow (mates may be difficult to find), densities aretoo low for sufficient sodid interaction to ocaur, or sex ratios are too skewed. Thus, reduction in population size by ovefishing may put the population into a density- or demographic-state where recovery is unlikely. Above the AlleEffect threshold spawning ativity would be expected to increme and reach its maximum potential at intermedi tedensities, but then dedineat very high densities due to inhi bitory sodid or spedes interations In many spedes, reproduction is patially or wholly dependent on theformation of spamming aggregations, making those species highly susceptible to fishing (Hutching 1995, Roberts \& Hawkins 2000), espedially given that fishers are highly skilled at targeting such aggregations (J dhannes 1998b, Parrish 1999a, Dayton \& al. 2000).

For speeies with extemal fetilistion, the density of reproductive individuads or density of spamning aggregations may bethe most aritica fator detemining whether and how much reproduction ocaurs (Denny \& Shi bata 1989, Levitan 1995, Mchane 1995, Styan 1998; however, see Yund 2000). Because dispersion of gametes occurs in a threedimensiond environment, fetilistion rates in broadcatt spawners should, all other factors aide dedine disproportiontely as the density of spawning aggregations dearemes and the everage distance between individuads incress Severd empirica studies, mostly of invetebrates, have found fetilization success, or retted variables, to be dependent on density of gametes and/or spawners (eg. Pennington 1985, Prince \& al. 1988, Levitan 1991, Levitan \& al. 1992, Trippd \& Neilson 1992, Shepherd \& Brown 1993, Andre \& Lindegath 1995, Levitan \& Petersen 1995, Babcock \& Keeing 1999). Not al studies have detected this pattem (eg. Petersen \& al. 1992, and Robetson 1996), and Yund (2000) pointed out that fetilisation rates aregenerdly higher than expected. Reproductive fallure due to poor fertilistion
success resulting from low spawning densities may be responsible for reauitment failure, and possible popul ation dedines, in ovefished free spawning spedies (eg. Shepherd \& Patington 1995).

Fishing adivity may crete a source of disturbance and stress for fish, produing behaviord effects in indi viduals that lower their reproductive output (Robets \& Hawkins 2000). Atlantic cod stressed in thelab to simulte the affects of traming disturbance were found to inititefever courtships, to have abnormal courtship behaviour, and to produce more abnorme lanæe(Morgan \& al. 1999).

Finally, habitat quadity may dedine in responseto fishing (eg. Collie $\&$ al. 1997). Given the wall established redtionships between habitat and community characteristics, eg. structural compleity and species-diversity (seereferences in Russ 1991, Robets 1996, J ones \& Syms 1998), it is not surprising that habita degradation may have detrimental impacts on reproduction (Hutchings 1995, Shadkel \& Lien 1995); see Setion 4.7 for further disaussion.

4.5.3 Sanctuary Effects

With the establishment of a sanctuary in an areathat has been subject to significant fishing pressure, we would expect to see the process of sanctuary improvement taking place, which would leed to a reversd of most of thefishing effects described above Reproductive output would be expected to increese on a per-area or perindi viduad basis because of incremes in the men size of mature indi viduds, increes in agelsize t-maturity, increes in the amount of spamming activity, incees in fetilization efficiency at higher spawning densities, improvement in sex ratios, reduction or dimination of AlleEffets, and spamming habita improvements (Dugan \& Davis 1993, Quinn \&al. 1993, Rowley 1994, Dayton \& al. 2000). It is possible that these changes aso could result in an increes reproductive output per unit timeper individual. Total reproductive output would increse due to these effects and the increed number of spaming individuals in the sanctuary (Edgar \& Barett 1999). Dugan \& Davis (1993) argued that no-take reserves may be more effective than traditiond fisheries controls at protecting spamning biomess, and, therefore, stabilising fisheries yidds by preventing rearuitment ovefishing. Further, they argued that this effect will beaiticd in theface of naturd sources of variability (eg. poor recruitment yerrs), catatrophic events (eg. largescde dimatefluctuations), or human impacts (eg. management erors). Dayton \& al. (2000) argued that, for many spedies, spawning aggregations are essential to reproduction and, therefore thepotential for reserves to enhance fisheies reying on such species is dependent on spawming sites or habitats being ind uded within reserves (Rowiey 1994, J dhannes 1998b). These effects would be most cetain to ccaur in theshort- to medium-term in arees where populations had been ovefished. It is possible that if fishing pressure had not been intense, or as recovery continues, that density-dependent processes would limit incees in themen size and reproductiveoutput of individuals within a sanctuary (Mange pers. comm). The incremein reproductive output in no-take reserves is responsible for the second major process that is hypothesized to leed to fisheries enhancement-'Iarvd export'.

4.6 Larval export

4.6.1 Model Expectation

Most marinefish and invertebrates have a planktonic dispersad phæe Marine sanctuaries will be exposed to cceen currents of various types operating on various scdes, which will result in the export of at leest some of the gametes, fetilised eggs and/or lavæe produced within the sanctuary to arems outside the sancuury. This process, which has been called 'laval export' (Figure 1-Box 11), athough it technically refers to the net export of lavæs, spores, eggs and/or gametes, is believed to have the potential to increme the size of land pools, the numbers of reanuits to stocks and enhance fisheries In this section, we examine the process of 'land export' as defined here, and leave the consideration of the fate of exported lavæand their potentid to enhance populations and fisheries to later (Section 4.13).

Thetem 'laval export' has neither been carefully defined in the literture, nor deerly contrasted with 'spillove'. First, we note that thetem has usually been used to refer to the net movement of eggs and lanæe from sanctuaries to fished arees, and has often ind uded the processes that would be responsibl efor those lavæe contributing to fisheries enhancement. In the interests of darity, we use theterm simply to refer to the movement of reproductive propagules from reserves to arees outside reseves Second, we suggest the use of settlement as theevent that allows for a der conceptual separation of the processes of spillover and land export. In our viev, 'larvd export' should cover the largely pasive movement of presettlement reproductive propagules or individuals from reserves, in contrast to 'spillove', which is the largely di rected movement of post-settlement indi viduals from reserves In those coses where the process of settlement cannot be determined, or is not applicable, then a devdopmental transition, such as the transition from the laved to juveni lestage, could be used to dassify emigration as being 'laval export' or 'spillove'.

4.6.2 Sanctuary Effects

As described in the previous section, MFSs have the potential to producesubstantia quantities of reproductive propagules Whether, those propagules are exported from the sanctuaries will depend on a variey of factors (Rowley 1994, Tilney \& al. 1996). Theinteraction of the spatial characteristics of a sanctuary (size, shape and location) with the spatial and tempord aspects of thehydrodynamic environment will have alarge impact on themovement of propagules and, therefore, on the megnitude of thelarvd-export process (Car \& Reed 1993, Rowley 1994, Tilney \& al. 1996, MdManus \& Meñez 1997, Robets 1997a 1998b, Dayton \& al. 2000). Wate movements or currents at severd scdes have the potential to play a role in the export of lavæe, from very smal-scde phenomena, such as wind-generted currents or tidd currents, to meso-scde phenomena such as eddies or upwel ling, to oceen-basin scde estructures, such as prevailing continental boundary currents.

The degreeto which these water movements advect lavæe avay from sancturies will depend on the strength, direction and timing of thecurrents, reativeto the location and timing of reproduction, among other factors (Tilney \& al. 1996). Thehydrodynamic feetures will interat with the spatid characteristics of sanduaries and the dispersd characteristics of the spedies in question (Rowiey 1994, Fogaty \& al. 2000). In the case of a spedies with a very short dispersd period (days), week currents sweeping over a large sanctuary would be expected to advect only a small proportion of that spedies' production from the reserve. The proportion could
be very high if the currents were strong or the sanctuary very small. Conversdy, it is likely that export would be very high for aspedies with a very long dispersd period (months), regardless of thesize of the reserveor strengths of the currents (although this may be modified by the behaviour of the propagule in redtion to ecosystem charaderistics such as substrate topography). The complexity of the situation is inceesed when theshape and orientation of a sanctuary is considered. For example, along-thin sanctuary (eg. fringing ref) with its long-axis perpendicular to prevailing currents would be expected to have much higher export rates than a round sanctuary (eg. patch ref) of the samesize, which, in turn, would have a higher rate of export than the long-thin sanctuary if its long-axis was paralle to the prevailing currents (Rowley 1994). But even thesegenerdistions will be affected by finescdedetails, such as the timing and location of propagule re in retation to dominant current pattems. Theexport of reproductive output by thefew speies that do not have planktonic lavæe (eg. surf-perches, Embiotocidæ, many cuustaceen and gastropods, live bering or brooding fishes) will begovened by other factors (Car \& Reed 1993).
'Spillover' and 'lavd export' arethetwo processes by which reserves are hypothesised to contributeto populations outside reserves in the short- to medium-tem Wehave described the likely primary pathways from theestablishment of a reserve (protection from fishing) that all minate in these processes Secondary pathways that arehypothesised to operte within reeseves and that have the potentiad to enhance the processes of spillover and land export are disaussed in thefollowing Sections (4.7 to 4.9).

4.7 Recovery from habitat damage

4.7.1 Model Expectation

The cessation of fishing activity in sanctuaries is expected to hat the dedine in habitat quality and secondary effects on species that results from the effects of fishing (Figure 1-Box 12). This change is expected to result, ove time, in the improvement or recovery of habitats within sanctuaries (Box 13), induding those habitats citical to the reproduction of thefocd speies (Box 14). It is reesonable to expect that these improvements will have beneficial effects on many speies, possibly improving the rates of processes such a sttlement and reauitment (Box 15), survivorship, and reproduction (covered esenhere). The improvements to spamning habitas, and habitas in generd, areexpected to enhance spillover and lavd export through a varidy of pathwas.

4.7.2 Effects of Fishing

Many fishing adivities are known to cause damege to habitas (seereviens by McClandhan \& Muthiga 1988, Hutchings 1990, Russ 1991, J ones 1992, Dayton \& al. 1995, NRC 1995, Robets 1995a Auster \& al. 1996, J ennings \& Lock 1996, Jennings and Polunin 1996, Goñi 1998, Jennings \& Kaiser 1998, Thrush \& al. 1998, Hall 1999, Turmer \& al. 1999).

Trawling and dredging can impat benthic environments by oushing organisms, dis odging and scattering sessile organisms from their substrates (especially erect foliose and ref-building species), damaging their hard structures, dameging burrows or other refuges, exposing organisms to predators, resuspending sediments, and
disturbing thefluxes of nutrients and other chemicas between the sediment and water column (Hutchings 1990, J ones 1992, Dayton \& al. 1995, Auster \& al. 1996, Collie $\&$ al. 1997, Goñi 1998, Hall 1999). These impats can directly cause mortality, injuries that may leed to deeth late, and stress or energetic costs that may deamelongevity. Mortality rates may beeven greter for those individuds that are caught by nes or dredges, and brought to the surface before being discarded (J amieson 1993, Dayton \& al. 1995, Attwood \& al. 1997b, Auster \& Shackel 1997). In generd, the extent of the effect of trawling or dredging will depend on the interactions between species charaderistics, habitat characteristics (eg. substratetype) and thetype of geer and fishing technique used (Collie \ddagger al. 1997, Goñi 1998). Thefrequency and extent of disturbance by trawling can beextremdy high (eg. Caddy 1973, de Groot 1984, Messidh \& al. 1991, Dayton \& al. 1995, McGavey \& Willison 1995, Auster \& al. 1996), and its impacts may persits for decades (references in Jennings \& K aise 1998). For example, Churchill (1989) found that in somelatitudelongitude boxes on sheff ares in the northest United states, the areatraviled in one yer exceded the area of the box by up to 3 times, and that in someares trawling was the major cause of sediment resuspension. Recently, Safina (1998) estimeted that enough trawling occurs every yer to cover haf the world's continental shelves A syntheris of data on the effects of trawling on benthic spedies in the North Seef found mortality rates as high as 50-75\% (seeTable 3.2 in Hal 1999). The impats will vary among species (J ennings \& al. 1999, Tegner \& Dayton 1999). Long-lived, slow-growth 'K-se ected' spedies are examples of those spedes most highly susceptible to the dameging effeets of fishing (eg. deep-water cords). Other species, such as those adapted to high-energy habitas with significant natural disturbancerates, may bemore resilient and could even benefit (eg. Eleftheiou \& Robetson 1992, Hall \& Harding 1997).

Many tropicd cord refs aresubject to the highly destructivefishing practices of blating, drive netting, which involves the dropping or dragging of weighted scarelines, and poisoning (sereferences in Russ 1991, J ennings and Kaiser 1998, McClandhan $\&$ al. 1999). Blating and the use of weighted lines can destroy or severdy alter the physicd structure of coral refs, reduce the structural complexity and diversity, and diminate food and shetter for a host of spedies (eg. Munro \& al. 1987, Russ \& Alcda 1989, Robets \& Pol unin 1991, Russ 1991, Bohnsadk 1993), a process that may take decades or centuries to reverse (Saila $\&$ al. 1993). Carpenter and Alcala (1977) estimated that 6\% of cord was dameged during onescareline fishing episode In extreme cases, onetarget species atter another is fished out ('serial overishing'; Munro \& Williams 1985, Russ \& Alcda 1989, Dugan \& Davis 1993, Ault \& al. 1997a, Goñi 1998, Orensanz \& al. 1998, Pauly \& al. 1998a), dhanging community structureand, potentially, ecosystemfunctioning. Population changes in focd spedies can have 'second-orde' or indirect effects on other speies, causing some to decremee and others to increse, perhaps replacing those lost because of fishing. Fishing pressure can beso intense that its derrimenta effects extend to other speies (eg. Eldredge 1987, Russ 1991, Dayton \& al. 1995), and replacement does not occur fully, a patten called 'ecosystem overfishing' (Pauly \& al. 1989). As moreand morespedies are depleted eventually economically impoverished fishers may turn to the highly destructive fishing techniques described above and cretemajor resource disuuption and habitat destruction in an effort to maintain their incomes, in a process termed 'Matthusian ovefishing' (Pauly 1988b, Pauly \& al. 1989, Russ 1991, Robets \& Pol unin 1993, MdManus 1996, MdManus \& Meñez 1997); [note many authors apper to use thetems 'ecosystem overfishing' and 'Mathusian overfishing' interchangeably]. In short, destructive fishing practices have the potential to greatly alter theabundance of targe species, thespecies composition of communities, and the structure of thehabitat.

Over time, habitats subject to heavy fishing pressure can becomeseverdy degraded (eg. Collie $\&$ al. 1997, Tegner \& Dayton 1999), which may lead to impacts on somespeies, such as incremed mortality rates, reduced rates of settlement and establishment, and/or reduced growth and reproductive rates () ones 1992, Haliday 1998, Auster \& Malateta 1995, Dayton \& al. 1995, Hutchings 1995, Lindholm \& al. 1998, 1999, Tegner \& Dayton 1999). Locd extinction of spedies can result, species diversity may dedine, and apparently permenent shifts in the community or habittt types can occur ∞ a result of thedirect and indirect effects of fishing (eg. Sale 1980a Sano \& al. 1984, Bouchon-Navaro \& al. 1985, Catilla \& Durán 1985, Moreno \& al. 1986, Koslow \& al. 1988, Russ \& Alcla 1989, Alcda \& Russ 1990, McClanahan \& Shafir 1990, Claro 1991, Russ 1991, Dawson Shepherd \& al. 1992, J ones 1992, McClanahan 1994, Sebens 1994, Auster \& Maltesta 1995, Dayton \& al. 1995, Robets 1995a Kaise \& Spencer 1996, McClanahan 1997a Öhman \& al. 1997, Robets 1997b,c, Ault \& al. 1997a Goñi 1998, Jennings \& Kaiser 1998, Pitcher \& Pauly 1998, Tuck \& al. 1998, Frid \& Hal 1999, Tegner \& Dayton 1999, Dayton \& al. 2000). In extreme cases, structurally complex habitas with high biodiversity can be reduced to simple low diversity habitats (eg. Collie $\&$ al. 1997), or largeshifts in community organistion can ocaur (Pauly 1998b).

As with most impacts on environments, whil esome spedes are affected negatively others may benefit. Scavenging species may increese in abundanceas a result of the effects of fishing on populations and habitats (J ones 1992, Dayton \& al. 1995, Fogaty \& Murawski 1998). Speies spedidised to feed or settle on cord rubblemay incremefollowing the destruction of cord by explosives or drive netting (Russ 1991). Other speies may exparience population increses because of relesefrom predation by, or competition with, spedies directly effected by destructivefishing (eg. Russ \& Alc्da 1989, Claro 1991, Parsons 1992, McClanahan 1994, 1997a Eggleton \& al. 1997, Fogaty \& Muravski 1998). Marineenvironments are subject to a variey of naturd disturbances (Hughes 1994, Rogers 1993, Brown 1997, Connell 1997), some of which can produce effects simila to those caused by destructivefishing. Thus, it is not unremsonable to expect that somespedies will be adapted to take advantage of disturbances (eg. Eleftheriou \& Robetson 1992, Hall \& Harding 1997), a phenomenon well known in many environments, and so increeses in those opportunistic spedies may occur following fishing.

4.7.3 Sanctuary Effects

Sanctuary establ ishment in arees affected by fishing is expected, over time, to leed to improvements in habitat characteristics known to beimpated by fishing, such as structurd compleity, system functioning and integrity, and speies composition and diversity (Robets $\&$ al. 1995). It is not unreesonabl eto expet that such habitat improvements will led to beneits for at lest somefocd speies, improving survivorship and reproduction (Thresher 1985, Auster \& Mataesta 1995). Although evidencesupporting this link is incomplete, numerous studies have shown corre ations between habitat complexity and fish-species diversity or abundance (seereferences in Roberts 1996, J ones \& Syms 1998), and most studi es of marine reserves have found protection brought about increes in spedies di versity (Ha pem in press). In situations where community composition has been severey altered, recovery may led to a restoration of the origina, histaric or 'norma' composition. However, in other coses recovery may result in a qualitaively different community composition, indicative of an altemativestealy state (Done 1992, Knowiton 1992, Hughes 1994). In many
situations, habitta recovery may take much longer periods of timethan is required for over-exploited populations to rebuild (Robets \& Havkins 2000). In the cese of spedies adapted to disturbed habitats or those speies that benefit from discards, a reduction in the fishing and disturbance ratefollowing sanctuary establishment could leed to popultion deareses Thus, in generd it will bedifficult to predict the effect of a sanctuary on individual focd spedies, without considerable knowledge of their population and community dynamics (Robets \& Hawkins 2000). Nonethe ess, it is generally argued that sanctuaries will benefit many, if not most, of the most valued species.

The improvement of habitat quality in MFSs is expected to leed to improvements in the rates of settlement and ecol ogica reauitment through direct and indirect pathways. Directly, improved habitta quality is expected to increme the atractiveness of sanctuary aress, thus increesing sattlement rates, and to improve thesurvivd of newly settled individuds, thereby increesing reauitment rates Indirectly, thesanctuary improvement process is expected to increse thesize of the land pool, which should in some coses result in increed settlement rates As described erlig, improvement of spamning habitats is expected contribute to an increme in spamming ativity and efficiency. This is expected to ocaur simply through the increme in the amount of habitta suitablefor spavning, and, perhaps, through improving thequality of that habita. Thus, to the extent that improved habita quality contributes to increesed reproductive output, and in proportion to the degree of laval retention, habita improvements will increme the number of lavæavailablefor, and achieving, settlement in sancuaries In addition, improved habitat quality should contributeto inceed survivorship of individuals of some speies, thus enhanaing the processes assodited with the increesing population abundance This could have direct impats on settlement for those speries known to settle preferentially neer conspeifics (Shepherd 1990) or have higher survival rates neer conspedifics (Tegner \& Dayton 1977). Secondarily, it could contribute by feeding back through inceemed reproduction to further enhancesttlement.

Incresed settlement and rearuitment is expected, under cetain dircurnstances, to result in population increes (seediscussion in Section 4.13). For a given leve of laval supply, setlement and subsequent surviva appeers to be most strongly dependent on habita type complevity and quality (Sale e al. 1984, Shulmen 1984, 1985, Robets \& Polunin 1991, Dayton \& al. 1995, Booth \& Wellington 1998, Lindholm \& al. 1999, Dayton $\&$ al. 2000), to theextent that, when recuuitment or mortality rates are dependent on resource availability, habitat quality will regulate population size(J ones 1988). Thus, within the limits set by population regulation mechanisms, it is possible that inceed settlement and survivorship rates, due to habita quality improvements in sanctuaries, will result in increes numbers and densities of individuds in sanctuaries, and ultimaty may contribute to incresing thesize of the spawning population (Dayton $\&$ al. 2000).
Incres settlement will ater thesizedage composition of reseve populations, reducing the rate of increme in meen age and size of individuals that is expected ∞ part of the process of 'sanctuary improvement' (Section 4.2) although not thesize of older age dases Mortality rates for newly settled lanætypically are very high (Sale\& Ferrel 1988, Carr \& Hixon 1995, Robets 1996, Caley 1998, McCormick 1998, Cæel le 1999). Therefore, sanctuary-improvement population increes in speies that prey on, or canni balise, new or recent rearuits may inhi bit settlement and reduce ecol ogical reanitment (eg. Tupper \& J uanes 1999), countering thetendency for rearuitment to beenhanced by habittt improvements.

4.8 Benefits beyond focal species

4.8.1 Model Expectation

Eliminating the destructiveimpads of fishing on habitats and species will producefar-ranging improvements beyond those of immediate importance to focd spedies (Box 16). Improvements are expected at the bid ogicd leved (eg. incresed biodiversity, restoration of 'norma' ecological functions, stabilisation of community composition, incresed habitat complexity), and at the human levd (eg. increesed tourism value creation of opportunities for reserch and education).

4.8.2 Effects of Fishing

In many coses, overfishing and habitat damage haveled to reduced biodiversity (eg. Russ \& Alcala 1989, Russ 1991, Robets 1995a, NRC 1995, Jennings \& Lock 1996, J ennings \& Kaise 1998, Hal 1999, McClandhan \& Arthur 2001; but seeGreenstreet \& Hall 1996, Watson \& al. 1996 for counter-examples). This patten is not surprising given the large number of studies that haveshown a retionship between the abundance and diversity of cord ref fishes and cord cover (references in J ones \& Syms 1998). As fishing pressure increes, diversity may risefirst due to an increme in 'evenness' as the most common spedies are fished down modectedy, but then dedineas population sizes of more and more species are driven to low leves (Hall 1999). The 'intemeditedisturbance hypothes's'(Connell 1978) predids that in somesituations moderatelevels of fishing disturbance may increse biodiversity redaive to the extremes of low or high disturbance (eg. Hixon \& Brostoff 1983, McClanchan \& Shafir 1990, Rogers 1993, Aronson \& Predt 1995, MdKenna 1997), thus making it difficult to predid theoutcome of reserveestalishment on biodiversity, athough there is little doubt that intensefishing pressure will have a negative effect on biodiversity.

Predation has the potential to function as an organizing process in marine ecosystems (eg. Kefoot \& Sh 1987, Hixon 1991, J ones 1991, Jennings \& Polunin 1997, McClandhan 1997c), thus it is not surprising that fishing has the potential to severely atter community composition and ecosystem dynamics (ecosystem overfishing). Theovefishing of many highly desirdble spedies, which often aretop predators, can leed to the ecological releese of their prey and competitors, and the subsequent inceemes in their biomess There is a large theoreticd and empirical literature that addresses the influence of competitive and predator-prey redaionships on community composition (seJ ennings \& Kaiser 1998, and Hall 1999 for recent discussions).
Although the litercture contains numerous cases of 'top-down control', in which removal of a predator apparently led to the re eme of prey popul ations, some have suggested that the evidence for compensatory prey re ees is equi vocd (J ennings \& Polunin 1997; dso, sereferences in Robets \& Polunin 1991). Most studies are able to provide evidence consistent with this effect, but fal short of providing 'proof' or a der demonstration of the mechanism For example Robets and Polunin (1992) found that in arems wheregroupers had been fished down, one of their prey speies (surgeanfish) were nerly threetimes more abundant than in unfished aress, a difference consistent with this hypotheris but onethat could havehad other causes Similary, the fishing down of mackerd populations in the North Sea in the 1970s apparently lemd to the subsequent ecological releæe of sanded populations () ones 1983), but the link was only corre ative

Russ (1991, Russ \& Alcda 1989) argued that 'prey reme' is uncommon and should not beexpected on cora refs, because of the large number of potentia generdist, 'replacement' predator spedies and thefat that many ref-fish populations may belimited by rearuitment rather than predation. McClanahan (1994) pointed out that, for fishes, theevidence suggests that the phenomenon occurs only in di odontids and small-bodied labrids and pomecentrids. In contrast, Edgar \& Barett (1999), working on tempertereefs, suggested that secondary interactions in marine ecosystems are common, and, therefore, it is not dbvious that any given no-take reserve will achieve its objectives for more than a small number of focd species.

Thebest evidencefor top-down control comes from severd tropicd reef systems (Kenya, Caribbeen, Red Sea Mediteraneen). Reserchers havefound that predatory fish apparently control the populations of cetain urchin spedies, and removing thosefish by fishing results in increses in urchin population sizes, sometimes to very high leves (references in Robets 1995a, Sala \& al. 1998a Steneck 1998, and McClanahan \& Arthur 2001). McClanahan and coll $\boxminus q$ gues have shown that the ovefishing of se urchin predators such a triggefish on cord refs in Eat Africaleads to theecol ogicd re eese of urchins. Intensegraving by the urchins, and habitat destruction by somefishing practices, results in the reduction in cord coverage, cord diversity and the abundance of graving fishes (McClandhan \& Muthiga 1988, McClanahan \& al. 1995, McClanahan 1997b,c). Such reefs shift from being dominted by cord, corallinea gæe and diverse communities of graving and predatory fishes, to being dominated by urchins and dgal mats (McClanahan \& Shafir 1990, McClanahan 1997c, McClanahan \& Arthur 2001).

In somesituations, the removal of a key predator may have a morefa-reaching impact, such as when it initiates a 'trophic coscade' of effects, a has been documented in theorca-seatte-urchin-kep system in the North Padific (Estes \& Palmisano 1974, Estes \& Duggins 1995, Estes \& al. 1998). Thesesystems and their responses to fishing and the remova of top predtars are complex and open to atemative interpreations (Steneck 1998). Nonetheless, in situations where fishing preeipittes a 'trophic cascade', the associ ted changes to cormunity composition and ecosystemfunction have the potential to affect the productivity, viability and sustainability of exploited spedes in the system (Plan Development Teem 1990). Viewed over a longe historical perspective it is evident that ecologicd communities in many coastal arees around the world have been profoundly altered by centuries of human exploitation, aj ackson (1997) has shown for the Caribbeen region.

4.8.3 Sanctuary Effects

As habitas improve after sancuary estal ishment, given time, it is likely that locally extirpated spedes will reepper and that the 'normal' community composition will bereestablished. As biol ogicd communities recover and return to 'norma', it is expected that 'norma' ecological fundioning should becomere ettablished. Because of thelarge impats of intensefishing pressure on the populations of meny spedies, protection should result in substantid danges in community composition within sanduaries (Palumbi manuscript). These changes to the naturd environment will have beneits for humens in a number of ways For example, thereestablishment of 'naturd' environments, as well as fostering the reppeerance of rare and high-interest spedies (eg. large predatory fish), will leed to improved opportunities for non-destructive and non-exploitativereaetion and tourism, providefor some of the needs of locd communities, crette opportunities for reserch and eductiond organistions to study those environments, and enhance the ecosystem senvices provided by theenvironment (Dixon 1993, Arcese\& Sindar 1997, Bohnsack 1998,

Dustan 1999, Robets \& Hawkins 2000). Howeve, if a system har been atted too severdy (sediscussion and examples in Hall 1999), it is possible that an attenaive'stable state will have been reeched which could impede and inteffer with the process of sanduary improvement and, ultimet dy, fisheries enhancement (MCClandhan 1997b, 2000). A sanduary isolted from potentid sources of reanits could fail to reetablish its 'norma' stae, and suffer afurthe loss of biodiversity in time(Roberts 1997a Robets \& Hankins 2000).

These environmenta dhanges and improvements within senctuaries may further enhance, through indired pathways, the processes of spillover and lavd export, by improving conditions for thefocd spedies (eg. prey availability, densties of cormmensds) and, in tum, theimproved heath of focd speeies popul ltions should further contributeto non-focd spegies benefits it should berecognized, however, that the same processes could have an inhibitory effect on spillover and laval export. In meny situations, fisheries have found it is econorically viable to target preddion-remed prey species in pat because of the economic extipation, or ner extipation, of their predators, and in pat because of increed abundance of the prey stocks This is one appect of the process termed 'fishing down marinefood webs', which is charaterised by fisheries gradually shifting their taged from high trophic levd, long-lived, low-productivity, piscivorous bottom fish to low-trophic leve, short-lived, high-productivity inverterrates and planktiverous peagic fish (Pauly $\&$ al. 1998). Pitche \& Pauly (1998) provided severa examples of systems in which high-quaity fish (eg. cod, hai but, grouper) have been replaced as the primary targes of fisheies by low-quality speies (eg. smal pdagics demessa omiviveres jellyfish). Thus, thereetablishment of 'norma' speeies composition within reserves may actudly result in the dedine in abundance and, therefore, reproductive output of prey speeies such a these, athough it may dso result in the increme in stocks of preferred cormmeria speies

Protection from fishing would sethereturn of many predator species and an inceer in their biomess To the extent that those species were predtars of nemy settled individuds and jiveniles, the recovery of predtary species could at to inhi bit settlement turning the sencury into a rearuitment sink (Robets\& Pdunin 1991). At lest threestudies comparing fishing and unfished sites have found an inverseredtionship between the abundance of large age dasses and the abundance or sunvivd of small agedases (Goeden 1979, Tupper \& Juanes 1999, Paddack \& Estes 2000), but Mappherson \& al. (1997) in ther study of thesurvivd of juvenilefish did not find evidenceto suppart this idea

In gened, indirect effects may makeit very difficilt to prediit the outcome of senctuary ettablishment for any given speeies (Palumbi menuscript), which may hep to explain why many studies have found that sencturies do not improve conditions for all speies In some protection from humen inteffercicemay result in paticular suites of speeies being replaced by others without an overdl changein density. However, this does not change thefact that sancuries will have abenfidia effect on alarge number of exploited and unexploited spedies This complexity suggests that sanduary success cannot be baed on the outcomes for singlespeeies or even small suites of speies, but rather should be assessed aross al focd speies, and their fisheries and environments Paumbi (manuscipt) furthe noted that the effect of reserve protection on speeies diversity will be difficult to predict. In some ceses changes to spedies diversity mey be due largdy to the reepperance of extirpated speies (i.e an incree in speies richness), but in the ces speies diversity may changesignificantly due to changes in speeies densties without asignificant ateraion to the number of spegies Nonetheless, most studies have found that area protection incres spedies diversity (Happm in press).

4.9 Long-term benefits to focal populations

4.9.1 Model Expectation

Most of the enhancements to explited species disussed so far re expected to befirst redised within redtively fev yers (i.e in the chat- to medium-term). As conditions continueto improve and populations and cormunities return to 'norma', those benfits are expected to continue to accue Ove longer periods al lest three othe improvements to exploited popul dions should cccur. First, in the dosence of fishing martaity the 'nđurd' agesize structure should reetablish itsdf (Figure 1-Box 17). Second, ax with other effets of fishing, the impats of fishing sedection on populations will bereduced with theetablishment of sencturies, and may reverse in somedraumstances (BOX 18). Third, sencuries should reduce the loss of genetic diversity that occars through the process of fishing ssection and through the reduction of popultions to very smal sizes (Box 19).

4.9.2 Effects of Fishing

Most fishing is highly sdective with respect to thesize (sediscussion in section 4.2), and, therefore the age of individuds caught. Nets and traps are often mendzed by regulations to have a mesh size that will dlow the eccape of smal (young) individuds, and fishing may be prohibited or restricted on nursey or spawning grounds. As result, the 'natura' age and sizestructure of the popul ation becomes distorted in proportion to the fishing pressure (eg. Russ 1991, Pope\& Knights 1982, Rowling 1990, Rice\& Gisæon 1996, Goñi 1998, Rochet 1998). In extreme most large mature individuds can beremoved from the population (eg. Borisov 1978, Davis \& Dodrill 1980, 1989, Rice\& al. 1989, Russ 1991, Trippd \& al. 1997 Robets 1998a), and because these are the most productive individuds the loss offects the productivity of the population and, therefore, its potentid fisheries yidd (Bergh \& Gez 1989). As discussed erriier, in sequentialy hemmphroditic species (eg. groupers, labrids and scaids) the removal of theoldest individuds may lead to a distation of thesex ratio and, therby, reduce productivity, epeedally in those spedes in which the transformation from one sex to the other is under endogenous control. Beides having the obvious effects on reproductive peaformence, distortions of the 'norma' agesize structure and sex ratio are believed to have detrimenta impacts on belaviour pattens and socid structure (Plan Development Tem 1990, Shurmay 1999). Disuptions to normal behaviour and social structure in tum, are believed to have a negative effect on survivorship and reproduction (Shumway 1999). Behaviour is thought to play a central role in the expression of Allæe effects When popultion sizes arevery low, individuds may havedifficulties locaing metes schooling may breek down exposing individuds to gretter predaion risk, observationa leeming may beimpared, and sodia facilitzion necessary for somefunctionssuch a spamning may bediminished (Shumway 1999, Stephens \& Suthertand 1999).

Fishing does not dways push size distributions 'to theleft' by removing lage individuds In situations in which fishing is not sizespeefic, or the catdvbyctch of juneniles is high (eg. Penn \& al. 1997), Iarge numbers of individuds can beremoved before they have a chanceto enter the reproductive age dases (Dayton \& al. 1995). This type of distortion of the naturd sizedagestructure, 'to the right', may haveless impat on populations, unless it leds to rencuitment overishing.

It has long been recognized that fishing mortaity has the potentia to produce atificia selection on life history dharateristics (Ricker 1981, Bergh \& Gez 1989, Smith \& al. 1991, Pol icansky 1993, Rijnsdorp 1993, Jennings \& al. 1999). ThePlan Development Tem (1990, fter Ratston 1987) presented 28 etimetes of naturd and fishing mortality rates for ref fishes. Theratio of fishing to naturd mortaity rate was greater than 1.0 in 21 coses (75%), and the 6 highest values ranged from just over 2.2 to 5.6 , which led them to cond udethat fishing is likely to be the dominant sedectiveagent for most exploited reff fishes Lifehistory characteristics most often thought to beselected for by fishing mortaity are lower growth rate, smaller age and sizeat-maturity, smaler adult size, shorter lifespan, attered timing of spamming, and reduced reproductive output (Plan Development Tem 1990, Policansky \& Magnuson 1998), al charateristics that could be detrimental to fisheries yied (eg. smalle indi viduads are less desirable and less feaund, Robets \& Polunin 1991). Although very few empirical studies have been able to verify the predided effects of this form of selection (Ricker 1981, Buxton 1993, Jennings $£$ al. 1999), the theoreticd arguments aresufficiently convining to arguethat the threat to a stock from fishing salection should betzen seriousy (Robets \& al. 1995). Other characteristics that have the potentid to offect the effectiveness of sanctuaries, for example aggressiveness or movement pattens, may al so respond to fishing sel ection (Attwood \& al. 1997b).
Ovefishing is expected to result in a reduction in genetic diversity within thetarge population (Bergh \& $\mathrm{G} \neq \mathrm{z}$ 1989). Because the ability of populations to respond to environmental dhange is redted to genetic varidbility (Lande \& Barrowdough 1987, Neson \& Soulé 1987), reduced genetic di versity may deareme the likeihood of thesurvivd of over-exploited populations (Shepherd \& Brown 1993, MaManus \& Meñez 1997). Therate of loss of genetic information in finite populations is a function of the effective population size, which in turn is affected by severd demographic factors that can beimpated by ovefishing, such as the sex ratio, and generational ovelap (Gaggiotti \& Vetter 1999). The loss of genetic diversity will begretest when popultions go through very low effective populaion size bottlenecks, which can be caused by extreme ovefishing. Retaively few studies have confirmed these impats of fishing on populations. One of the most widdy ited studies, demonstrated that intensive fishing on orange roughy, a ' K -sedected' species, resulted in a loss of geneic diversity in a very short time (Smith $\&$ al. 1991). However, a recent study of a population of the squid ille argeti nusfound very little loss of genetic diversity over a period when the population was subjected to intensefishing pressure (Adcock \& al. 1999).

4.9.3 Sanctuary Effects

The establishment of a MFS should result in alterations to the agelsize structure over time, presumably returning it to something like that seen in unexploited populations. Whether this change results in an enhancement of productivity within senctuaries will depend on the degreeto which the stocks wereovefished and the balance between reproductive output and the 'maturity' of the agdsizestructure Achieving the naturd agesizestructure, and sex ratio, should contributeto reestablishing the sodial environment that failitttes norma biological behaviour pattens and is assoiđted with high productivity and population stability (Plan Devedopment Temm 1990, Zabala\& al. 1997, Shumway 1999). However, predi ding the popultion and reproductive effects of agelsize structure and see-ratio changes will be complicted by the competition between smaler age dases and larger age dasses, and the effects of intra spedific predation.

Therdaxation of fishing sdection caused by sizesdectivefishing practices, will changethesdective regime experienced by the population within the sanctuary to one primarily control led by naturd sources of mortaity. It is likely that the change in selective regimewill result in genetic changes in the population, but it is not at all der whether those changes will in somesense 'undo' thesdection caused by intensefishing. Same reserchers argue that sanctuary protection has the potential to compensate for the damege done by fishing salection, athough probably not in the cese of single, small reserves (Roberts $\&$ al. 1995). Moreover, it will bedifficult to predidt the impat on theentire population of a change in selection regime for a portion of the population, without detailed information about thesizes of the portions and the geneflow between them The open population structure of most marinespecies led to the viev that there should be considerdble gene flow between populations, which has been confirmed for many speies, espeially for those with long-distance dispersa (Carr $\&$ al. in press). However, recent work has found that effectivelong-distance dispersal may berdatively rareand that there is remarkably little demographic exchange in many spedies despite their consideable dispersal capabilities (Palumbi menuscript). In addition to changes to the genome, it is likely that fishing selection will havefar-reaching impacts on thestructure of metapopulations (eg. reducing or diminating demes in salmon populations, Policansky \& Magnuson 1998), further complicating the prediction of population changes in response to sanctuary establishment. It is likely that biodi versity loss from a nework of sanctuaries would not ocar, or would be sower than the loss from asingle sanctuary, espedially if it was isol ted from sources of reauits (Robets 1997a).

Although the establishment of a sanctuary is unlikey to restoregenetic diversity lost due to the effects of fishing, it should reduce thefurther loss of information, at lest in proportion to the redaivesize of the sanctuary. Of course, changes in the loss of information will be influenced by many factors besides thesize of thesanduary. Protection of genetic diversity may be most effective when sanctuaries protect a number of locd populations (Fujita $\&$ al. 1998b), as long as they are not separted by excessively large expanses of overished habitat (Shepherd \& Brown 1993). Auster \& Shackel (1997) argued that a broad-scde enework of sanctuaries would be more effective at consenving geneic diversity than would a singlesanctuary. Further, MoManus (1994) suggested that adaptation to locd conditions may requiresemi-dosed network of reseves connected by dispersal. In other words, locd adaptation would not occur in a population with no retention or indirect geneflow. This role of marinesanctuaries may be espedialy important for those spedies with life history charaderistics that make them most vul nerable to ovefishing (Bohnsadk 1998).

4.10 Reserve improvement and recovery

The improvement and recovery of stocks, communities and habitas within sanctuaries, as described in the previous setions, will depend in patt on the biological and ecological potential for recovery. Evidencefrom fied studies and surveys (see Section 5) shows that most populations subject to exploitation and/or the effects of fishing do recover once protected (Hal pern in press), dthough it may take decades in some caes (Williams \& Russ 1995, McClandhan 2000), and there are al most dways sometaxa that show no or little recovery. In generd, recovery may be affected by severd different factors that have the potential to prevent or greatly dday the process and, therefore, reduce the peformance of a MFS.

4.10.1 Allee Effect

Very low densities may prevent population recovery by intefering with, or preventing, norma socid and reproductive behaviour/peformance, subjecting the population to the effects of demographic stochastidity, and inbreeding (theAlleEffect, or more generdly inverse density dependence Alle 1931, Levitan 1991, 1995, Dayton $\&$ al. 1995, Courchamp $\&$ al. 1999, Stephens \& Sutheland 1999). Allee effects can ocaur because tota densities are very low, the density of onesex is very low, or the effective population size is very smal. The influence of Allæeffects may inceese the risk of extinction (Courchamp \& al. 1999, Robets \& Hawkins 1999, Stephens \& Sutherland 1999). Robets (1997b) dites work suggesting that Alle effects arelikety to led to theextinction of giant dams in the Indo-Padific region, and the whiteabd one in Califormia

4.10.2 Slow growth

Some of the most desirableand, therefore, most severely over-fished species (eg. snappers, groupers, rodkfish, giant dams, abal one) haveK-selection lifehistory dharateristics, such a low rearuitment rate, low and variablefeaundity, slow somatic growth rates, delayed maturity, and sow population growth rates, al of which are expected to contributeto long recovery times (Adams 1980, Pal sson \& Pacunski 1995, Russ \& Alcda 1998b, Robets 1998a, Murray \& al. 1999a, McClanahan \& al. in press, Palumbi manusaript, Robets \& Hankins 2000).

4.10.3 Species interactions

The large changes that can ocour in community composition and habitat structure as a result of overishing and destructive fishing pratices may prevent target speie from recovering once a sanduary has been established (Attwood \& al. 1997b, Dayton \& al. 2000, Roberts \& Hawkins 2000). This lack of recovery may occur if previously extinpted species are unable to recol onise a sanctuary because of the lack of necessary resources (eg. sheter sites, essential habitat, or sufficient prey densities), the presence of a superior competitor or high numbers of effective predators (Rowley 1994), espedally if community dhanges have driven the system to an altentestablestae (McClanahan 1997b). For example, McClandhan found that the recovery of some Kenyan reserves appers to have been dependent on the abundance and species composition of urchins, and recovery could not be achieved until sufficient numbers had been removed (McClanahan \& al. 1995, McClandhan 1997b). McClandhan dso cautions that recovery timewill depend on which component of the system is being considered: recovery of the process of triggefish predation on urchins (5-10 yeers); reversa of urchin dominance (10-15 yeers); and recovery of triggefish populations (>15 yers) (McClandhan 2000).

4.10.4 Insufficient habitat diversity

Sanctuaries lacking in habitat diversity, or more spedifically lacking the ecol ogical feetures essentiad for settlement (nursey habita), growth (food sources), and reproduction (spawning habittt) of thefoce spedes may fail to show improvements and the recovery of overfished popul ations within their boundaries (Plan Development Temm 1990, Rowley 1994). The constraint could bethehabita diversity required by generdist species, or somespedific component required by a specidist species (eg. obligate cordlivores, Cox 1994 or obligatereff spedies)

4.10.5 Extensive habitat damage

Recovery through immigration can berapid (seereferences in Levis 1997, and atificial ref literture), but it depends on a network of habitat patches of theright typeand at theright distances avay to at asources If habitat destruction by fishing has been widespreed and other sanctuaries are not located within reach of dispersers, then recovery may not be possible because of a lack of an adequate pool of potentia immigrants. The samemay betrue with respect to recovery by recruitment (Rowley 1994)

4.10.6 Lack of refugia

Similarly, if a population experiences ovefishing throughout its range and no refugia remain, then recovery would bestow dueto a lack of sources of reanits. Thesevere depletion of shallow-water conch populations in the Caribbeen has led to thefishing of deep-wter stocks that previously had been an important source of reanits for theforme, and may explain thesow recovey of subsequently protected shallow-water stocks (Jamieson 1993).

4.10.7 Unpredictability of recruitment

Rearuitment can benotoriously sporadic and variablein magnitude, and in space and time (eg. Sale \& al 1984, Dohety \& Williams 1988, Lincoln-Smith \& al. 1991, Robetson \& al. 1993, Milicich \& Dohety 1994, Tupper \& H unte 1994), thus creating deday in popul ation recovery even in what otherwisemay begood conditions (J ennings \& Kaiser 1998). Williams \& Russ (1995) stressed that cord ref systems
".....may be highly reilient to acute disturbances such a the effects of fishing proi ded that thereis a supdy f...... renits ats detheaffeteel are"' [their emphais]. Lavd retention may be more important to this process than was previously reaized (Swerer \& al. 1999, Wamer \& al. 2000). If a sanctuary has been severdy impated by fishing, it is situated such that most of its reauitment comes from lanæ produced locelly, and it receives very little influx of recuits from other arees, then its recovery may be highly uncertain. Conversedy, without retention sanctuary popultions may be unsustainable in the absence of lavd import, and, therefore susceptible to the effects of ovefishing beyond its boundaries (Car \& Reed 1993, J ennings \& al. 1996, McClanahan 1997b, Palumbi menuscript). Robets (1995b, 1997a) suggested that insufficient land import has been responsible for the sow recovery rates of large groupers in a Caibben maine reserve McClanahan \& al. (in press) pointed out that degraded sites that are a long distancefrom potentid sources of rearuits may have to wait decades for a yeer with good land import, thus making recovery of such sites largel y dependent on lavd retention.

4.10.8 Poor location

Sanctuaries that are poorly placed with respect to habita quality, spedies requirements, or the movements of lavæemay receive insufficient numbers of recruits to allow recovery in a remonabletimeframe(Hesinga \& al. 1984, Polunin 1990, MaCDiarmid \& Breen 1993, Dugan \& Davis 1993, Tegner 1993, Armstrong \& al 1993, Attwood \& al. 1997b, Robets 1997a 2000 , Robets \& Hawkins 2000, Fogaty \& al. 2000). Robets (1995b) found that even after 10 yeers of protection somegrouper speies had not recovered in a Caribbeen marine park, which heattributed to alack of rearuits from outside the park due to widespreed overfishing In addition, if a sanctuary shows littlelaval retention and if its exported lavæe have no place to settle, perhaps
due to habitat damage or loss, then the sanctuary population may become poorly adapted to locd conditions (MdManus 1994), thus affecting its long term viability. Rowley (1994) pointed out theimportance of having suitable habitat surrounding a reseve for dispersd of potential migrants, implying that its lack would inhibit recovery through immigration.
4.10.9 Small size

Spedies with large homeranges or migratory movements that take them outsidesanduaries will be a risk of fishing mortaity, espedially if fisheries targe spillover. Therefore, smal sanctuaries are less likely than large reserves to provide effective refugia for al species (Davis 1989), and the recovery of popul tions in smal sanctuaries may be incomplete (however, seRobets \& Pol unin 1994, Robets \& Hawkins 1997, J ennings 1998, Halpem in press). Interestingly, a recent and ysis of marine reservestudies found that theal most universal proportiond differences in density, biomess, individual size and speies diversity between protected and unprotected aress were not dependent on the size of the reserve (Halpem in press). In addition, smal sancturies will beless likely to contain the diversity of habitats necessary for recovery of all spedes (Robets \& Havkins 2000) and will be more susceptibleto catatrophic impats, such a cydones, toxic spills (H a pem in press).

4.10.10 Inadequate numbers of sanctuaries

Severd authors haveargued that to be effectivemarinesanctuaries will haveto consist of newworks of protected arem (Dyer \& Holland 1991, Dugan \& Davis 1993, Ballantine 1995a, 1995b, 1997, Quinn \& al. 1993, MdManus 1994, Attwood $\&$ al. 1997b, Lauck $\&$ al. 1998, Robets 1998b, Car $\&$ al. in press, Fujita $\&$ al. 1998b, Robets \& Hawkins 2000). For example, it has been suggested that in the cese of abd one in Southem Califormia, asingle sanctuary has failed to produce recovery of severdy ovefished populations, and that because of the limited land dispersd capabilities of abdones a large number of sanctuaries would have been required to achi eve recovery (Tegner 1993, Tegner \& al. 1996).

4.10.11 Extreme environmental events

All of thefactors that would promotesanctuary improvement and the recovery of populations from ovefishing have the potential to beswamped by extreme, episodic events, such a El Nino, or large environmental changes, such as global warming (Allison \& al. 1998), thus de aying recovery.

4.10.12 Illegal fishing

The potential for recovery is ultimately dependent on the eimination, or significant reduction, of fishing pressure in sanctuaries (Robets 1998a 2000). Evidencesuggests that recovery may be prevented by redtively small amounts of illega fishing (Jamieson 1993, Tegner 1993, Jennings \& Polunin 1996, McClanahan \& KaundaArara 1996, Attwood \& al. 1997b, Haliday \& Pinhom 1997, Gribble\& Robetson 1998, Wallace 1999, Murray \& al. 1999b, Rogers Bennett \& al. 2000), and it has been suggested as the causefor failure of populations of abal one in Southem Califormia to recover from severe overishing despite over 15 yeers of reseveprotection (Tegner 1993). Unfortunatdy, as sanctuary improvement progresses the sanctuary is likely
to becomemore attractive to poachers, perhaps limiting the degree of improvement that can beexpected (Fogaty \& al. 2000). Moregenerally, the opportunity to achieve recovery may be lost by many forms of mis management of the reseve or thetarge fishery (McClanahan 1997b).

4.11 Production stability enhancement

Up to this point wehave described the primary and secondary pathways that leed to spillover and land export. These process are considered to be important because they diredly contribute potential recuits to explited popultaion, and have the potentia to benefit fisheries

Because of the batter condition of habitas, populations and communities inside sanduaries, it is expected that the contribution of lavae rearuits and adults from sanctuaries to fished arees should be more reriable and predidable than it would befrom fished arees (i.e have a lower yer-to-yer variability, and a smaller range of values). Thus, sanduaries areexpected to result in 1) a reduced variability in rearuitment to fisheries (Palumbi manuscript; seevidencefor this effet in McClanahan \& Mangi 2000), 2) a reduced probability of rearuitment failure (Davis 1989, Plan Devd opment Temm 1990), and 3) lower chance of stock collapse (Robets\& Pol unin 1991). This effect should enhancesystem integrity, and increese ecosystem and fisheries reilienceto a variey of environmental and anthropogenic stresses (Dayton \& al. 2000). The effect of this suite of processes, which weterm 'production stability enhancement', constitutes the third process contributing to fisheries enhancement (Figure 1—Box 20). Unlike 'spillove' and 'lavd export', which physicaly contribute potential fisheries reauits, 'production stability' operdes by enhanding the quadities of that contribution. We expect that stability will be significantly enhanced by long-term beneficia changes to the environment in sanctuaries (discussed above), and to ford populations (see below), espedially when popul ations are exposed to environmental extremes (Car \& Reed 1993). Given the high degree of variability and uncetainty assodited with reauitment, especially for exploited populations and ecosystems heavily impacted by fishing, the presence of an ideally locted sanctuary, or nework of sanctuaries, should greetly enhance the stability of those populations and thefisheries dependent on them (MdManus 1994). Theloss of natura refugia for many exploited populations has meent that entire popul ations are now exposed to the samefishing regime, thus incresing their risk of collapse if mistakes in management are madeand/or large scdeenvironmental stresses strongly affect the population. Marinesanctuaries are hypothesised to reduce the probability of fisheries coll lapse by 'spreeding the risk' or 'bet-hedging', a well established technique used in many fieds (eg. business and economics) for coping with uncetainty and lack of knowledge, and reducing risk (Lauck $\&$ al. 1998, Bohnsack 1999, Fujita $\&$ al. 1998b). By protecting a portion of the population from a major source of mortality and putting it under a different management regime, the population is less likely to suffer collapse from asingle or smal number of factors operating synergistically, or as a result of the inability of optimal management strategies to cope with the substantiad and irreducible uncertainty inherent in naturd systems. Some reserchers have suggested that this benefit will be relized only in large sanctuaries or networks of sanctuaries (Clark 1996, Fogaty 1999). As disaussed dseavere, whether marine sanctuaries will increes or decreethemen fisheries yidd will depend on a varidy of factors. Even when a marine senctuary or newwork of sanctuaries is not expected to produce a significant improvement in meen yidd, the overal or ultimate value of the sanctuary/sanctuaries should be viewed in tems of a tradeoff of themeen yidd for reduced varidbility (Mange pers comm).

As has been discussed erlie, the processes of spillover, laval export and/or stability enhancement are necessary if sanctuaries are going to enhancefisheries, but they may not besufficient doneto produce that outcome Next we will discuss the processes and pathways through which spillover and laved export resulting from improvement within sancuaries can leed to fisheries enhancement. First, we consider the fate of spillover individuals.

4.12 Fishery enhancement from spillover

Initially we might imeginethat emigrants from reserves would disperse throughout fished areas, thus increesing the number and density of individuds in fished arees Presumably this effect would diminish with distance from sanctuaries, much in the manner of a random diffusion process The megnitude of the effect should depend on sanctuary charateristics (eg. size, shape, location and number) the characteristics of fished aress (eg. habitat quality and influence of oceen currents) and the biologicad characteistics of the spedies (eg. dispersd tendency, habitat affinities, or migratory behavior). In Section 4.4 weidentified four dements to spillover: exaursions, density changes outside sanctuaries, rearuitment to fisheries, and fisheries enhancement. We deat with dements 1 and 2 in Section 4.4, and wedisouss dements 3 and 4 here

4.12.1 Recruitment to fisheries

Spillover individuals may be of a sizeto beimmediaty, or in a short time, rearuited to a fishey and, therefore, could enhance catches dose to sanduaries (Rowley 1994). J unenile spillover individuads, however, may not rearuit to the fishery for sometime This means that whether those indi viduads rearuit to the fishery and therefore have an opportunity to providefishery enhancement aso will depend on the factors affecting their surviva, growth and movements. If we assumethat their probability of recuiting is not significantly different from individuals that originally settled in the sameares, then their potential contribution to the fishey would be proportiond to the addition they madeto thesize of the junenil eage dasses However, severa factors could meen that their contribution to thefishery is disproportionatey greter than their numericd contribution (Suthers 1998). First, in those coes where individuds leaving sanduaries immedi atdy reauit to fisheries, they may belarger than individuals reauiting deved opmentally within fished arees Thus, such spillover would contributegreter biomess, higher value individuads, and individuals with higher fecundity to thestock. Second, the improved conditions within sanduaries re aive to those in fished arem may men that prerearuit spillover individuds are in better physiological condition, have a competitive advantage, and greater probability of avoiding predation (Mesa \pm al. 1994, McCormick 1998), which could translateinto higher growth rates, lower mortality rates, and, therfore, higher rates of reauitment to thefishery. These advantages should carry-over into the post-rearuitment period, and apply to spillover individuals that reanit to the fishey immediady. In addition, this advantage would confer a greeter reproductive potential compared to individuds of the samesizethat were rased in fished arem
4.12.2 Fishery enhancement

Perhaps moreimportant than the biologiced and ecologicad charateristics of the spillover individuals, will be the behaviour of thefishery and fishers in detemining the degree of, and form of, enhancement that results from spillover. The establishment of a marine sanctuary is likey to atter the behaviour of fishers and the
impat of their fisheries Theform of their response to sanctuary establishment is likey to differ depending on thefishery in question, its political and economic environment, and the other management controls that are in place (Ballantine 1995b). In many cases the distribution of fishing effort will shift to accommodate the presence of reserves An important question with respect to marine sanctuaries is how the allocation of fishing effort will ater in responseto the loss of fishing grounds In the absence of any other changes in the fishery, the previous leveds of fishing effort would beconcentrated in theremaining fishing grounds. This would incremethefishing effort on a per-unit-areabais and, consequently, thefishing mortality rate (Roberts \& Hawkins 2000), and, potentially, therate of damage to theenvironment (Parish 1999b). For this reeson, fishery yieds may dedine immedi ady after sanctuary establishment, and total fishing effort would have to be reduced proportionally to avoid further stock dedines (Car \& Reed 1993), which potentially could deete a further loss to fishers (Roberts \& H awkins 2000). However, the alloction of fishing effort may adjust itsdf to avoid a large increse in effort in theremaining aress This has been suggested by moddling effort alocation using 'ideal freedistribution' modds (eg. Gillis \& al. 1993, Abrahams \& Heley 1990), and has been shown to be the cese in onefied study. McClandhan \& K aunda Arara (1996) found that, following the establishment of a no-takearea fishing intensity did not incremein surrounding arem, apparently because somefishers choseto stop fishing and take up other work. However, in a lter study, McClanahan \& Mangi (2000) found that trap fishers targeted their ffort at the boundary of a marine park and increesed the number of traps theset.

A gret deal remains to be undestood about the behaviour of fishers in response to sanctuary dretion. Will effort be redistributed to other sectors or fisheries? Will thetotal effort dhange perhaps decreesing due to a perception that the availability of target spedies will have decreed? Will effort respond to perceived or detected benefits of marine sanctuaries such a spillover, and, if so, how long will it takefor fishers to atter their behaviour?

Evidencesuggets that fishers rapidly learn that enhancement within sanctuaries produces a spillover of reatively large, high-quality individuads in the vianity of reserves (McClandhan \& KaundaArara 1996, J ohnson \& al. 1999, Piet \& Rijnsdorp 1998, Robets 1998a, Walls 1998, Robets \& H awkins 2000, McClanahan \& Mangi 2000). Theory and evidencesuggest that this effect may not compensatefor the loss of fishing area (eg. Alcda \& Russ 1990, Polacheck 1990, DeMatini 1993, Holland \& Braze 1996, McClanahan \& Mangi 2000). In response to spillover somefishers concentrate fishing effort immedi atdy outside the boundaries of sanctuaries (a behaviour temmed 'fishing the line'), which can result in theremova of much, if not most, of the spillover that occurs (Davis \& Dodrill 1989, MacDiarmid \& Breen 1993, McClanahan \& K aundaA Arara 1996, Pied \& Rijnsdorp 1998, Walls 1998, J ohnson \& al. 1999, Fogaty \& al. 2000, McClanahan \& Mangi 2000, Ballantine pers comm). Experiencesuggests that spillover will have, at best, alimited enhancement effect on such fisheries, primarily benefitting thosefishers who concentrate their effort dong sanctuary boundaries (Alcala \& Russ 1990, Bennett \& Attwood 1991, Rowley 1994, McClandhan \& K aunda Arara 1996, McClanahan \& Mangi 2000), fishers who specidise in catching high-value individuals rather than abundant size desses, and/or receetiona trophy fisheries (Plan Development Temm 1990, Bohnsack 1996b, J ohnson \& al. 1999). Rowley (1994) pointed out that reserves with a large perimeter-to-area ratio would beless susceptibleto this problem Russ and Alcda (1996b) rased the possibility that, in time, ∞ densities increme within a reserve, the spillover rate would exceed the capadity of the 'boundary fishers', and densities would begin to rise in the via inity of the reserve Howeve, it is not generally believed that this process alone could appreadbly raise densities in fishing grounds distant
from sanduaries (Roberts \& Polunin 1991, Russ \& Alcda 1996b, however seeAttwood \& Bennett 1994). Theonestudy to have examined this diredly found that the CPUE of reserch fishing for spiny ldbsters was similar when comparing boundary fishing neer 3 reserves to CPUE from other neerby ares in New Zeland (Kelly \&al. 2000a).

Whether this would result in an overal fisheries enhancement remains to be determined (studies described in Section 5). It is der, however, that intensivefishing in theimmediatevianity of a sanctuary would affect densities of thetarget spedies inside the sancuary, thus reduaing the degree of improvement that occars within sanctuaries This effect would result in cross-boundary density gradients being graduad rather than something approximating a step function, and in very smal sancuaries it could have alarge effect on the potential for the sanctuary to at as a source of juveniles and adults to surrounding aress (K ramer \& Chapman 1999, Parish 1999b). Other spedes spedific factors such as sedentarity and catchability would also affect theform of cross-boundary density gradients (Rakitin \& Kramer 1996). In other words, targeting of the boundaries of small sanctuaries to catch focd spedies could have a negative feedback ffect on the process that made that targeting feesible

Becausespillover adults caught outside a sanduary are responsible, in part, for the reproductive output of the sanctuary, this type of impact could negatively ffect larvd export, and thus greatly reduce the effectiveness of a marine sanctuary as a fisheries management tool. To be effective as exporters of reproductive propagules, sanctuaries need to belarge enough to maintain reproductive populaions of the focd spedes (Attwood \& al 1997b, Bohnsack 1998). On the other hand, if the spillover is the primary meens of fisheries enhancement, then intermediatesized sancuaries, with ther higher perimete-to-arearatios will bemore effective (McClanahan \& K aundaA Arara 1996). In sanctuaries with large perimeter-to-arearatios much of the popultion will betoo far from the boundaries to have a high spillover potentid and in small sancuaries spillover would inhi bit sanctuary improvement. The spillover effect will primarily be a locd phenomenon, ш a widespreed dispersal of spillover individuds from a small sanctuary will providelittleenhancement of the surrounding fishery because of the dilution ffect, except perhaps in the cese of spedies that undetakelarge scde movements as pat of normal feeding behavior or ontogenetic habitat shifts (Rowiey 1994). Exceptions to this rule may erist. A large reserve in South Africa apperred to producesufficient numbers of a surf-zone fish spedies to replace the fish lost to fishing in adjacent, fished arees (Attwood \& Bennett 1994). Finally, Kramer \& Chapman (1999) suggeted that excessivespillover could retard reserve improvement, therdby reduing its effectiveness at larval export, and, conversely, that minimal spillover would reduce locd benefits and potentially erode public support. These considerations imply that careful thought must begiven to the spatial design of prospective marinefisheries sanctuaries, and to the management regulations petaining to fishing in their vicinity, if spillover effects are to be achieved.

4.13 Fishery enhancement from larval export

Sanctuaries aresen as having the potential to besignificant sources of reproductive propagules to an exploited population (Robetts \& al. 1995). The export of eggs and lavæfrom sanctuaries may provide the best possibility for sanctuaries to enhance fisheries (Plan Devel opment Tem 1990, Carr \& Reed 1993, Rowley 1994), especially for the most vul nerdblespecies (Roberts \& Pol unin 1991, 1993, Robets \& al. 1995). In the context of ovefished species with depressed populations and reproductive output, sanctuaries have the potential to besignificant hot spots in a sourceand-sink population landscapeand, therefore, keys to the recovery and sustainable exploitation of such speies

Historically, many exploited speries were thought to have naturd refugi a creted by theexistence of aees that could not befished (eg. too deep, too remote, difficult to locte, unfishable), sesons in which fishing was not possible because of wether, or because they were not known to harbor explaitablestocks (Beverton \& Holt 1957, Klima \& al. 1986, Davis 1989, Russ \& al. 1992, Bohnsadk 1993, 1994, 1996a Dugan \& Davis 1993, Jamieson 1993, Lozano-Alverez \& al. 1993, Waters \& al. 1993, Waters \& Maguire 1996, Fontenem 1997, Bohnsadk 1998, Watters 1998, Dayton \& al. 2000, McClanahan \& al. in press, Palumbi manuscript). In afew coses, fisheries regulaions have maintained naturd refugia that might have been lost othewise(Tegner 1993), and in others, species characteristics (eg. low detectability, lack of shoaling behaviour) may result in low catchability (Dugan \& Davis 1993). Both World Wars inadvertently provided a pseudo-experimenta confirmation of this idea by ffectively creting large sanctuaries in the N orth Sea which produced significant recoveries of overfished stocks (Cushing 1975). Hutchings (1995) suggested that offshore dosures of the northem cod fishery during winter and spring would reestablish the naturd deep-water refugia that had historically sustained the fishery. Such naturd refugia are apparently the ultimate source of a significant proportion of the rearuits to somefisheries, and, therefore, the remson why some apparently severdy overexploited fisheries have not collapsed (Campbell \& Robinson 1983, Polacheck 1990, Smith \& J amieson 1991, Dugan \& Davis 1993, Fonteneau 1997). Fishey over-capitalistion, open access, technologicd advances, and incresed knowledge have ediminted many such natural refugia (Davis 1989, Dugan \& Davis 1993), so that MFSs are now seen in somesituations \approx possible replacements for naturd refugia

Theextent to which lavd export from MFSs can supplement the productivity of naturd refugia and enhancefisheries, will depend on numerous factors assodited with the sanctuary, the focd species and theenvironmental charateristics of thefished arees Rowley (1994) has proposed that regional fisheries enhancement will occur only if 1) exported larveconstitute asignificant proportion to thetota land pool, 2) exported lanædisperse to arees suitable to rearuiting to the fishery, 3) there is a corre ation between the numbers of lavæe produced and lavæethat sette, and 4) laval settlement is limiting to rearuitment to thefishery.

4.13.1 Spatial characteristics and hydrodynamics

The placement, size and shape of a sanduary, with respect to the fished arees and oceen currents, will have alarge effect on the potentia for lavil export from sanctuaries to contributeto fisheries Detemining the reationship between a sanctuary's location and the fate of its reproductive output is a complex problem for severd reesons, such as

- the complexity and unpredi dability of hydrodynamic spatio-tempora paterns, a lest at certain sceles
- the long periods of timemany la væespend in the plankton (Dohety \& Williams 1988)
- the use of swimming, buoyancy control, orientation to smal-scalehydrodynamic feetures, and alteration of thetiming of metamorphosis by lanæeto modultetheir drift (Norcross \& Shaw 1984, Power 1984, Leis 1991, Rowley 1994, Stobutzki \& Bellwood 1994, Sponaugle\& Cowen 1997), and
- the numerous other factors that affect a lavæes survivorship, such afood availability and predator densities

Viewed in a different context, whether a sanctuary is placed in a lavd 'source' or 'sink' area will have a profound effect on its success (Robets 1997a). If marinesanctuaries are going to contribute to the recovery of exploited populations and theenhancement of fisheies, then thesizes, number, shape, character and, most importantly, location of sanduaries have to be carefully considered (Roberts \& Polunin 1991, Rowley 1994, Williams \& Russ 1995, Allison \& al. 1998, Bohnsadk 1998). Mange (pers. comm) has suggested that the effective placement of marine sancturies is an extremdy difficult problem, and fluctuations in oceen currents may render the potentia long-tem success of even the most carefully sited reserves highly problematic Fogaty \& al. 2000 havesuggested that understanding the re taionship between oceenographic conditions and dispersd characteristics is the most dhalenging and difficult problem assodited with designing effective reseves, and is the problem with the gretest leve of uncestanty and poorest understanding. Thecomplexity of this redtionship and the problem it presents have been identified by a number of authors.

- Robets (1997a, 1998b) proposed that if reaniitment from reserves is to enhance stocks in fished arees, then reserves need to be placed upstream of habitat patches for rearuitment within fished arees
- Rowley (1994) pointed out that those habitat patches could have been destroyed by fishing, leeving no placefor exported lavæto settle
- Jamieson (1993) identified a redted issue, namdy that the reproductive output of reseves locted 'downstream' from fishing grounds could belost, in thesense of never contributing to the lavd pool from which reanuitment to thefocd stock occurs
- Dayton \& al. (2000) emphasised that there ationship between reserve charateristics and hydrodynamics has to be examined tt the appropriatescde, which will bestrongly influenced by the scd e of thelave dispersd patterns of thefocd speies (Roberts \& Pol unin 1991, Car \& Reed 1993, Tegner \& al. 1996, Allison \& al. 1998)
- Dayton \& al. (2000) and Ha lpem (in press) dso cautioned that if the protected proportion of thestock is too small it will be unable to providefisheries enhancement
- Palumbi (manuscript) pointed out that in the cose of species with long-distance dispersd that the dilution effect would meen that reserves could at best makeonly a small contribution to the lard pod
- Ballantine (1997) argued that, in pradice, marinetopography and the patten of habitat distribution will strongly influence the placement and shape of reserves
- Car \& Reed (1993) referred to the "effective range of replenishment" as the area within which a successful reserve produces enough reanits to maintain focd populations, and they suggested that range would be a function of theinteration of environmental conditions and the developmenta, behavioural and ecological characteristics of thefocd spedies
- Wamer \& al. (2000) pointed out that to simultaneously achievesuccess at exporting lavæe and sustaining populations within reserves, the right balance of export and import or retention of lavæe will be required, but this bal ance may be unattanable in most situations (Robats in press), and
- Williams \& Russ (1995) reduced the problem to minimising thesize of the reservenework while maximising the number of habitat patches to which the newwork contributes rearuits, and cautioned that reserves creted in 'sink' arees would becompl \&dy ineffective

However, in some coses, location considerations may berdative y unimportant because

- lavæedo not disperse in the plankton (eg. surf-perches and many gatropods)
- planktonic dispersal is highly restricted in space or time (eg. Olson 1985, Shepherd \& Brown 1993, Tegner \& al. 1996)
- popultaions are cosed at the scd e of the reserve(Allison $\&$ al. 1998)
- habitat destruction by fishing outside reserves has diminated most suitabl e habitat upon which lanae can settle (Robets \& Pol unin 1993)
- the hydrographic situation is too complex to be able to decide what is upstream or downstreem, such as may bethe case when lavæ(a) spend months, and cover very long distances, in the plankton, (b) are capable of directed movements by swimming or buoyancy control, or (c) can control thetiming of metamorphosis (Norcross \& Shaw 1984, Power 1984, Leis 1991, Stobutzki \& Bellwood 1994, Sponaugle\& Cowen 1997), or
- location, and other charateristics, of individuad reserves are of secondary importance when reserves are established ∞ demographical ly connected networks (Bal antine 1995a).

4.13.2 Networks of sanctuaries

Although locd population enhancements (sanctuary improvement) have been observed commonly in single, small sanctuaries (eg. Russ 1985, 1989, Roberts \& Pol unin 1994, Robets 1995b, Jennings $\&$ al. 1996 Robets \& Hawkins 1997, Jemnings 1998, Palsson 1998, Halpem in press), it is unlikedy that a aingle sanctury, espedally if it is smal, could be effective tt enhanding a fishery exploiting a much larger area (MacDiarmid \& Breen 1993, Attwood \& al. 1997b, Bohnsadk 1998, Dayton \& al. 2000). Therefore, severd authors have suggested that effective fisheries enhancement will depend on a network of 'connected' MFSs, paticularly when the network encompasses a variety of habitas (Dyer \& Holland 1991, Car \& Reed 1993, Dugan \& Davis 1993, MoManus 1994, Ballantine 1995a 1995b, 1997, Quinn \& al. 1993, Rowley 1994, Attwood \& al. 1997b, Lauck \& al. 1998, Roberts 1998b, Car \& al. in press, Fujita $\&$ al. 1998b). Thesimple fat that most marinespecies have one or more highly dispersivelifestages (eg. planktonic lavæe) meens that a nework of sanctuaries will be a much more effectivetool to manage such open populations than will a singlesanctuary (Ballantine 1995a), no mater how well the later may be designed. Becausemany, if not most, sanctuaries would not belargeenough to besedf-sustaining, unless currents producesignificant land retention, sanctuaries will be dependent on non-sanctuary arees or other reserves for supplies of rearuits (Robets \& Hankins 2000). Thus, networks of connected sanctuaries may be required to ensure reserve success, espedally in cases where little reproduction occurs outside sanctuaries (Car \& al. in press). In addition, networks may bean effective way to inceesethetotd area proteded, becausesingle large sanctuaries may be politically very difficult to establish, and by spreading the risk they provide some insurance against sancuuary failures dueto locd or regiond events (Allison $\&$ al. 1998, Fujita $\&$ al. 1998b).

If MFSs or MFS networks are to enhancefisheries they need to besdf-reauiting or sedf-sustaining, otherwise they will be dependent on reanuits from fished arees, which would defet the purpose of establishing the sanctuary for ovefished species (Car \& Reed 1993, Bal lantine 1997, Robets 1998b, Wamer \& al. 2000). In theory, and under certain droumstances, a single or small number of large sanduaries could be highly
ffective(Plan Devd opment Team 1990). Severd authors have refered to the ‘SLOSS' (single large or severd smal) debate in terestrial conservation soience However, this distindion is less rdevant in the marine context because the extremeresistanceshown by commerial and reaetional fishers to the concept of no-take reserves means that most marine reserves are, and will continueto be smal. The SLOSS debate is a so less popular in marine conservation biology because of the poor understanding of the processes that would att to connect severd smal reserves in an effectivemanner. Given the very smal proportion of the global oceens that is compledy protected from fishing and the resistance to sanctuary etablishment, choices regarding the number and placement of sanctuaries will probably be driven more by the probability of success than by size and complexity. Nonetheless, aspects of the debte assodited with factors such as speies diversity, representation and edge effects are petinent to the design of any reseve or reserve network. Bohnsack (1998) suggested that as long as each reseve is largeenough to retain reproductive populations, the high reproductiverates and wide dispersd of most marine organisms meens that a newwork of small reserves would be moresuccessful than afew large reserves Robets \& Hawkins (2000) suggested that a newwork of smal reserves would contain, on the average presumably, a greater range of habitas than a single large reserve, thus suggesting a trade off between achieving the objectives of ensuring sef-sustaining reseves and sufficient habita diversity. Ballantine (1995a 1997) argued that the individuad charateristics of reserves and their connetivity are of secondary importance more important is designing a newwork that is representative (eg. of different biogeographic regions, habitats and communities), is redundant (i.e contains replictes for insurance against accidents), and is sufficiently large (number and area) to ensure sustainability of resources Considering these different arguments, MoManus \& Meñez (1997) suggested that the ided network would havemany small and afew large reserves

4.13.3 Larval pool contribution

The primary pathway from lavd export to fisheries enhancement will have to indude, at leest, the processes of movement and survival during the dispersd phæs, settlement and ecol ogical reauitment, and growth to agelsize of reauitment to thefishery. These processes will ffect dl lavee that could potentidly settle in fished arems, regardless of where they were produced and, in that context, theenhancement should be proportiona to the magnitude of the contribution made by sanctuaries to the larval pool relative to that made from fished arees (Rowley 1994, Roberts \& Hawkins 2000). Populations subject to severe recuitment ovefishing may have very low rates of reproduction from fished arees, in which cose a small, highly productive sanctuary could have a large impact on the population ∞ a whole (Pol unin 1990, Robets \& Polunin 1991, Rowley 1994). On the other hand, even a high rate of reproduction in a small sanctuary will be unable to compenste for a very large difference in size between the sanctuary and thesurrounding fished arees (MadDiarmid \& Breen 1993).

The distribution and fates of exported lavæe will not dways be the same as that of lanæeproduced outside of sanctuaries Severd fators could leed to lanæe produced within sanctuaries having a greter probability of successfully reaniting to thefishery, thus inceering the degree to which sanctuaries are responsible for fishery enhancement.

4.13.4 Placement

The placement of sanctuaries will play an important rol ein determining thefate of lavæ that are exported. Larwe produced in sanctuaries in ided locations, with respect to the distribution of habitat and the pattems of advective currents, will have a greter probability of satling on high quadity habitat patches and eventually reauiting to the fishery (MaManus 1994, McManus \& Meñez 1997, Robets 1998b).

4.13.5 Seasonality

In aress where hydrodynamic and/or nutrient conditions change sessonaly, the timing of reproduction and thesynchrony of spawning can significantly influencelarval dispersal and survivd (Tilney \& al. 1996, MaManus \& Meñer 1997, Trippd \& al. 1997). The dispersd of lanæeto suitablelocations and habitas for successful settlement may depend on current regimes that occur seesonally (Dayton \& Tegner 1990, Car \& Reed 1993, MaManus \& Meñez 1997, Dayton \& al. 2000). Timing of the production of lanæto peaks in pelagic productivity and environmental suitability, and settlement conditions, may beciticd to their survival and rapid growth (Leggett \& DeBlois 1994, Tilney \& al. 1996, McManus \& Meñez 1997, Dayton \& al. 2000). And, wherethelength of the 'growing seeon' is limiting (Chambers 1997), ealy spaming would increse the chances of lavee completing devel opment before conditions deteriorte Thus, if the effects of fishing indudea disuption of the norma timing of reproduction, then sanctuaries could produce a much larger proportion of lavæethat would experience 'norma' dispessd, achieve rapid growth whileplanktonic, and complete their devel gpment.

4.13.6 Adult characteristics

To theextent that dharacteristics of adults in sanctuaries (eg. larger size, olde, better physiologicd condition) result in better gametes (eg. larger, better provisioned eggs), higher hatching success and superior lanæe (eg. greter reseves, larger, fater growing), and these characteristics are persistent, then those lanæwill have a greter probability of surviving the lavd stageto rearuitment (seereferences in Sargent \& al. 1987, Chambers \& Legge 1996, Chambers 1997, Trippd \& al. 1997, Suthers 1998, McCormick 1998). Higher survivd could result from higher instantaneous survivd rates (perhaps due to better lavel condition), and/or from faster growth rates, which should result in less timespent in the plankton (Dayton \& al. 2000). Because mortdity rates during the planktonic stageand immedi đdy after settlement can bevery high (Sale \& Ferdl 1988, Car \& Hixon 1995, Robets 1996, Caley 1998, McCormick 1998, Cadle 1999), fater growth rates can, in theory, trandate into higher survived rates (Shepherd \& Cushing 1980, Houde 1987). However, empiricd support for this idea is scant (seFrank \& Leggett 1994).

4.13.7 Larval condition

Superior land condition may confer superior junenile condition, which in turn could meen improved juvenilesurvival rates and erlier reauitment to thefishery (references in McCormick 1998, Suthers 1998). McCormick (1998) notes from severd fied studies that 30-85\% of juveni lefish are removed by predation very shortly after settlement, and, therefore that it is logicd to assumethat juvenile condition will beredted to survival probability.

4.13.8 Consistency

A consistent production of lavæfrom sanctuaries, compared to fished arees where reauitment may be highly sporadic and subject to failures, should result in sanctuaries meking a disproportionte contribution to rearuitment when averaged over yeers, and stabilise reanitment to fisheries (MdManus 1994),
4.13.9 Stock-recruitment relationships

Viewed in a different light, the potentia of marinesanduaries to enhance fisheries depends to a large extent on stock-reanuitment re ationshi ps It is emy to seethat fishery enhancement is dependent on the larger reproductive output of sanctuaries produring higher settlement and fishery rearuitment rates (Rowley 1994), and, ultimately, larger stocks (McClanahan 1997b). Fisheries science has provided two basi c modd s to desaribe this redtionship. The Bevetton-Holt Mode shows a positiverdaionship at low stock levels that reeches an ळymptote, after which there is effectively no redionship (i.e rearuitment remains constant astock size increes) (Beverton \& Holt 1957), whiletheRidker Modd stats the same, but becomes negative ater reaching a peek (i.e recuitment increess and then dedines as stock size increes) (Ricker 1954; seRoberts 1996 Figure 4.3 for a comparison). Empirica studies haveshown that therd ationshi p is subject to a large amount of noise and meesurement error, and it is often very difficult to achieve a dosefit of datato the mode, le done distinguish between the modds. There is an extensiveliteraure deeling with these issues, the difficulties invol ved in demonstrating stodk-rearuitment reationships, and with their importance to the dynamics of exploited populations (eg. Ricker 1954, Beveton \& Holt 1957, Pitcher \& Hat 1982, Beveton \& al. 1984, Rothschild 1986, Hilbom \& Waters 1992, Gilbet 1997). As disaussed bedow, a central assumption behind these modes is that stock-rearuitment redaionship is driven by density-dependent dynamics (Jamieson 1993).

Despitesubstantid noise and uncertainty in theredtionship, there aregood reesons to expect that many species will show a positivestock-reauitment retaionship (i.e a change in stock size will produce a change in rearuitment that is proportional and in the samediredion, and vice versa), at leat at low stock levels (athough some would suggest only at low stock levds, Cushing 1975). Meta and yses of collections of data sets have generdly supported this viev (Robets \& Polunin 1991, Iles 1994, Myers \& Barrowmen 1996; however, seGilbet 1997, Myers 1997a). Bæed on the strength of thestock-reauitment redtionship at low stock leveds, Robets \& Polunin (1991) argued that reserves will significantly contribute to reauitment in fished arees when stocks are low there but high in reserves-in other words in the case of a reserve established to aid the menagement of an ovefished stock. Without a positiveredtionship at low stock leveds, there would belittlejustification for establishing a fisheries sanctuary, as increesing stock size and reproductive output in protected arees would have no effect on rearuitment to the population as a whole and, therfore, provide no or littleenhancement to fisheries Thelack of a reationship, or the presence of a negativerdationship, at high stock levels may bereditivey unimportant when the objective is the conservation and recovery of ovefished stocks. However, it has to betaken into account when considering the efficacy of sanctuary etablishment for modertd y fished spedes or assessing the long-tem performance of a sanctuary established for ovefished speies, espeially given the different predictions of the Ridker and the Beverton-Holt modes

A stock-reauitment reationship is one expression of density-dependent population regulation, a centra issue in marine ecol ogy in lat severd decades Up until mid-1970s population sizes of cord-ref fishes were
thought to be control led by density-dependent processes operaing on juveniles and adults, and their communities were thought to beequilibria and structured by competition (eg. Smith 1978, Anderson \& al. 1981). Consideration of the naturd spatio-tempord variation in these systems spamed an atemative view in the 1980s, namd y that variation in population size and therefore community structure, is largely detemined by typically low rates of highly varidble reanitment (Sale \& Dybdahl 1975, Talbot \& al. 1978, Dohety 1981, Vidor 1983, Sale \in al. 1984, Dohety \& Williams 1988, Dohety \& Fowler 1994a b), aviev that eventually spreed beyond the scope of cord-ref fishes (Cadey \& al. 1996, Tegner \& al. 1989, Shepherd 1990). In many caes, populations were considered to be under-sturated, i.e below levest at which postsettlement density-dependent processes would have a dhance to be important, because of insufficient reauitment (Dohety \& Williams 1988), a view supported by numerous cord-reef studies that havefailed to find evidence of post-settlement density-dependent regulation. However, recent reserch has suggested that the phenomenon may have been missed in erlier studies because it appers to operte only in the first few hours or days ater settlement (Car \& Hixon 1995, McCormick 1998, Cæelle 1999 and references therein). In addition, severd studies of other systems have found density-dependent effects on juvenile growth rates (references in Frank \& Leggett 1994).

These two hypotheses and the reative importance of recruitment and post-recuitment processes in population dynamics and community structure have been extensively investigated, and ysed, revieved and debated in thelatt 15 yers (eg. Sissenwine 1984, Levin 1986, Dohety \& Williams 1988, Mapstone \& Fowler 1988, Undewood \& Fairwether 1989, Sale 1990, Fogaty \& al. 1991, J ones 1991, Booth \& Brosnan 1995, Hixon 1998). Bæed on and yses of the two processes and studies of their interation (eg. Connell 1985, Dohety \& Sale 1985, Shulman \& Ogden 1987, J ones 1991, Caley 1993, Hixon \& Beets 1993, Car \& Hixon 1995, Eggleston \& al. 1997, Chesson 1998, Levin 1998, Cæelle 1999), a compromise view is emerging in which stochastic processes areseen to produce a high degree of spatial and tempord variability in settlement, and that this pattem has a strong influenceon population size and community composition, but that it is modified by density-dependent post-settlement processes affecting growth and surviva, such as habitat selection, predation, competition and migration (Shulman \& Ogden 1987, Wamer \& Hughes 1988, Hixon 1991, J ones 1991, Caley \& al. 1996, Robets 1996, Ault \& J ohnson 1998, Booth \& Walington 1998, Hixon 1998, Caslle 1999). Therd ative importance of these two processes appers to vary among species (Tol imiei \& al. 1998), among yeers depending on the leve of recuitment (J ones 1990, Cæell 1999), and depends on the scde of thestudy (Ault \& J ohnson 1998).

It could beargued that, from the perspective of the objectives of MFSs, it is uni mportant when or which density-dependent process is operating, as long as there is a positive redtionship between thestock size (population density) and reauitment to the fishery. Indeed, it is possible that density-dependent control could occur t thetime of reproduction or during the planktonic phæe Wehave not seen a disaussion of density-dependent control of reproductiveoutput, and density-dependent control operating on planktonic lavæsems an are of study with insurmountable logitic difficulties (Hixon 1998). Nonetheress, the existence of a positivestock-rearuitment retaionship, espedialy at low stodk leveds, provides strong support for the daim that sancuaries have the potential to enhance depleded fisheries However, while post-settlement density dependence processes would enhance the effectiveness of maine sancuaries, density dependence operaing on adult growth or reproductive rates could eerily reduce their effectiveness, at lest in the long run (Parish 1999b, Mange pers. comm)

The large degree of uncertainty assodited with stock-reauitment relaionships, thelack of consensus regarding theforms of density-dependent regulation, thelargespatid-scdes involved, the high degree
of variability in rearuitment, and difficulties invol ved in studying the movements and fates of larvæemakes studying the lavd-export pathway very difficult in the absence of more advanced techniques (references in Dugan \& Davis 1993, Allison \& al. 1998). Car \& Reed (1993) pointed out that the redaionship between egg production in reserves and rearuitment to the fishery is dependent on severd processes acting on lavæe (eg. retainment, advection, predation, stavation, settlement), all of which are very difficult to study. As a result most reserchers have recommended, or haveturned to, the use of modds to study the potentia for fisheries enhancement through laval export.

In summary, it appeers that MFSs have the potentia to enhance severdy depl ted fisheries However, it is not obvious whether they have the potential to do so for moderte y or lightly depleted fisheries Their most important function in the latter dircumstances may be in contributing to the prevention of ovefishing and providing a hedge against stock collapse dueto mismenagement and/or environmental stresses Further, it appeers that thesuccessful replenishment of overished stocks by sanduaries will depend on the interaction between the biol ogicd characteristics of the focd species and its ecosystem, the spatial characteristics of the reserve(s), and the hydrodynamic charateristics of their environment. Although, theory and evidence suggest that sancuaries will besuccessful in generd, predicting how successful they will be and for which speeies, will beextremely difficult.

4.14 Summary

It is generdly hedd in the litecture that the primary pathway leding from sanctuary etablishment to fisheries enhancement must involve the process of lavel export. In a sense, this pathway can beseen a chain of processes or events necessary to produce fisheries enhancement. If we consider the daim that sancuary establishment will producefisheries enhancement as a hypotheis, then breeking any link in that chain, what Dayton \& al. (2000) identified a a "bottleneck", may discredit that hypothesis. The links themsel ves are not important, because if a direct connection between sanctuary etablishment and fishery enhancement could bemade, then the daim would besupported. That connection could bemede most simply, from a logicd standpoint, by an experiment showing that fisheries benefited from reserves being established without studying or having any knowledge of theintervening processes Of course, it is difficult to design such an experiment, given the difficulty of achieving replication and proper controls. Altemativedy, the connection could be made by supporting the eistence of the intevening links, as long as the connection was made between establishment and first link, and the last link and fisheries enhancement. The conceptual mode above represents that chain, with the links chosen to represent what we understand to be key ecol ogicd processes along that dhain. This chain or pathway (shown with large arrows in Figure 1) is summarized in Table 5 and described below.

Table 5. Summarised pathway illustrating the steps (A-G) leading from sanctuary establishment to larval export from that reserve.

Sanctuary Established (A)
\downarrow
Fishing Activity \& Mortality Ceases (B)
\downarrow
Age/Size/Number/Density Increases (C)
\downarrow
Spawning Biomass Increases (D)
\downarrow
Spawning Activity/Efficiency Increases (E)
\downarrow
Reproductive Output Increases (F)
\downarrow
Net Larval Export Occurs (G)

Once a MFS has been established (A), the cessation of fishing activity and, therefore, fishing mortality are givens (B), and not generally subject to question, so long as the 'no-take' staus of the sanduary is effectively enforced. Fishing mortality rates may not reed zero if there is a smal amount of poaching or if intensefishing a sanctuary boundaries depletes focd populaions at the margins of the sancuary. Nonethe ess, these problems should berdatively emy to monitor and, as long as they are not serious, cessation of fishing adivity and fishing mortality can be reesonably expected to cccur almost automatically as a consequence of sanctuary establishment and protection.

As argued errier, in the absence of fishing mortality, fishing-impacted populations within the sanctuary should begin the process of recovery, in what wehave cal ed 'sanctuary improvement', which has severd components. Maturation of the agelsize structure (indi viduds live longer, so meen ages and sizes increme) and increses in population size (C) are logica and well documented consequences of the lower overd mortaity rates in sanctuaries (reviewed in Section 5). Unless the sanctuary has been placed in very poor habita, thefocd speies is unsuitable (eg. a migratory peagic), the focd population was not depressed, the reserve is too smal, or unforeseen secondary interactions intefere, these changes are almost cetain to occur. In other words, this step can be eeily essured with a modest amount of attention given to the design of the sanctuary (Robets 2000).

An increme in spaming biomess (D) is a logicd consequence of this last step (more individuds of larger size and age must eventually increse the spavning biomass), and can beverified for thosestudies in which enough is known dbout the biology of species to identify which size dases belong to the spawning stock. Increesed spaming biomess is most like y to produce an increse in spamning adtivity and, for the reesons given erlie, an increesin spamning efficiency (E). Once again, these changes may be dependent on judicious design.

For example a sanctuary that did not contain spamning habita, could build up a largespamning biomess without any spawning adivity taking place It is possible that othe, uncormon situations, such asturation of suitable habita by ateritorial spedes, would limit the increme in reproductive ativity. Increring reproductive ativity and efficiency would, by definition, result in an inceere in total reproductive output (F) for thesenculury. Then assuming remonable dispersive dynarics and a lower reproductive potential outside the sancuary, a net export of eggs and/or lavæefrom the reserve would ocar (G). Although thelat three steps have not been seriousty questioned in the literdure they sem a logical and inevitable consequence of the presiousteps, but they re unveified in most studie of marine reseves From a praticd standpoint, if net lavd export could beshown direetly, it would not be necessary to demonstrate the errlie steps Howeve, direet demonstration of the lave-export step is geneally considered to bedifficult, which is one of the remons why most tudies have focussed on etzali ishing its prearisors ($\mathrm{B} \& \mathrm{C}$), and reying on logica agument to infer that laved export is, or should be, ocaurring.
As disussed erlier, secondary pathways led to the processes of spillover and stability emancement (medium sized arows in Figure 1), and intema pathways involving ecologicd dements othe than the focd spede are seen to contributeto senctuary improvement (small-sized arows in Figure 1), and, therfore, to the three fisheies enhancement processes It is generally considered that theee pathways will not be the primary mechanisms by which fisheries enhancement is achieved, but the effetiveness of the primary pathway may be strongly influenced by the strength of the othe mechanisms, eppeially those that contributeto sancuary improvement. Continuing the primary pathway we proceed from lavd export to severd appects of shart-term fisheries enhancement ashown in Table 6.

Table 6. Summarised pathway illustrating the steps (G to M) leading from the process of larval export from a sanctuary to several aspects of fisheries enhancement.

If we accept that substantial lavd export (G) occurs as the result of sanctuary establishment and improvement, and if sanctuary placement is approprite, then it follows that thesize of thelarva pool of thefocd stock will beincresed in size, and possibly quality (H). Here, however, we encounter one of the biggest questions about the potential for sanctuaries to enhancefisheries Will an increme in the number of lavæe incremetherates of settlement and subsequent processes? This question gets to the heat of the uncertainty surrounding stock-reauitment relaionships. If we assumethat somedensity-dependent process is not limiting the rate of settlement, then more larweshould result in moresetlement (I). Likevise if density-dependent processes are not limiting the growth, survival and reauitment of post-settlement individuds, then incremed settlement rates may meen incremed recruitment to the fishery ()). Howeve, these are big 'ifs'. Theory suggests that this link is most likey to be relised at low stock sizes, in other words for sanctuaries established to ad the recovery of an overished stock. Othewise, it will be very difficult to predid the effect of land export.

Assuming that the link is made, numerous factors will influence therdationship between thesize of the land pool and reauitment rates, but unless thosefactors interat with sanctuary-spedific charaderistics, the contribution of laved export will besimply proportiond to its contribution to the laved pod, scded by thestrength of thestock-rearitment reationship. If laval export does increesestock sizes, then it follows logically that catch-per-unit-effort would improve, and, assuming thesize of thefishey does not change, that incress in yid would follow (K). Whether fisheries yidd improvements arelating will depend on the behaviour of individual fishers and the responses of thefishery a a whole The potential for inceed yidd could belost if fisheries respond to inceed CPUE by increeing fishing effort. It is possible that somefishers will beneit, at lest in theshort-tem, if they areable to exploit the spatio-tempord characteistics of reserve produced stock enhancements However, fisheries as a whole mey not improve, or may even suffer, as a result of an inapproprite response Viewed in another way, increesed stock may translate into larger catches, yidds and profits for fisheries, or altematively into improved stock staus and re iability without inceem catches In the later cose it is still possible that yidds and profits may increse through improvements in CPUE. As in many situations, the sustainability of stodks and effectiveness of management actions may depend on the control of fishing capadity (Allison \& al. 1998, Fogaty 1999). Meesuring the fisheries benefits or costs of sanctuaries will be complicated, and should ental carefully assessing changes at different levels, such as

- dhanges in thestatus, size and distribution of thestock
- dhanges in CPUE, size of catch and quadity of catch for individuad fishers
- fishing effort alocation responses, and
- total catch and yied for fisheries

What we are broadly cal ling fisheries benefits will extend beyond the fisheries themsel ves Benefits may be passed on to those institutions dosed linked to fisheries (L), such as processing plants, shipping firms, reail outles, bot builders and suppliers of fishing equipment. Findly, thegrowth and/or improved sustainability of fishing industries will have flow-on effects for fishing communities, the public and retced regiond development and socio-economic systems Depending on the response of thefisheries, the typeand quadity of their products and seevices provided to the community may change, independently of whether their profit is improved. Sumaila (1998) argued that the comprenensive evduation of the utility of MFSs must ind ude bioeconomic criteria such a the nutritional needs of the community and management costs

In summary, we condudethat theoreticd expectations suggest that MFSs have a strong potentia to behighly effective fisheries management tods for many fully exploited and ove-fished spedies It is derr that fishing can have profound effects on marine resources, habitats and environments, and that fever and fever arems of the world's oceans arefreefrom these impats. There can belittle doubt that protecting parts of themarine environment will help to lessen the impat of commercial and rearetional fishing ativities Therearegood reesons to expect that environments dameged by fishing will improve when protected, athough it is critical to note that accuraty predi ding theform and extent of improvement will bevery difficult. Assuming that sanctuaries are carefully designed and that ther 'no-take' staus is enforced, then it is remsonabl eto expect that in timethey will contain hedthy populations of focd and non-focd species, and 'norma' habitas and ecosystems. Those populations will be comprised, on the average of older, larger and morefecund individuds than would be the coefor unprotected, fished arees It is assumed that these protected populations will become sources of excess production that will enhance explaited populations outside sanctuaries Whilethis is cetainly possible it depends on speeific conditions being true Fisheies enhancement through the'spillove' of juveniles and adults that is moresignificant in quantity and geographic scel e will depend on criticd fetures, such as focd spedies selection, and the size, location, number and shapes of sanctuaries Fisheries enhancement through 'laval export' will beeven more problematic, depending on 'sanctuary improvement' actually producing net laval export, that export making a significant contribution to thetota laval pool, and, most importantly, the increme in thesize of the laval pool transtaing into an increese in settlement, and ultimatedy, fisheries rearuitment rates Again, these outcomes are highly dependent on the spedies sd ected and the characteristics of the reserves Overal, there is convinaing theoretica support for the idea that wal designed sanctuaries will providesignificant fisheries enhancement for those spedies of greetest concem-the overfished high value spedies most in need of improved fisheries management tools.

5. THE EVIDENCE

In this Section, we consider the empirical evidence relating to the potential benefits of marine sanctuaries for commercial species and their fisheries, and consider some aspects of the size/area required for sanctuaries. The research papers that contain relevant evidence are summarised in Appendices 1 and 2. In the text here we discuss some of that evidence.

5.1 Empirical Evidence for Improvements Within Reserves

The benefits within reserves are documented within three categories incresed dbundance of focd spedes, increed sizelage of speies and incresed fecundity of species In al three ces, results are grouped as finfish or shellfish. Following these, some of the practicd difficulties assoitted with studying marine reserves to copture reiablefied data are discussed.

Despitethe potential for marine reserves to assist with fisheries management issues, there arefew wdldocumented examples of their actual application in fisheries systems. Moreover, studies of marine reserves have concentrated almost entirely on ref systems and other high topographic-relif habitats such as rocky substrate, segress beds, and kelp forests (Auster \& Mal testa 1995). Becausetropicd and temperte refs are aritica habitat for meny fish spedies, and arewal defined environments amenable to detailed experimental investigations, reserch interest has focused on these habitats. Ref fish are also heavily targeted by inshore fisheries (Edgar \& Barret 1999). As a result, a substantiad body of evidence has acaued to demonstrate the effect of marinereserves on ref fish populations (eg. Robets \& Hawkins 1997). However, much less is known about the effect of marine reserves locted in othe types of ecosystems, and particularly continental sheff and open oceen environments.

Generdly, the habitat requirements and life history strategies of deeper water species are uncertain and few reserves have been creted to protect ariticd open oceen habitt. Wheresuch reserves do exist, their remoteness often predudes soientific monitoring for evaluation purposes. Possibly one exception to this approad is the Georges Bank region off Canada where the importance of habitat to fish with extended ranges has been studied using remotetechniques (Auster \& Mad atesta 1995).

Themajority of studies of marine reserves have compared a reserve with other aress of simila habitat located nearby. Vey few studies are designed as 'before and atter' comparisons, or BACI comparisons ('before' and 'afte' 'control' and 'impat'), which would providethe most convining evidence of a reserve ffect. Selecting control arees is a typica difficult design problem-theremey be natural differences between arees studied that are initially undetectable to reseerchers and these differences may distort results on the effects of reserves (more design problems are disaussed in Section 5.1.4). Many studies foas sol dy on abundanceldensity and sizelbiomess changes of fish spedes, with few documenting changes to reproductive output. Whilst most studies have compared reserves with havested arees after less than five yeers protection, a number of time
series studies have been undetaken in the Philippines, Kenya and Tarmania (refer to Appendices 1 and 2). Hal pem (in press) recently reviewed 89 empiricd studies that examine the reserve ffect in 73 temperte and tropical no-takereserves, covering a range of sizes and using 112 independent meesures but most were restricted to ref habitas.

5.1.1 Increased abundance of focal species

Changes to the abundance of focd species inside a marine reserve are an obvious (and often the most detectable) benefit from creation of a reserve Many studies have reported rapid increses of in-reserve abundancefollowing the creation of marine resenes, espedialy of large piscivorous fish, which are notably absent from exploited arees (Robets \& Pol unin 1991, Rowley 1994, Fereira\& Russ 1995). Positive changes typically occur within 2 to 4 yers following area protection (Cater \& Sedbery 1997). Conversdy, once the protection afforded by a marine reserve is removed, stocks of focd species are quickly depleted, and speies abundancefallsto prereservation levds (Russel 1997). After reviev of 89 studies covering 73 reserves (mainly refs), Hapem (in press) reported that, comparing densities inside the reserveto outside the reserve, higher densities were found inside the reservefor cami vorousfish (66% of reserves), planktivorous and benthic invertebrate eting fish (62% of reserves), and herbivorous fish (53% of reserves).

Finfish species
Increesed abundance of finfish species has been documented in many marine reservestudies, most notably in relaion to the density of previously havested spedies Themajirity of studies of species abundance have concentrated on cord reff predatory fish, which arethemajor target fish in many tropica fisheries and the most severdy affected by fishing mortality. Large predatory fish arestow growing, havelow reproductive rate and aregeneraly territoria, reduing their reilience to fishing impacts (Russ \& Alcala 1998b). Meesuring the reserve effect for such species is difficult because of uncetainties about the length of timeit might takes ther populations to recover, espeially if thesetarget fish were previously exploited intensivedy. Studies on the effects of reserves have regularly reported abundances of targe spedies up to 25 times greater within reseved arees than in comparable fished arees Typically, abundances increme by $200-400 \%$ within severd yeers (refer to Appendix 1). A six-yerr study of the effect of reserve protection on cord trout (Pleatrapomisleepardus) at the Houtmen Abrol hos Is ands in Westem Australia found that all size dasses increes between 8 and 16 -fold in the reserved aress (N ardi \&al. manuscript). Bæed upon these and other studies, and despite some variability in the documented outcomes of reserve protection for such finfish spedies, it appers that density differences are maximised about 6-8 yeers following aree protection. It is therefore der that studies intended to meesure the reserve effect must cover at leet 3 yers, and preferably 5 yers at a minimum, and should aim to continuefor 10 yerrs in order to confirm that the reserve effect persists.

Following dosure of Bramble Ref on the Gret Barrier Ref to fishing, as reported by Russel (1997), cord trout inceesed grealy in size and numbers on theref. This was due in pat to a large pulse in rearuitment which occurred independently of area protection. In evduating reseve outcomes, it is therefore important to beableto recognise theinteration of natura dynamics with the effects of area protection, and to ensure that senctuary success is not confounded with a pulse in naturd recuitment or other episodic factors that may be transient. Similaly, interpretation problems wereencountered by Bennett \& Attwood (1993) who attributed
episodi c catch rate patems in their South African data to the sampling design. Also, themigratory nature of somespecies (Untrina canariensis Argrosmes hddepidtus Pomatomes sal tatrix) was considered to account for the absence of any detected dhanges in abundance following area protection. The dominance of rearuitment in fish life history strategies meens that, in fied sampling, designs to assess incress in spedies density following aree protection should incorporate reauitment pattens that may beepisodic rather than regular and cydical (Russ \& Alcda 1989, Dugan \& Davis 1993).
Changes in abundance flowing from area protection are not a ways direct. A common observation is that the abundance of predators inceess, but there is a stabilistion or even deceese in the abundance of non-focd spedies (Chi appone \& Seley 2000) and juveni le herbi vorousfish (Robets \& Pol unin 1991, Maqpherson \& al. 1997). This phenomenon was evident in the Bahames where non-target grouper spedies were more abundant in the fished ares than in the reserve (Chiappone \& Seeley, 2000) due possibly to reduced competition for resources between target and non-target species, or because non-target grouper species affected post-setlement survivorship of target groupers through competition or predation. Samoilys (1988) noted no increese in tota fish abundancefol lowing area protection, athough groupers weresignificantly more abundant, and became depleted once protection was removed.

Dufour \&al. (1995) compared the abundance of fish inside and outsidereserves in 1992 with an erlier 1980 census and noted that no consistent patem in abundance had occurred. Also, the mortaity of juvenilefish inside the reserve was higher than that outside The authors interpreted the presence of transient predators outside the reserves a indi cating increed predation on smaller fish inside the reserved arees Similaly, Robets \& Polunin (1992) reported that thesurgeonfish (Acanthuns migrofusus) in the Mediteraneen were nerly threetimes more abundant in aress where fishing occurred than in unfished arems This phenomenon was attributed to predation-thefocd spedes [groupers] were fished down, allowing numbers of its surgeonfish prey species to increse McClanchan (1996) similaty showed how fishing resulted in lower yidds by dhanging predator-prey interations on cord refs

Predator-prey effects dealy occur in and around reserves, but snapshot sampling designs make it difficult to detect the influence of other variables, such as recuitment and habitat differences, on changes in fish abundance insideand outside reserves. Whilethe effects of explaitation and protection on individua species arerdatively eeily documented, community effects are less predi dable and their implications less apparent (Buxton 1996).

Anothe behaviourd factor that may complictesampling designs and the interpretaion of experimenta dataisteritaridity. Largefish (commonly found in reserves) require larger teritories, therefore a deceese in density or dbsol utenumber of fish may be observed in a reseve due to spillover, forced because of the enlarging territories required by larger and more mature fish (Paddack \& Estes 2000). Also, some spedies may be aggressive and drive out members of their own spedies (intefference comptition). Problems can also aise if the fish preys upon juveniles of its own spedies, eg. rodkfish. Thelarger adults in the reservecan potentially consume a greter number of individuds than smaler, less numerous adults in unprotected arees (Paddadk \& Estes 2000), therefore no change may be apparent or even a decrees in the density of focd spedies may occur in a reserve

Shellfish species

A number of studies-both theoreticd and empiricd-have examined how marine reserves benefit populations of invettebratespedies and many have reported incees in abundance or density. For example, the meen size of dbal one in a reseve was greter than those in non-reserved ares, as a result of the incresed abundance of large abd one in the reserve However, there was no overal increse in abalone density in the reserve, becausesmaller abalone were found to dedine in abundance (Edgar \& Barett 1999). This patten of changes in abal one was considered to be possibly caused by intreapedific competition for space and other resources (Edgar \& Barett 1999).

Laick (1998) detemined that the effects of area protection in rocky infratida zones in South Africavary from spedies to speies Removing brown musseds and large grazing gastropods caused an increee in algædue to an inceere in available space, which led to a decreme in abundance and biomess of sessil efilter feeders and microalgal grazers and an increese in spedies which are associted with macroal gæe

Rock lobsters (dso known as spiny lobsters) have been observed to increme in density in marinereserves, by as much as 260 percent (MacDiarmid \& Brean 1993, Kelly $\&$ al. 2000a). Using the age of eech of 4 reserves (3 yeers to 21 yeers atter cretion), the meen density of spiny lobsters (J asus emardiai) have been estimted to increme in dbundance between 3.9 and 9.5% per yerr of the reserves' life (Kdly $\&$ al. 2000b). Lobsters can play a citical rolein structuring reef invertebrate assemblages -in high densities they have the ability to prey on mussels and othe filter feeders causing a dhange in ecosystem dynamics (Barka \& Branch 1988, Edgar \& Barett 1999). Large lobsters have been dbserved to undertakesummer migrations to deep offshore patch refs to scavengefor bival ves, and to aggregate into groups, so the sampling design is dearly an important factor affecting the acauracy of reserveevduations for lobsters (MacDiarmid \& Breen 1993, Kdly \& al. 1999). Othe beneficiaries of reseves indude Queen conch, where the density of adults and lavæe have been found to be much greter in reserves (Stoner \& Ray 1996); and Atlantic sea scal lops which have shown increses in doundance and biomess when protected from fishing (Murawski \& al. 2000).

Not all studies have reported increes in abundancefollowing the establishment of a marine reserve No noticeable differences in sem urchin (Evechinusdiadias) numbers were observed insideor outside a marine reserve in Nev Zeland, and there was no dbvious explanation for this patten (Cole e al. 1990). It was thought that the benefits of aree protection had perhaps alredy been expressed before monitoring commenced. In Califormia red abalone populations responded positively to 10 yeers of aree protection, but green and pink abalone populations did not recover in protected arees until mature adults weretransocated (Tegner 1993). These findi ings indi cate that recovery may not ocaur naturally in MFSs where broodstock numbers are depl ted below recoverdble levds because of overfishing, or where habitats are marginal.

It has been suggested that sea urchins may not benefit from marine reserves at al. A dedine in Paracentraus lividushas been dbserved in protected ares attributable to inceesed predation by predatory fish (Sala a al. 1998b, McClandhan \& al. 1999). However, significant sampling difficulties have been identified that confound sampling datathat compares sea urchin distributions inside and outside of reserves (Cole e al. 1990, Catilla 1996, Sala \& al. 1998b).

Thefailure of somespecies of shelfish to respond to area protection may also be due to poor sel ection of sanctuary arees redtive to the spedies' habitat needs Marine reseves cretted in low quality habitat did not enhance populations of hard dam (M. meremaria) and trochus snails (Trachusrildicu) even atter twenty yeers
(Dugan \& Davis 1993). Similaly, the red king ordb (Paral ithodes cantachatias) did not benefit from a refuge areted in the Being seabecauseonly adults and sub-adults were protected, but not their citica breeding, spaming or nursery habitats (Armstrong $\&$ al. 1993).

5.1.2 Age and size gains

Many marineorganisms live longer and grow larger when protected in sanctuaries (Robets 1997c) and the dimination of fishing mortality allows the population age structure of organisms to reestablish (Novaczek 1995). Changes in size of focd speies may beemier to detect staisticaly than dhanges in tota abundance Edgar \& Bardtt (1997) report that an increee in meen size of 10% was statistically significant, wheres abundancemay need to be doubled before the sameleve of significance can beassigned, using the sampling techniques of their study. With careful sampling design, changes in sizemay beableto be intenpreted with less ambiguity than statistically significant dhanges in dbundance, which may bedistorted by observer presence using some sampling techniques. However, incremes in the average size of many species may take longer to be relised, compared with more immedi te increes in abundance, and so the resolving power of meen size of focd species may vary depending on the species in question.

In the case of hermaphroditic fishes, thetaking of larger size individuals can have highly detrimental effects on the abundance of the speies and its success in sanctuaries in generd. Beets \& Friedlander (1999) showed how fishing in the Virgin Istands had the potentid to wipe out red hind because of distortions in thesex ratio, which was observed to be 15 femles to onemde After seven yerrs of protection, the age structure norma ised and thesex ratio became 4 femles to 1 male Examining thesex ratio can be mis eøding, however, as shown in a study of cord groupers in the Greet Barie Ref. Large individuds deaeed in abundance through fishing pressure, but the ratio of males to femples nonethe ess stabilised, suggesting the spedies adapted to change sex from femle to mele at a younger ageto compenstefor a reduction in meen size (Fererra\& Russ 1995). To examinejust thesex ratio would disguise thefact that structurd changeto the population was being induced through fishing, and it is not dear how thesex ratios in such adapted populaions would respond in a MFS.

Finfish Species

Observations of increes men size, ageand biomess of finfish were cormmon amongst al most al the case studies on the effects of marinesanctuaries (æeAppendix 1). Thestudies surveyed were di verse in tems of spedies studied, reserve location, fishing method and period of protection. This diversity in context strengthens the weight of evidence argument that marine sancuaries can produce an increse in average fish size within sanctuaries Focd spedies have been reported as benefiting the most in terms of incremed size inside sancuaries (Cater \& Sedberry 1997, Chiappone \& Seley 2000). A ten-yeer study in the Philippines provides one of the most convinding examples of the effect of marinesanctuaries on reef finfish size Two sanctuary and two non-sanduary sites were sampled over periods ranging from -2 yeers (i.e two yeers of fishing prior to protection) to 9 yeers of protection, providing a comprenensivest of information (Russ \& Alcda 1996a). The biomess of thefish communities increed by a factor of 1.53 after six yers of protection and inceeed further by afactor of 1.55 after nine yers of protection (Russ \& Alcda 1998a).

Halpern's review of theempiricd studies in 73 (mainly ref) reserves (Halpem in press) found that, for camivorous fish, 84% and 83% reserves had higher biomess and large indi viduals respectively compared to outsidethe reserve For plankton and benthic invertebrate eating fish, 55% of reserves had larger biomess, and 89% had larger individuads, compared to outside the reserve For herbivorous fish, 63% of reseves had a larger biomess compared to outside the reserve, but no statistically difference existed between reserve and non-resenve herbivorous fish size (at though only onestudy reported herbivorous fish smalle insidethan outsidethereserve) (Halpem in press).

Shellfish Species
Increeses in size have been observed for many different shelfish spedies In a study on reef biota conducted by Edgar \& Barett (1999), meen dbal onesize inceed 8 mm after only 7 months of protection. Similarly, the biomess of scallop has been found to increme in sanctuaries Incees in meen size of sea urchins, however, have differed between studies The sea urchins in a sanduary in Chil ewerefound to be up to 25% larger than in fished ares (Castilla 1996), but there were no significant increes in the meen size of two spedies of see urchin (Paracertrcuslividusand Arbada lixula) in a sanctuary studied at Medes Is land. It was proposed that the lack of increese in size was due to density-dependent growth rates of see urchins - incresed numbers of urchins prevented individuads from growing as largeas they could where they occur in lower densities

In the case of rock lobsters (J aessemerdsi), an increse in both density and size was noted in a study on sancuaries in New Zealand (MaCDiarid \& Breen 1993, Kelly \& al. 2000a). Themen size of the lobsters in these popul tions was estimated to increse by 1.14 mm for each yer of reserve protection, while the meen biomess was estimeted to increme by between 5.4 and 10.9\% for eech yer of reserve protection (K dly $\&$ al. 2000b). In another study, incees in biomess and carapacelength were observed in the lobster popultions locted in sanctuaries and it apperred that these results were more pronounced the larger the sanduary (Edgar \& Barett 1999). The effects of the sanctuary were only observable to within 1 km outside the boundaries, and beyond this buffer zone the rock lobsters were very rare Therfore, spillover appered to belimited to within 1 km from the sanctuary boundary for this spedies in this location.

5.1.3 Enhanced fecundity or reproductive capacity

A benefit of marinesanctuaries is their contribution to egg production, as older and larger fish are most likedy to spawn and have a higher carring capadity for eggs (Novaczk 1995, Robets 1997b) and the eggs of older fish arealso more likely to survive(Trippd \& al. 1997, Balantine 1999). Enhanced output per individua, and devated numbers of individuals, can result in 80-600\% greeter egg production in protected fish populations (Dugan \& Davis 1993, Ballantine 1999). Sanctuaries also provide insurance against rearuitment overfishing of spedies such as the sebbream (Acantrrapags autral is) and abal one (Attwood \& al. 1997b). Simply removing fishing disturbances and traumainduced morbidity and mortality can also enhance reproductive capaity.

Despite this beneficial increme in reproductive output, few studies have tracked recruitment following increed egg production, due patly to the difficulty in distinguishing speies at theerly junenil estage Oneexception is the work of Tupper \& J uanes (1999), who showed that the increese in abundance of predators within a sanctuary inceed the levd of predation on erly juveni le grunts, thereby deceering rearuitment despiteenhanced egg production. It is important to realise therefore, that an incresee in egg production
in a sanctuary does not necessarily result in an increese in ecological reanitment in the reserve, athough theremay bean incremed supply of propagules to fished arees outside the sanctuary.

Finfish Species

Therehave been fev studies observing inceeses in fecundity and reproductive output of fish in sanctuaries However, in thestudies that have been conducted and evd uated therehave been many positive results (refer to Appendix 1). Nassau grouper in a reseve in the Bahames were reported as having a reproductive capadty of six times the capadity of those in fished arems (Sluka $\&$ al. 1997), coindiding with an incremse in average size of thegroupers. Other studies on grouper spedies have indicted similar results, with a messive difference in egg production of Nassau grouper reported in a four yerr old reservein the Bahames (8.6 million in the sanctuary contrated to an average of 1.4 million in unprotected arem). A higher percentage of sexually mature groupe individuals (21% greater than the next most sexually maturesite) was noted in this sanctuary (Chi appone\& Sedey 2000). Other fish species reported to increse in reproductive capaity indude groundfishes (Murawski \& al. 2000) lincod, and espeially copper rockfish, as egg production was found to be 100 times greter for this spedies in a senctuary (Pitcher (ed.) 1997). It has been determined that reserves have dealy greater potentid egg production if they conserve the spaming stock biomess (Sluka \& al. 1996a Chiappone\& Sedey 2000).

WhilePaddack \& Estes (2000) found that in generd there was an inceese in reproductive output for reseve stes, oneyeer old reserves showed no significant difference in reproductive capadity between fished and unfished arees It is der that, in fish popul ations, it may take many yerrs (perhaps longer than 10 yerrs) for the benefits of marine reserves such as increesed fecundity to befully realised.

Shellfish species

Many invertebrate spedies are broadcat spamers-they reproduce by re eesing gametes into the currents for dhancefeftilistion. Laval settement from these propagules can be dose to the spawning sites in arem where tidd currents and wave action are low or if spamming is conducted at times when currents are minima, or they can be carried vey great distances where currents aregreter resulting in much broader dispersd. Prince $\&$ al . (1988) found that the greter thedensity of adults, the higher the number of reauits. Thefew studies that have been conducted on marine reserves to investigate thereproductive benefits to shelfish have generdly reported highly positive results. For example, in a sanctuary at Vancouver Is and, abalone werereported to be 1.2 and 1.4 times morefecund than abalone in the two less protected aress (Pitcher (ed.) 1997). A similar scenario was observed esewhere in British Col umbia with abalone (Wallace 1999). In the cese of rodk lobsters, increes in reproductive output were observed in a number of Tarmanian sanduaries and it apperred that the reproductive output corresponded with sancuary size (Edgar \& Barett 1999). In 4 Nev Zeland reserves, egg production from spiny lobster (f asusemercaii) popul ations has been estimated to increese between 4.8 and 9.1% for eech yeer of reserve protection (Kely $\&$ al. 2000b). Laval increeses of Queen conch havedso been observed (Stoner \& Ray 1996, Chi appone \& Seley 2000). Although increering the concentration of spamers should greatly incremethe likeihood of effective reproduction, the reproductive potentia of abal one ded ined in South Australia where the reserves creted did not attain the threshold density of spammers in the spatid arrangement necessary for effectivespamming and stock replenishment (Shepherd \& Brown 1993).
5.1.4 Limitations with studies of marine sanctuary benefits

Thereare a number of problems assodited with studying, quantifying and evd uating marine sanduaries benefits. Problemsfall into threebaic categories methodol ogica, ecol ogicd and management. These limitations can seriously affect results and reseerchers need to be avare of the problems and develop ways of deling with them within study designs.

Methodological Problems

Design issues

The rigour of the sampling design of studies intended to examine the benefits of marine sanctuaries is curid to their success Weak designs meen that fators may be confounded, and condusions will not be robust eithe for the sanctuaries being studied or when extrapolaed to other sanctuaries Unfortunatey, few published studies have reported preestablishment information on the sanctuary being studied (eg. bædinebiologica data and fishing effort data collected prior to crettion of the sanctuary or beforefishing took place) (Cater \& Sedbery 1997) and they often contrat just one reserved and one unreserved site (seereviews by Bennett \& Attwood 1991, Robets \& Pol unin 1991, Guenete \pm al. 1998). Lack of 'beforeand fter' studies, time series data and control sites, coupled with week enforcement of fishing bans, have created major difficulties in providing condusiveevidence on sanctuary effectiveness (Carter \& Sedbery 1997, Hal pem in press). Control sites are espeially important, because without them the trueimpat of removing fishing cannot be determined. Thelack of a comprehensive and defendabl estatistica basis for design means that outcomes and condusions aretentaive and of uncestain valuefor use in other locations.

Even more limiting are snapshot studies which sample changes in variables over short time horizons and are therefore for example, undble to identify how rearuitment events-a fundamental influenceon fish populations - affect abundanceon an annuad basis (sestudies by Cole \ddagger al. 1990, Dufour $\&$ al. 1995, Russel 1997). Failure to obseve benefits from marinesanctuaries has dso been redted to problems such as severdy depleted breeding stocks, which may take a very long timeto recover and are difficult to sample effectivedy. Therefore, atimeseries monitoring program conducted over severd yeers is needed for a thorough evaluation of the effects of fishing (Beets \& Friedlander 1999) (these influences are discussed further in thenext section).

Edgar $\&$ al. (1997) emphasised the importance of identifying sites with compardbleenvironmental conditions in studies that compared marinesanctuaries with unprotected sites. Many studies comparesites inside and outside reserves, which does not (necessarily) adequate y control for intrinsic differences in habitat or other variables Indeed, theequivocd findings by Robets \& Pol unin (1992) were attributed more to habitat differences than to fishing effects Becausesanduaries and sanctuary studies are not often replicated, it is difficult to differentiate between protection effects and spatial effects (Carr \& Reed 1993, Paddack \& Estes 2000). This confounding meens that differences obselved between a reserve and an outside areamey not be atributableto protection status but rather to naturd differences in habita. Paddack \& Estes (2000) dso argue that there are bazic deficiendies in using an experimental approad to examinefish abundance and population structure in reserves - (a) there is littlerdiableinformation about the naturd spatial distribution of most fish populations, (b) it is difficult to replicate experimental treatments due to different leves of exploitation, and (c) thereis often confounding of spatial and temporal variation among experimental units. Ferreira\& Russ's (1995) study of cord groupers showed that more repl icte treatments were needed to increese the degrees of freedom and power of their and ysis. And finally, but possibly most importantly, the choice of bidogical variables to meesuremay offect whether a study will detect a benefit of protection. Making preciseand poweful meesurements on variables that are not liked y to be involved with the reserve effect is miseeding and counter-productive

Another important design problem is detemining the length of the sampling period- it needs to belong enough to detect a recovery of fish populations. Recovery periods can beespedally long if focd spedies are sow growing and they were previously exploited intensively. Russ \& Alcda (1996) indicate that a density difference in reef fish may not ocaur for 4 to 6 yeers following area protection. Sampling can be hindered by limited access time, wate-darity difficulties with undetaking visual counts, and the high cost assodited with reserch using submersibles

The need for carefully designed reserves, ind uding monitoring (timeseries) programs, has also been identified a a key issue in msessing the peformance of reserves established for fisheries purposes (Car \& Raimondi 1999, NAS 2000). Reseves that fail to meet their objectives may invoke 'caatrophic costs', depending on how much managers and stakendiders rey on the success of that reserve, and the design and evduation framework is considered crudid to successful studies of resenve effectiveness (Car \& Raimondi 1999).

Sampling sanctuaries is a very labour intensive and time consuming exerise, and thereare a ways limitaions on resouraing such studies (Paddack \& Estes 2000) and these limitations may cause interpretation problems Thestudy of Dufour \& al. (1995) was incondusive because of the brevity in the sampling regime Variability also complictes sampling designs, and designs with low staisticd power may lead to incond usive results, a problem encountered by Cole $\&$ al. (1990) in their study of New Zeland's Leigh Marine Reserve The incondusive results reported from that study were apparently caused, at lest in pat, by unpredi ded differences in monitoring accuracy among observers.

The design problems experienced by these (and many other) investigators make it dear that, as with any sdientific endeevour, very careful planning and design is cruad to the success of the outcomes Assessing the benefits of a sanctuary should be conducted in such a way that the data collected will bestaistically robust, and be focused on æpects of a sanctuary that could remonably be expected to show a change as a result of the arem protection. Depending on the focd species, on the sanctuary design and on the resources availablefor the study, such designs are best based on 'before and afte' comparisons at sanctuaries and control sites, on and yses of spatial gradients in key variables, and involvelong (decada) timessies of data Suitableindi cator variables may be chosen from the list presented in Section 7.

Sampling issues

In sampling of sanctuaries, it is unlikely that staistically significant results will be produced wheresmal numbers of indi viduads are involved. Pooling species to the family leve is one way of overcoming the limitations presented by low statisticd power (Robets \& Pol unin 1992, McClanahan \& KuandaArara 1996). However, changes at the species levd arelikey to be masked by pooling of data to theleve of family (Vanderklift $\&$ al. 1998) which may not allow detection of important biological dhanges $a s$ result of area protection. Pooling of species data to achieve higher statistical power but reduring the potential to recognise potentially important biologicd changes compromises the origina intention of thesampling design, (sarificing the objectives of the sampling to meet statisticd requirements is temed psendo-powerWard \& J acoby 1992), and in doing so may fail to detect biol ogically important dhanges.

Uncestanties about the behaviour of fish during sampling may aso affect interpretaions of dataon the effectiveness of sanctuaries It is possible that the presence of divers may atract fish during a census count, thus inflating estimations of effectiveness (Edgar $\&$ al. 1997). This phenomenon has been considered by

Dufour \& al. (1995) in redtion to fish inside a sanctuary where the presence of researchers may have acted as a stimulus for feeding through assoiation with reaetional divers and therefore caused a bias in survey results. Cole\& al. (1990) report that somefish arenaturally inquisitive-and thereby inflatevisual census results but endeevoured to exd udesuch individuals from their censuses Fish avoi dance of surveyors has dso been documented, thereby biasing results downwards, as demanstrated with snapper (Pitcher (ed.) 1997). A retted problem associted with visud sampling (either by divers, or worse, from videos) is incorrect identification of species Thejuveniles of many species of fish are difficult to distinguish to spedies leve, paticularly in visud census, and so are often not surveyed. Also, the juveni les may occur seesonally and utilize different habitas that are more difficult to sample (Paddack \& Estes 2000). Lobsters are reported to aggregate offshore, at times, (Kelly \& al. 1999), making sampling design and effectiveness a citicd problem when asessing the nature and extent of the reserve effect on spiny lobsters.

Ecological Issues

The long naturd lifespans and the diversity of reproductive strategies amongst dominant marine spedies make assessments of the effectiveness of marine sanctuaries difficult. Many species may not display a response to the exdusion of fishing for severd yeers-until new reauits have ocaupied thesize dasses which had previousty been exploited (Edgar \& al. 1997). In such dircumstances, it may beeeier to detect staisticdly significant sanctuary improvements using the meen size or age of individuds rather than dbundance, depending on the species of interest. For example, Fereira\& Russ (1995) showed that age structure was useful in detecting fishing-red ted changes to cord grouper because this spedies was sow growing, and changes in sizeor abundance would havetaken much longer to be deteted in any reesonable sampling design. In situations where the basic ecologicd and naturd history charateristics of the focd spedies are uncertain, it will prove difficult to interpret asessments of the effectiveness of sancturies This will be paticularly difficult for studies that are short-term, or do not use species that havebeen wall studied, except in the situation where increesed abundances in focd spedies are substantial and rapid.

The dispersd characteristics of somespeies can also confound assessments of sanctuary improvement. Where the spatid scde of lavd and adult dispersd compared with the size of existing sanctuaries is unknown, detecting sanctuary improvement can be difficult (Sal a $\&$ al. 1998b). When densities becomehigh in reserves, adults may disperseto arees outside the reserve to establish new homeranges or teritories If dispersal of some of the spedies in a reseve is over a large area larger than the reserveitseff, differences in fish density or population structure between protected and unprotected aress may be difficult to detect, even if exploitation was previously extreme (Robets \& Polunin 1993, Robets 1995b, Paddadk \& Estes 2000). Rockfish are an example, as they move from arees of high population density to arees of low density. In situations where dispersal charateristics are unknown, studies of sanctuary improvement may reach miseeding cond usions because of the unknown scde of dispersion, and a failure of the sampling design to propely account for dispersion characteristics of the species of interest.

Large scal e ocenographic and dimatic fetures such $\varpi E I$ Nino Southem Osdillation (ENSO) events have the ability to seriously affect habitas and may disupt benthic popul ations and their reproductive success If this is cccurring while a sanctuary is being sampled for assessment, and the ENSO has different effects in the sanctuary than in the control arees, then it can seriousy confound theresults (Allison \& al. 1998). Thespatial and tempord variability of the biologicd effects of theseevents is poorly understood, but when coupled with
a low-power or othewise inadequate sampling design, the variability in such fetures may oretesevere difficulties with interpreting the results of sanctuary improvement studies

Studies of invertebrates to examine reserve effects may also be confounded by trophic interactions within the reserve Reservecretion may benefit populations of cami vorous fish, but these may reduce populations of invertebrate prey within reseves, and so meesures of reserve performance that do not also indude a range of trophic leveds mey be miseæding (Ha pem in press).

Management Limitations

Asidefrom sampling or scientific limitations assodited with studying the effects of marinesanctuaries, there is the problem of compliance and enforcement of reservecontrols, and whether these as wel as management opertions, dhange throughout the sampling period (J ennings \& al. 1996, Pitcher (ed.) 1997). Few sancuaries are comprehensively monitored to æcertain the degreeto which no-fishing requirements are being observed, and it is possible that fishing violaions corrupt the results of sanctuary improvement studies (McClandhan \& K uandaA Arara 1996). There is a lack of information on how fish cormunities are affected by different menagement strategies, even ater reserves have been established for a long period of time (15 yeers) (J ennings \& al. 1996), but many managers suspect that reseves are occasionally violted. The key problem then becomes what frequency, location and what type of fishing viol ation would compromise the objectives of a reserve, and in evduating the reserve effect what, if any, sampling designs can beimplemented to account for, or estimete, illega fishing and its effects

Fators such \propto ref degradation within a sanduary and illegd fishing may reduce the size of the reserve effect, as was found in onestudy where there appered to be no real difference in fish populations between reserve and non-reserve ares (Russ \& Alcda 1998a). Where viol ations are suspected, it may beappropriateto ind ude, or conduct, pilot studies to estimate the nature of illega fishing, before designing a sanduary evduation project. Little publ ished data eists to gauge theextent of non-compliance, but a multi-yeer study in the Gret Barrier Ref hæ reported high leveds of intrusion into a no-takezone of the Gret Barier Ref Marine Park (Gribble\& Robertson 1998). If rules and regul ations are not being adhered to and fish exploitation is occurring in a sanctuary, a reduced contrast in comparisons between fished and unfished arees would be expected, and much more intensive sampling designs would need to be implemented in order to detect such differences than if illegal fishing was not occurring.

5.2 Evidence for Improvements to Fisheries

In this section we consider the empirical evidence in support of the contention that sanctuaries deliver benefits to fisheries.

Establishing sancturies to protect habitas that areimportant for a focd spedies will potentially cause an increme in abundance and size of these spedies within the sanctuary, a disaussed in Section 3. Two pathways through which fisheries can benefit from larger and morefecund populations of target spedies inside MFSs areemigration of adults (spillover) and exportation of lanæe(land export) (see Section 4 and Figure 1).

However, there have been very few studies that have attempted to critically examine and meesure the benefits that a fishey has derived from the ded aration of a no-take marine reseve

At present, much of the evidencethat is used in arguments advocating the use of reserves for fisheries menagement is largely theoreticd or dircumstantial, both because of the nemness of the topic and due to the difficulties involved with meesuring or quantifying spillover and lavd export. As a result, the predise role of reseves in providing benefits to fisheries is still poorly understood, despite the literaure reviewed above Efforts are increesingly turming to modeling to try to better understand the nature of the benefits and the way in which they might beddivered. Most effort is now fooused on the two most important conceptua sets of potential benefits-spillover and larvd export.

5.2.1 Spillover effects

A smal but convinaing body of evidenceshows that sanctuaries can incremefish catch in surrounding havested ares, or at lest maintain current yilds for some spedies (Booth 1979, Davis \& Dodrill 1980, Alcda 1988, Rogers-Bennett \& al. 1995, Hastings \& Botsford 1999b, McClanahan \& Mangi 2000). Spillover is thought to ccour when an inceese in density of an organism in a protected area reaches a threshold at which indi viduals migrate into available habitas in adjacent unprotected arees, and contribute to the fishery. Tupper \& J uanes (1999) consider that spillover is caused by intense intrespedific and interspedific competition in reserves, and also suggest that this phenomenon may take afew yers to occur before densities in the reserve reech their maximum leve. Thespillover potentia of adults and juveniles depends on the species involved, thesize of the sanctuaries, the behaviour and motility of the speies, and thetotal area protected (see Section 3). Therfore, in order to optimise projected benefits to fisheries, knowledge of oceenographic conditions and distance of movement of adults (and also lavee) will need to be determined before boundary locations of sanctuaries are establ ished (for discussion of management implications see section 5.2.3).

Apat from interpretations of a small number of tagging studies and CPUE data in fishable eares adjacent to reserves, theevidence that could be used to detemine the processes that leed to enhancement of fisheries yied relies on conceptual arguments rather than direct observaions (Rowiey 1994, Attwood \& al. 1997b). Below we examine the concept of homeranges (an essentiad consideration in spillover) before revieving techniques for meesuring spillover.

Home Ranges

A homerange is the aree in which animals spend a substantia period of timeand where they conduct almost al of their activities, induding feeding, mating and resting (Anderson 1982, Mathews 1996, Kramer \& Chapman 1999) (see Section 4). Spedies that are assoidted with substrate (benthic), as wdl as somemid-water spedes, usually have homeranges Homeranges may not occur (or presumably may betoo large to be meesurable) in pagic or highly migratory marine fishes, such astuna (Kramer \& Chapman 1999), and some homeranges are known to beextremdy large (eg. sharks). Typically the distances involved for benthic species areseverd hundred metres, but somerange over 10-15 km (Robets \& Pol unin 1991). Generdly, large and school ing speeies movefurther distances, and hence will bemore likey to emigrate from a reservethan are small or sol itary species (Tupper \& J uanes 1999). A number of cord ref fish move between feeding sites and resting or reproductivesites on a daly basis Sometimes different habitat types are required for these activities,
which are often joined by a narrow movement path (Kramer \& Chapman 1999). Robets \& Polunin (1991) arguethat enhancement of fisheries by spillover done of cord reef fish is expected to belimited to within 1 km of a reserve, given the generally restricted home range of most of these spedes

As an example of observational data on homeranges, Table 7 provides some information on the extent of movement of a number of temperteref fishes of thefamilies Labridæand Monacanthidæat Arch Rodk in Tæmenia

Table 7 shows that someref fish areteritoria, and therefore are like y to have homeranges that do not ovelap. Teritorial behaviour is usually expressed by one individuad chasing another individua of the same species out of its teritory/homerange In thesefish, population density may be substantially affected by teritoriality. Thetabl ealso shows that banded wrasse and brown-striped leathejacket have large home ranges which could potentially take many of them outside the boundaries of a smal (say $1 \mathrm{~km}^{2}$) reserve, hence subjecting them to fishing mortdity. Whilst theestimated range of P. vittigr was not detemined, studies into the long term movement of this species show that individuals can trave asfar $\infty 4.5 \mathrm{~km}$ and, although rare, can even cross large aress of qpen sandy bottom A notable observation in Barett's study is that the size of fish was significantly retted to range size-ranges incremed with thelength of an individual in four of six spedies Goeden (1978) also cond uded that movement of P. leppardusis positively corretted with fish size Homerange size was not red aded to thesex of the individuad in any of the spedies studied.

Table 7. Behavioural observations (200 hrs) on six temperate reef fishes at Arch Rock, Tasmania (adapted from Barrett 1995).

Species	Estimated range	Territorial Behaviour
Blue throat wrasse Notolabrus tetrus	$225-725 \mathrm{~m}^{2}$	Yes
Banded wrasse Notalabrus fucicola	$>175 \mathrm{~mm}^{2}$	No
Senator wrasse Pictilabrus laticlavis	$175 \mathrm{~m}^{2}$	Yes
Rosy wrasse Pseudolabrus psittaculus	$280-375 \mathrm{~m}^{2}$	Yes
Toothbrush leatherjacket Penicipelta vittiger	$?$	No
Brown-striped leatherjacket Meuschenia australis	$>175 \mathrm{~m}^{2}$	No

In contrast to finfish, most shellish have smal homeranges once they havesettled. Adult rock lobsters arehighly site attached and individuds may move less than a kilometre over severd yerrs. Therefore, during sedentary phaes of their lifecydes, shallish such as rock lobster and abatone can potentially be protected in small sancuaries (Edgar \& Barett 1999).

Although someref spedies aresite attached and stay within a locdised area for most of their post-settlement lives, other spedies di splay ontogenetic habittt shifts during their life cyde (Samoilys 1997, Tupper \& J uanes 1999). Queen conch have ontogentic shifts in habita: eerly juveni les inhabit mainly shallow zones where they spend their time buried under the sand; 1-2 yerr old juveniles form aggregations neer tidd inlets with deeper segrass beds Similarly, spiny lobsters and Nassau grouper inhabit shallow bank habitas, comprising aga and segress patches, and patch refs, during thejuvenil estage, wheees theadults prefer shef hard-bottom habitats (Hermkind \& Lipaius 1986, Eggleston 1995, Chiappone \& Seley 2000). Westem rock lobsters (Panulins ggnus) settle from the plankton onto the neershore limestonerefs of Westem Australia then as they grow, migrate across the continental sheff towards deeper (shef) waters. There arefour stages in the life cyde of this lobste: (1) 9-11 month long planktonic period, when they areadvected large distances into the Indian Oceen, (2) settlement of the peurulus stage in shallow water refs where they grow for 3-5 yers, (3) migration to offshore waters, (4) maturation in offshore waters and spaming (Phillips 1981, Phillips 1983, Morgan \& al. 1982). Another example is buttefly fish, which apper to settle in neershore habitats but later move offshore to deeper habitat, a behaviour displayed by many sheff spedies over distances up to severd kilomeres. In somespeies movement may also occur cydicaly (semonally and diurnally) for feeding or breeding purposes (Robets \& Pol unin 1991).

Empiricd evidence petaining to spillover is disaussed below by reference to the two different techniques used to detect it-tag and recapturestudies, and CPUE/yidd data from adjacent fishable ares

Tagging studies

Tagging is a techniqueemployed by reseerchers to deted fish movement and hence determinethesize of a spedie' homerange A number of tagging studies indi cate that movement out of rese ves occurs for somesperies, although none have been ableto link these movements to beneits for fisheries Considerable movement was observed with tagged sport fishes into and out of a reserve in Florida and for one spedies, Lutijanusgises migration was up to 18km (Bryant \& al. 1989). In a study examining spillover from a reserve in Monterey Bay, movement was much reduced; ten to fifty per cent of adult rock fish tagged werefound to move up to 1.6 km to reestablish in a newly creted atificial ref (Mathews 1985, Paddack \& Estes 2000).

Although cord trout (Pletrapomeslepardus) are reatively sedentary in the short term with a home range of approximatey $1200 \mathrm{~m}^{2}$, they can disperse affar a $12-28 \mathrm{~km}$ (Samoilys 1997). The degree of movement differs between the seesons, with cord trout moving less in summe (deaning behaviour) and becoming more adivein spring (prespawning behaviour).

In the cose of shellfish, a tagging study by Davis (1989) showed that juvenilespiny Iobster (Panulinusarges) remained in their nursery arei in Florida Bay for 3 yerrs before dispersing to the Gulf of Mexico and the Atlantic Coas. Bæed on this knowledge of lobster movement, Davis hypothesised that a sanctuary in the bay would enhance the lobster fishery, athough no supportive data or modds were presented. Likenise, dispersd into fished aress from a reserve hæs ben shown for snow ordbs (Yameski \& K uwarha 1990) and pink shrimp (Gitschlag 1986) using tag and recapturestudies

Other tagging evidence of spillover effects is not so convinaing. Buxton \& Allen (1989) conducted a study on a reserve in South Africa and found that tagged fish did not emigrate out of the reserveas most fish were redaively sedentary, and therefore protected entirely by the reserve Similarly, in relation to a reserve in Tammania Barett (1995) argued that if emigration does occur for N. terias N. furicda, P. pittacilusand M. autral is rates must be minima based upon extrapol ated calculations of mortality rates and tag recovery. Barelt did not meesure in-reserve density, however, which other studies show is crudial to developing a correct understanding of spillover.

Attwood \& Bennett (1994) suggest that the De Hoop Marine Reservein South Africa contributed to the adjacent fishery by supplying a continuous source of fish. A tagging study of 1100 fish showed that most recaptures (83%) occurred within the reserve, suggesting that, overal, the species concemed (Didistius caperis-gdjoen) did not spillover in large numbers. However, some individuds were reported to trave $\propto f a r a 1040 \mathrm{~km}$ to adjacent exploited aree In another South Africastudy on gajjoen (Ccardinus capensis), some indi viduds also migrated large distances whilst others remained in a locdised area (reported in Edgar \& Barett 1999).

Overdl, it appeers that both fish and shelfish speies with small homeranges can spillover from reserves Generdly, theextent to which spillover ocaurs, and itstiming, is retaed to the design and size of the reserve the biol ogicd characteristics of the spedies involved, and the management system in place to enforce sanctuary controls.

CPUE/mersuring yields

Another technique used to determinespillover from a resenve is meesuring yidds in the adjacent fishable ares, an approach which has been successfully used in severd studies. At the De Hoop Marine Reserve, CPUE improved for 6 out of 10 inshoreangling species following reservecretion (Bennett \& Attwood 1991) and highly migratory species accounted for 3 of the 4 remaining species that did not show considerdble recoveries, and so the documented improvement in CPUE may underestimate the true reserve effect. Likevise, in ateryerr old temporary reserve at Sumilon Isand (45ha) in the Philippines, high yidds were maintained adjacent to the reserve in fished arees (Alcda \& Russ 1990). Emigration of adult fishes from the reserve to outside arees was hypothesised as the most likely reeson for this result. Spillover is espedially possible with Caesionids as they are highly mobil eand large schools of these fish require large ares in the form of seeping sites When the reserve was reopened to fishing, marked reductions in abundance of fish taken in the istand fishery fel. The men CPUE for the isand one yer prior to breakdown of the reservewas $1.98 \mathrm{~kg} / \mathrm{trip}$, but had dropped by haff ($0.99 \mathrm{~kg} /$ trip) 18 months after the reseve was opened to fishing. Over this same period, total yild from Sumilon Istand fel from $36.9 / / \mathrm{km}^{2}$ to $19.87 \mathrm{t} / \mathrm{km}^{2}$ (Alcda\& Russ 1990). The Sumilon reserve comprised only 25% of theentire ref aree of theistand. From this 'naturd experiment', the authors cond uded that long-term dosure of ref portions-rather than dosing entire cord refs-has a role in managing ref fisheries through spillover (Alcda \& Russ 1990).

CPUE data has also been used to assess the spillove effects of cord ref area protection in Kenya After the Mombasa MarinePark was creted in 1991, the aree availableto fishing was reduced from 8 to $3 \mathrm{~km}^{2}$ and a a result there was a 65% reduction in the number of fishers. Because of asimilar reduction in percentage of both fishers and availablefishing area the pre reervation fishing intensity was maintained. Catch per fisher increesed from $20 \mathrm{~kg} /$ person/month to $43 \mathrm{~kg} /$ persor/month and benthic catch per unit aree increesed by 74%
during theinitial pat of thestudy. The estimated yidd from theref of $8 t / \mathrm{y} / \mathrm{km}{ }^{2}$ is dose to the maximum sustained yied for cord reefs (McClanahan \& KaundaA Arara 1996). Thestudy was based on landing data and therefore did not investigatebiol ogical changes to fish occurring within the reserve, so the effect of rearuitment pulses or environmental factors cannot be assessed. Figure 2 depids catch trends for eight months before the reservation, and for two and a haf yeers following the reservation, indicating the possibility of spillover occurring and its benefits for thefishery. Towards theend of thestudy thetotal fish landing and the CPUE deceed athough fish dbundance increed, and this was atributed to changes in geer types implemented during the period of protection.

More recent work in the Mombasa MarinePark (McClanahan \& Mangi 2000) documented the spillove of adults in threman target families (Siganidæ, Acanthuridæ, Lethrinidæ) contributing to adjacent fisheries Catches (weight and numbers) and size of thesefish were grestest dosest to the Park boundaries, athough the magnitude of spillover was influenced by management controls and habitat characteristics in the fished arees Spillover into the fishing grounds was considered to belimited to a few hundred m on the northem side of the Park (wherefishing is not controlled) but to possibly extend for up to 2 km beyond the southem boundary of thePark (whereger types are restricted).

Further work by Russ \& Alcda (1996b) reying on CPUE data indi cted that spillover might beocourring from a protected area into adjacent wters. The density and species richness of large predatory fish (Serrani dæ Lutjanidæ, Lethrinidæ, Carangidæ) recorded by visual census corredted positively with the duration of the 22.5 ha reserveat Apo Is and. Thestudy rejected the proposition that populations were naturally increesing and diversifying dueto high successful reauitment. Rathe, the pattem of dhangesuggested that as density inside the reserve incresed, large predators tended to move from the reserve into the adjacent fished waters. This occurrence was expressed as a ratio of observed fish density inside the reservere ative to that outside After 1 yer of protection this ratio was 6:1, increering to $16: 1$ after eight yers of protection, and therefter decreaing to a ratio of 8:1 (11 yr), as abundance incremed outside the reserve This supports the hypothesis that movement of large predators off the reserve was afundion of density. Although fishers reported a doubling of catch only two yeers after the reserve was creted, eight yeers of monitoring was required before the increese in biomess could be attributed to spillover (threshold density of $6 / 1000 \mathrm{~m}^{2}$) from the reserve, rather than merdy naturd population fluctuations After thethreshold density was reached, the density of large predators continued to increme both inside and outside the protected are (Russ \& Alcala 1996b).

Sluka \& al. (1997) used CPUE datato meesurespillover in a study of 75 sites insideand outside ExumaPark in the Bahames, and to revel the scal of spillover of N assau grouper (Epineqheus striatus). Figure 3 shows that biomess of groupers deceesed markedly within 10 km of the centre of Exuma Park, suggesting that the resenve was exporting biomess to adjacent waters through adult emigration and also indicating the spatia extent of grouper movement (Suka $\&$ al. 1997). However, an at enative explanation that has been advanced for this spatial pattem is that the distribution of groupers corretas highly with poadhing pressure, which is leest thecentre of the Park wheretheRanger staion is situated. Others (Chiappone\& Sedey 2000) dso suggest that greter fishing pressure north and south of the reserveis another possible reeson for thedrastic difference in biomess between the area within 10 km of the reserve and the area beyond 10 km of the reserve

Figure 2. Time series landing of fish at Kenyatta Beach, Kenya. The Mombasa Marine Park was declared at month 8, and these landings are from the area outside the reserve (adapted from McClanahan \& Kaunda-Arara 1996).

Figure 3. Relationship between distance south (-) and north (+) of Ranger station at the Exuma Cays Land and Sea Park and Nassau grouper biomass (Sluka et al. 1997).

For southem Florida fisheries, Bohnsack (1998) comments that threeimportant fisheies (pink shrimp, stone crab and spiny lobster) have all had large aree dosures, and suggests that these dosures account for the sustainability of these fisheries despite the increse in fishing effort they have experienced. By contrast, many other Florida fisheries-induding king madkerd, grouper, jewfish, snook and queen condh-have collapsed.

A reserve in Tarmania is thought to export substantia quantities of rock lobster to an adjacent fishery, athough the information is anecdotal and spillover beneits to thefishery have yet to be proven (Edgar \& Baret 1999). Smilaly, MacDiarmid \& Breen (1992) argued that a reserve in New Zeland contributes to increesed catches of rock lobster (a asu eemardsi) outside its boundary. The CPUE of reserch fishing neer the reserve issimilar to that in other neerby aress, and is maintained by spillover from the reseve, at alevd of CPUE highe than the regiond men CPUE in the broader fishery for this speies (Kelly \& al. 2000a).

5.2.2 Export of eggs and larvae

Whilst spillover effects are expected to be locdised, the export of prereanits can possibly enhancefisheries over much larger regions (Rowley 1994). Restricions on fishing within a highly productive area can benefit a fishery through the dispersd of eggs and lanæeto thesurrounding arees (Novaczk 1995, Paddack \& Estes 2000). Lavd export is believed to benefit fisheries if spawning arees are contaned within senctuaries, and water currents transer the increed concentration of lavæto fishing grounds for ecol ogicd recuuitment. Although factors such as post-settlement predation are important influences on density of reef species, land supply (and subsequent rearuitment) may be a prindipal deteminant of abundance (Russ \& Alcda 1989). Because reserves are likely to produce dense popul ations of larger, older and morefeand individuals, the ability of reserves to seed outside aress and enhance reauitment is potentially high (see Section 3).

Themajority of the literatureredted to land export foases on the land dharateristics of paticular speies and the oceenographic conditions required to enhance lavd movement, rather than reporting evidence of export from reserves and subsequent reauitment. This lack of direct evidence is due to the newness of interest on this topic, and modeling studies are often used to providesupport for the rol eof resenes One of the biggest obstades is the cost of acquiring fidd data on plankton over vatt arees of oceen, and few studies have been conducted that redte directly to reserves. Most condusions are iraumstantia, baed on combined modeling and limited fied dbservationd data Schmidt (1997) found that lavæin the Caribbeen drift for 50 days on average and can settle in an area 1900 km by 800 km , and since lavæmey settle in arems far from where spawning occurred, it is presumed that reserves may enhance distant fish populations () ennings \& al. 1996, Robets 1997a). The lavæand peurulus stages of Westem rock ldbster drift for many months in the Indian Oceen, and sincethe larwefrom al sources are considered to be highly mixed during this long oceenic phæe(Phillips 1983, Morgan \& al. 1982), a few smal arees of reserve where adequate breeding stocks were maintained could probably ensure the maintenance of an adequatesupply of peurulus to the planktonic stage, and subsequently rearuits to thefishery on the sheff ref systems of Westem Austraia

Sources and Sinks

Ares that contributegreally to population replenishment by supplying large numbers of offspring are known \ddagger sources, while those that supply few reauits, but accept lavæe or juveniles, are refered to as inks. Conceptually, designs for marine reserves should take account of the need to have reserves in both source and sink ares Reserves in source aress will potentially beable to export themainly planktonic lavæe
of marine organisms to both suitable habitas and fished arees, thereby providing the lavd export benefit (Brown \& Roughgarden 1995, Lauck \& al. 1998). Reserves situated in sink arees may bevery important in reestablishing connectivity between habitat patches In time, arees considered to besinks may ultimatedy becomesources However, identifying source and sink aress is one of the gretest dhal lenges of reserve design-neither can beemily identified with confidence and thereare likely to be many speies spedific differences (Rowley 1994, Murawski $\&$ al. 2000, Robets 1997a).

Replenishment of populations within reseves may depend on sources outside the reserve, and establishing that a reserve population issdf-sustaining is a key issue in reserve design. Car \& Red (1993) provide a framevork under which replenishment of adjacent populations can occur through lavel export from reserves Thefour modds proposed are

- dosed population-protected populations areseffrearuiting and replenish themsed ves only
- single source populations-a ingle source of lavæesupplies rearuits to several populations
- multiplesource populations-a meapopulation evists whereseverd isolated populations contribute to a common laval pool from which each population is eventually replenished, and
- limited distance population-short planktonic phæe lanæe with limited dispersad abilities supply proximal rather than distant populations.

This conceptual framework is useful in indicating that, amongst others, the design and best location of reserves will differ depending on the spedies An understanding of the mode of replenishment undertaken by focd speies is cruad in the successul design of marine reserves aiming to rebuild or maintain fisheries through laved export.

Spamming aggregations and nursey grounds can generdly be dassified as sources, but meny such sites are used by only a single speies Somesites may dso altemate between being sinks and sources; a sitemay beasink if the conditions for growth and reproduction are poor. Altematively, if conditions are conducive, the sitecould aso be a source Because of the spedes' selectivity of sourceand sink arees, and highly uncertain knowledge of these influences, the roleand placement of reseves in source and sink ares are uncestain, and, except for known spamming aggregations and grounds, the nature of benefits they may bring to fisheries is also uncetain.

Lanval Drift

In order to understand the concept of laval drift, it isfirst important to understand the differing mehods of reproduction employed by spedies Viviparous speies produce a smal number of large, well-devedoped juveniles that disperse only a short distancefrom the birth site Other spedes are demersd spanmers and produce eggs that settle to the bottom of the oceen floor and then hatch into planktonically di spersed larve Another form of reproduction is broadcast spawning where broadcat gametes arefertilized and dispersed in the planktonic phæe Lavæ hatched from demessd eggs usually are more deve oped than broadcastspawned lavæ when entering the planktonic phæe, and more devd oped lavæ will bethe first to setle to bottom habitats

Eggs and lavæe of broadcast and demersd spaming spedies-even coasta or neer-shore spedies - can rapidly disperseover large distances Isol ated oceenic habitas must of necessity be considered as sdf-reauiting units for many spedies that have only limited dispersd capaity. Coatd refs display a high degree of land natdity; that is, lavee are retained and reauitment occurs in proximed refs. For broadcat and demersal spamers
settlement will therforebegretest in reseves that areeither very large in arear havean extensive perimete redaive to adjacent unresenved arems Othewise, a network sytem of reserves will be required to ensure successful export of eggs or lavæbetween reserved arees Thecharacteristics of lavd export therefore meen that permanently dosing wholerefs is unlikely to enhancelocd reef yidds through laval processes done asthelanœemay disperse over tens or hundreds of kilometres (Alcda \& Russ 1990),

Long durations of pelagic drift probably inceese the distanceover which lavæarelikety to bespreed (Table 8). Sparid lavæhave been reported to move up to 70 km offshore and 240 km longitudi inaly beforesetting on a ref in the Titsikamma Nationa Park in South Africa (Buxton 1996). Although this drift is probably exceptiond, land export is certainly species spedific and depends on a spedes' life history charateristics Tegne (1993) atributed the failure of pink and green abalone (H. comugata, fugre) to recol onise depleted aress to their limited lavad dispersad abilities, unlike red abdone (H. rugesens) which was able to export lavae and successfully recol onise However, Thompson (1981) argued that the lavæe of abalone has the potentia to traved to ares outside reserves if the currents arefast enough, given that dbalone are broadcast aggregate spamners. The daily minimum ebb and flood currents of $1.8 \mathrm{~m} / \mathrm{second}$ and $1.5 \mathrm{~m} /$ second respectively that occurred at the reservesites studied in British Col umbia were found to be adequate for broad di spersd.

Lipdius \& al. (1997) arguethat a reserve in the Bahames may bean important source of Queen conch lavee to the surrounding fishabl earea The reserve is thought to be a rearuitment source for populations north of the reserve in Exuma Sound. Lavæere transported to nurseries in the northem Exuma Cays and Southem Eluethera through an dong-shore drift of dbout $1.5-3 \mathrm{~km}$ per day and a meso-scdegyre (Chiappone \& Sedey 2000)

Table 8 shows that the planktonic phæe of ref fish differs between spedies, and ranges have been recorded from 14 to greter than 130 days Thelonge the planktonic phææe of the lavae thegreter the transport potential. Theactual distance of transportation of lavæedso depends on the hydrographic fetures of thearea and both the laval characteristics and oceenographic conditions therefore need to be understood to be able to assess how much benefit a spedicic reserve would contribute to a spedific fisher.

Table 8. Planktonic phase of temperate Californian reef fish (adapted from Carr \& Reed 1993)

Species	Planktonic drift (days)
DEMERSAL SPAWNERS	
Chromis punctipinnis (Blacksmith)	35 ± 3
Heterostichus rostratus (Giant kelpfish)	$14-60$
Hypsypops rubicundus (Garibaldi)	20 ± 2
BROADCAST SPAWNERS	
Atractoscion noblis (White seabass)	32 ± 3
Girella nigricansi (Opaleye)	30 ± 4
Halichoeres semicinctus (Rock wrasse)	>60
Medialuna californiensis (Halfmoon)	39 ± 4
Oxyjulis californica (Senorita)	$20-30$
Paralabrax clathratus (Kelpbass)	30
Scorpaena guttata (California scorpionfish)	>130
Sebastes mystinus (Blue rockfish)	$37-78$
Semicossyphus pulcher (California sheephead)	

5.2.3 Implications for management

Sanctuary location, design and menagement arrangements are curid to the efficacy of sanctuaries in providing spillover and laval export to fisheries Opinions differ about theoptimumsize, shapeand design of sanctuaries some reserchers argue that sanduaries do not need to cover the entire home range of migrating spedies, only spedific locations like aggregation sites for spawning where indi viduads are vul nerabl eto fishing mortaity (eg. Kramer \& Chapman 1999). However, Robets $\&$ al. (1995) arguethat a network of sanctuaries representing all habitats can benefit fisheries al ong the boundaries of the reserves and even tiny sanduaries can produce increes in focd spedies, providing that these aresituated in laval sourcerather than sink arees (Roberts 1997a). Conversel y, Barett (1998) proposes that, as a generd rule if the intention is the conservation of biodiversity, a sanctuary should beapproximatdy ten times greeter than the largest homerange of the species it proposes to protect. Generdly speaking, the avalableevidence indi ctes that a network of sanctuaries may be most effective if it ind udes individual sanctuaries at a range of sizes. This is considered both ecol ogically desirable and most effective for achieving a range of different management objectives (Attwood \& al. 1997b).

The coll apse of an abalone (Haliduslaeigata) metapopulation in South Australia has been atributed to poor sanctuary design redaive to the spedes' reanitment strategy (Shepherd \& Brown 1993). Between 1970 and 1990, the density of aggregated locd populationsfell by 68%, from 37.1 sexually mature abal one ($>100 \mathrm{~mm}$ shell length) per $100 \mathrm{~m}^{2}$ to $11.9 / 100 \mathrm{~m}^{2}$. Although poor rearuitment in the late 1970s contributed to a dedine in adult numbers, the reeson that the metapopulation coll apsed was the inadequatesize of a sanctuary re aive to land dispersa. Once rearuitment failure occurred the distance from other populations (12-15km) in combination with minima tidd movement ($1-4 \mathrm{~km}$ around the reserve) prevented the locd population from reaniting through the dispersa of lavæe Shepherd \& Brown (1993) proposed that 40-50\% of the potentia abal oneegg production needs to be protected from harvesting. The design of sanctuaries depends very much upon the individual abalone spedies, however. For compat populaions of H . Iaeigata a few large sanctuaries are expected to maximiselavad dispersal benefits. On the other hand, H. rubra aggregates in population strings along the coastline, and would beneit from a network of many smal sanctuaries Therefore, to design a sanduary network bæed upon source and sink prindiples requires detailed knowledge of speies charateristics, oceenic conditions and recuitment transport and fate

Some reserchers havesuggested seesonal dosures of arees are needed to protect spavning aggregations. However, this form of protection has been ineffective on a number of occasions, because of the increed leve of fishing effort outside dosed aress and thetargeting of post-spawning aggregations atter dosures were reopened, resulting in benefits being lost almost immediatdy (Halliday 1988, Brown \& al. 1998, Muranski \& al. 2000). The positive effects of marine sanctuaries are lost if the surrounding area is not managed effectively, therefore conventiona fisheries management should continueto apply outside the reserve (Pollard 1993, Rogers-Bennett \& al. 1995, McClanahan \& Mangi 2000) athough deerly, management modds need to be adj usted to ensure that the reserve ffect is taken into account when setting quotas, geer types, ac for thefishery.

A furthe important consideration for sanctuary design is to ensure habitat continuity. The propensity for fish to move is derly determined by the behaviourd charateristics of the paticular species. Howeve, in some coses, organisms (eg. spiny lobster) that are normally highly mobil eshow an unexpected trend towards residency within sanctuaries, adtively doosing to stay within the protection confered by the reserve (Bohnsadk 1996b). Observations such as these indi cate how dependant sanduary design is on existing knowledge of speies behaviour, and how such behaviour may be modified by fishing impats.
In addition, many other factors such as the perimeter-to-area ratio of sanctuaries and habitt availability will aso influencefish migration. Continuous habitat inside and outside a sanctuary should fadilitate exdnange between the two arees The issue of continuity of habitat is an important one when choosing a sanctuary location designed for increesing thestock availabl efor fisheries. For example, ref fish from thefamilies Labridæ and Monacanthi dæare detered from emigrating into arems that require coossing a boundary such a open sand between two refs (Barett 1995). Similarly, in another study on a reserve in Tammania batard trumpeter, whilst increesing more than tenfold during five yers of protection in a reseve, did not spillover into adj acent arem and remained at neer zero leveds outside the reserve (Barett 1998, Barett \& Edgar 1998). The trumpeter were believed to behindered in their movement by sandy beeches, and so individuals were confined to spedific rocky heedlands. These two studies indi cate that the position of natura barriers, such a open sand, may be important factors in ddivery of benefits from a MFS.

The geographic location of a sanduary may hinder fforts to protect species Although such temperte reef fishes as labrids, cheilodactylids, pomacentrids, rockfishes, surfperch, and bass are site attached, it is hypothesised that their tendency for yer-round residency decreeses with increesing latitude due to stress caused by environmental extremes (Barett 1995). For example, sometemperteregions experience vat semonal variations in water temperature thereby fording residents out of refs and into offshore ares Such environmenta danges will interad with the capaity of spillover and laval export to meke contributions to fisheries

Baed on data from the tropicd cord reef systems of Mombasa MarinePark (Kenya) derived from dosing and opening pats of the previous fishing grounds, McClandhan \& Mangi (2000) consider that thesanctuaries covering 10 to 15% of Kenya's inshorefishing grounds appered to belike y to bebeneficial. They estimate that highest CPUE has been achieved by reduing the size of the Park to 50\% of thetotal fishing grounds, but they conside that smaller sancuaries would be more effective in enhanding the inshore fisheries provided that they were based on spillover. Wherelarvd export was dso invol ved, McClanahan \& Mangi (2000) speculate that larger sanctuaries (and proportions of availableare) would be needed.

McClanahan \& Mangi wam that tropicd fisheries like the Kenyan inshore fisheries they studied may be supported by fish populations that range well beyond theeeisting fishing grounds, in waters and depths too difficult for fishing, thus providing a natural refuge Where these refuges becomeexploited, using advanced geer or othe technology, the inshorefisheries may suffer. The implication is that theinshore fisheries are directly supported by spillover from deeper unfished arem that at as naturd refuges for the fishery. McClanahan \& Mangi (2000) condude that sanctuary designs for Kenyan inshorefishing grounds intended to maintain the pre reservefish catch will require a careful balance of theextent and location of the fishing area in comparison to the extent of the reserve, and need to takeaccount of a range of biological and fishery management factors.
Design constraints for MFSs will dso ind udeoceenographic pattens, as wel as the adivities al lowed 'upstrem' from the sanctuary (Allison \& al. 1998), the incorporation of spawning aggregation sites (Stoner \& Ray 1996, Chiappone\& Sel ey 2000), and possible barriers preventing lavd drift. Egg production can beestimeted from population structures and spamming behaviour, but the understanding of rearuitmentsettlement processes is very poorly deved oped for most species (Robets \& Pol unin 1994).

5.3 Biodiversity Conservation Benefits of Marine Fishery Sanctuaries

In this section, we discuss the concept of how marine sanctuaries contribute to biodiversity conservation. We consider the empirical evidence in the categories of habitat, species and genetic diversity.

5.3.1 Habitat recovery

Protection of habita in a MFS to provide benefits to fished spedies is also expected to confer benefits to many other (non-fished) spedies that aso use the same habitat. After the implementation of a MFS, conditions in the reserve are expected to change, and a range of non-fished spedies are also likely to respond to the exd usion of fishing adtivity.

The community structure of impated aress generdly shows signs of recovery ater exd usion of light fishing adtivity (i.e oneor two trawls a yer), athough many yerrs are needed before heevily travied area recovers (Van Dool ch $\&$ al. 1987, Rijnsdorp $\&$ al. 1991, Van Dool ah $\&$ al. 1991). Despite the available evidence showing that benthos can return to preimpat conditions after light fishing pressure within ayerr or so, theertent to which long termfishing affects sebed habitat, benthic fauna and fishery productivity is generdly not known (Attwood \& al. 1997b). A detailed experiment of the effects of dredging in Port Phillip Bay suggests that soft bottoms recover after about a yerr of dredgeexdusion. Currie\& Pary (1996) report that dredge tradks disapperred atter six months and the abundance of most spedies recovered after their next recuitment, athough this recovery is by comparison to other recently fished arees

In deep arees and on hard substrate, post-fishing recovery appers to be sower or irreversible A study conducted in northem Tanzania where dynamitefishing and pull-seines had been used, found that athough there was an incresed percentage of cord cover following reservation (20% greter), this result was not significant (McClanahan \& al. 1999). A longer period of protection may be required before there is a marked difference in habitat quality between reserve and non-reservesites, although one reservehad been protected for a long as 25 yers without appreiable improvements. Theref degradation at this reseve al so affected reff fish abundance and diversity of grazing and invertebratefeeding speies A similar outcome was observed in Kenya, where the aree protected had been previously dameged by dynamiting and thebeneits of thereserve were not relised because the habitat was severdy damaged (Samoilys 1988). It may take a number of yerr depending on the extent of damage, for habitat recovery to take place and the meny benefits of reservation, such ∞ increed density and size, to occur.

5.3.2 Species and genetic diversity

Protecting biodi versity, induding speies and genetic di versity, meens avoiding bycatch of non-target spedies, destruction of bottom habita, ove-harvesting of marine plants and ovefishing of organisms that are or may belinked to, prey for thefocd spedies The effects of fishing on speies and genetic diversity depend on: (a) thefishing intensity and selectivity; (b) the focd spedies (c) whether fishing targets spedies with important roles in maintaining community structure, and (c) whether the habitas of thetaxa are degraded (Dayton \& al. 1995, MdManus 1997, Russ \& Alcda 1998b).

Fishing has been strongly implicted with indirect effects on cord refs. Sea urchins are abl eto quickly exploit nidheopenings provided by thefishing mortality of their main predators, such astriggefish and wrasse In Eatt Africa, heavily fished coral refs became col onised by see urchins, which reduced primary production through over grazing and in turn decresed the abundance and diversity of important reef spedies (McClanahan 1995). In this cese interspedific competition was considered to be a factor control ling the abundance of species and their atteration by fishing. McClanahan \& al. (1999) reported a reduced abundance and a change in generic composition in cords at four of fivefished sites, which they hypothesised was caused by fishing.

A number of reserchers have reported that marine reserves can reverse the ded ine in spedies richness and genetic diversity caused by fishing. Whilst studying the effects of a reservein Kenya Samoilys (1988) found that athough abundance and biomess of target fish species did not increes, spedies richness was highest in the reserve compared with unprotected ares A significant difference was dbserved between thethree levds of protection: park, reseve and unprotected. Arems ded ared national paks (i.e sanduaries) had the highest speies richness, while unprotected sites had the lowes. Similaly, increeses in the speies ridnness of macroal gal speies were documented in a Tæmenian reseve and there was also a shift in dominance of the plant speies from Cytaphora rerrofexa to Eddoria radiata (Edgar \& Barrett 1999). The Leigh Marine Reserve in New Zei and demonstrates the spedies richness benefits that flow from protectionCole\& al. (1990) report that the number of spedies within the Leigh sanctuary was 60% higher than in adjacent fished arem
In Belize, a higher spedies diversity was observed in a marine resenve after only two yeers of establishment when compared with a heavily fished ref (16.1 versus 14.7 spedies per observation) (Sedberry \& al. 1999). Themost dominant spedies in the resenve were thesnappers (Lujanusgises L. mahogan, and osuruscriysuru) which wererareoutside the reserve Nassau groupers (Epineqndusstriatus) weredso moreabundant in the reseve dong with black groupers (Myteroqperca bonad) and graysby (E. cuettaus). Herbivorous fish, such ळs surgeonfishes (Acanthuridæ), parotfishes (Scaridæ) and coney (E. fulwe) were more abundant outside the reserve, suggesting a prey-rdeeffect, which has been found in a number of reservestudies In these coses, prey fishes are more abundant outside the reserve, where predator densities are low, while redaive y high predator densities in the reseevemaintain lowe, pehaps more 'naturd' densities of prey fishes

In contrast, dedines in species richness have been observed in some caes following cessation of fishing pressure This phenomenon may occur because of variabl e ecosystem changes or because certain species become dominant and prevent others from increesing (i.e through predation or competition). Barka \& Branch (1988) found that rock lobsters, which inceed in density in a reserve, began to diminatemussed sand other filter feeders. Nonetheless, Barett \& Edgar (1999) arguethat thereshould be an increese in species diversity over a large spatial scde if a marine reseve is present, due to the incresed habitat heterogeneity assodited with protected and unprotected arem

Somespedies arelong-lived, slow growing and have a low fecundity (eg. sharks), indicaing that they may have evol ved with redtively low rates of natural mortaity. Other spedies are short-lived, quick to reproduce and grow but suffer higher natura mortality rates. Fishing can potentialy alte thegenetics of the long-lived species as well as their life history charaderistics because fishers target the most desirabl e individuds of a population-thelargest and oldest members - and createasetection pressure for fater growers, enlier maturation and a reduced age at first spamming.

Severe fishing mortality potentially aters genetic diversity and can cause a range of effects in fished populations. Effects of fishing that have been suspected to have a genetic component ind udeselection for small size and ealy maturation, reduction in the age of sex change, selection for late spavning, disuptive solection (resulting from thetargetting of a specific time of salmon run), and change (increme and decrees) in alozymic heterozygosity (Smith 1994).

Fishing can cause a loss of genetic diversity as extreme reductions in population size are experienced; this can occur within 6 yers, as was seen with orange roughy (Hadotethusatlanticu) populations in New Zeland (Smith \& al. 1991, Auster \& Shackell 1996). Loss of genetic diversity was believed to have occurred because the spawning popul ations were reduced by 70 percent. A similar situation occurred with Northem cod as there was a dramatic change in age structure with the larger fish virtually diminated, thereby affecting rearuitment and the number of eggs produced (Auster \& Shadkel 1996).

Growth overishing (see the Glossary of Terms for definitions) ocaurs when fishers sel ectivedy target der, large fish resulting in a younger and smaller population. Growth overishing is patioularly detrimental for protogynous hemaphrodite fish, such as red hind, as it can causesperm limitđtion during spawning aggregations leding to spawning failure (Beets \& Friedlander 1999) and can also reduce the ratio of males to femeles Shift in thesex ratio may causea change in life history traits such as feaundity, survivd and sizet-age, potentially altering the pattem by which the populaion replaces itsdf (Shadkel \& Lien 1995).
Rearuitment overfishing, conversdy, ocaurs when themost targeted indi viduads are the breeding stock (due to their older agel larger size) hence creeting a dearese in the number of spamers available to sustan a population. Not only does fishing of the spamning population distort the age structure of the species, but it can also reduce the number of fettilized eggs and can even affect the spawning behaviour of fish. It is not derr if these effects result in permenent genetic changes or whether the population would return to norma if fishing pressure is removed or reduced (Shackell \& Lien 1995). It is also under within what time framesuch geneic change opertes, what type of geneic variability contributes to population viability (i.e molecula, alleic, polygenic) and whether genetic variability is important in the regional design of a reserve Equally uncertain is whether agestructure can bemaintained in a population whose individuds migrate out of a reserve, or even if reserves can be designed in a way that would fully compensatefor the potential genetic effects of sizeselective fishing.

Russ \& Alcda (1998b) conducted a study to detemine whether life history and fishing intensity together could predict rates of ded ineand recovery of abundance and species richness of reff fish in the presence and absence of fishing. Their information showed that fishing impats aretaxon spedific. Fusiliers (Caesioni dæ) areresilient to fishing because they are abundant, short-lived, fast growing and have high reproductive rates, while Acanthuridædisplayed week effects of fishing on abundance and species richness Howeve, the Acanthuridæis a family highly di verse in behaviour, size and trophic category, and other studies (eg. in the Caribben) havefound herbivorous fish to be highly susceptible to the dameging effects of fishing (Hughes 1994, Russ \& Alc्da 1998b). Anthi dæwere not affected by fishing in this study, and Labridædid not changesignificantly in tems of species richness and displayed complex pattens of change in density over time Mullidædecreed when protected and displayed no significant changes in speies richness over time, and Scarids dedined in spedies richness when fishing resumed and density ded ined, athough not signi ficantly. Prey fish that are not targeted by fishers commonly increme in density, usudly considered to be a consequence of the deareme in abundance of their predators.

Although there is little data to demonstratethat marine reserves protect genetic diversity by preventing (or compensting for) fishing-induced selection, a number of studies have indi cated that this protection might ocour. In some cases, sanctuaries have incresed reproductive output and genetic diversity by limiting the degree of sizesdectivity applied by fishing and allowing for 'mixing' between fished and protected populations through spillover (Bohnsack 1996a, Buxton 1996). Marine reserves may thus have an important roleto play in presening community structure, and serveas reservoirs for some of the spedies that are impated-either directly or indirectly-by fishing. Shepherd \& Brown (1993) showed that thegenetic diversity of abane populaions would beenhanced by the correct placement of refuges, subject to appropriate maintenance of connected habitat or intervening populations.
Overal, in order to adequately maintain genetic diversity, and given the large uncertainties in redaion to managing the gene pool of a focd speies, MFSs should samplefaund provinces, fish assemblages, sediment types, sensitive habitas/spawning/nursery arees (Auster \& Shadkel 1996). When designing MFSs, an understanding of how oceenographic processes, life history charaderistics, and human activities affect the spatial and tempord appets of habitat distribution is essential (Auster \& al. 1998). Protection of the gene pool enables fish to respond and adapt quidkly to changes in their habita. Also, separating locd feaundity and reanuitment reduces therisk of inbreeding depression and geneic drift (Car \& Reed 1993). Thesecondusions apply dso to speies that are not directly targeted (such a bycath speies), although generally the nature of genetic protection that would be confered by MFSs on thesetaxa is difficult to predict. In Austrdian reserves, athough speies richness increes and community compositiond changes have been noted, the effects of arem protection are less obvious than in oversees reserves, and this is considered to be because the arems se aide in Australia as resenves are too smal (Porter, 1999).

5.4 Some Design Issues - size and area

Thequestions of optime effectivesize of a reserveand the total areathat should be protected havebeen widdy debted. It has been suggested that 20% of thetotd shef area should be dosed to fishing in order to maintain stock reproductive output at 30% or more of that of an unexpl iited population (Plan Development Temm 1990). Modeling suggests that even larger reseves (50\% or more) are paticularly beneficia to heavily exploited fisheries (Robets, 1997b). Lauck \& al. (1998) considers that reserves need to ind ude up to 50% of theorigina population in order to prevent totd collapse Recent approaches to the reservesizequestion adopt a more flexibleapproach, indicating that set percentages are difficult to defend on ecol ogicd or fisheries grounds, and reseves are perhaps best designed to be a network, using aset of carefully deve oped design principles (Attwood \& al. 1997b). The success of no-take reserves for fisheries purposes is considered by many authors to becritically dependent on undelying model structures, assumptions and design issues induding size and the spedific location of the reserve in reation to life history and dispersd characteristics of the spedies (eg. Fogaty \& al. 2000).
Single large protected aress are thought by some reserchers to be the best option as the populations within the reserve will belarge thereby reducing the chance of inbreeding and random extinction (Nilsson 1998). The advantage of having a large marine reseve is that it assists with the problems of protecting migratory species as well as pol lution and other indirect problems assoitted with coastal devdopment. Large reserves also indude many types of habitat, have a higher species richness, reduce the need for migration out of the protected area and large organisms could be protected, which are usudly keystone species requiring large
spaces (Nilsson 1998). Nonetheess, smal sanctuaries can also behighly beneficia, in terms of protecting biodiversity and providing habittt protection; these reserves typically however require intensive management. Sobd (1993) suggests that the two dbove options should becomplementary-smal, no-take reserves should belocted within large multiple use reserves J ennings $\&$ al. (1996) consider that small reserves are advantageous for managers as they can operte without depriving locds of all their fishing ground and aremoreemily regultaed.
Reserves may need to beextremdy large in order to besdf-sustaining for large species, therfore, a network of reserves which alows movement from one reserveto another may bea better atemative (Ballantine 1999). Allison \&al. (1998) maintain that resenvenetworks could providereplicate source populations and increese the potential benefits to non-reservearees if properly designed (Allison $\&$ al. 1998). A nework of small ares would dso be useful a this would preserve morespeies and habitas per unit area and better reflect natura genetic variation. Also, many species are dependent on arees that are located distant from ech other so a network of reserves could protect paticular habitas important for cetain lifestages Having several reserves provides protection against the possible collapse of an entire protected area and builds a meesure of replication into the resenvesystem (Nilsson 1998).

There have been few designed empirical studies of the questions surrounding themost effectivesizefor marine reserves. McClanchan and Mangi (2000) consider that an effective size of reserves to enhance the inshorefisheries in Kenya would be about 10 to 15% of the total area based on studies of landings and reseerch data in Mombasa MarinePark. They recognised however, that these fisheries may dso besupported by naturd refuges for the fish they studied, in offshore and deep waters where exploitation pressure was limited, and that this may confound their estimates of effectivesizefor reserves A meta andysis of data from 73 reserves indicted that reservebenefits (in temms of abundance, size, and weight of focd species, and overd species richness) was not dosely redted to reservesize, with small reserves achieving a similar range of per area benefits compared to larger reserves (Hal pern in press).

6 THE SOCIAL DIMENSIONS OF MARINE PROTECTED AREAS

In this section we consider the social aspects of marine reserves, including issues such as social benefits, stakeholder views, management, and the spatial size and type of reserve.

6.1 Social Benefits

It is well recognised that marine protected aress can only beimplemented effectively with the support of locd communities (Gilman 1997, NAS 2000). However, few studies have considered the sodid consequences of ded arations of marine reserves, even though there are some dbvious potentia economic impats - some positive, others negative Onereeson for the lack of information is the nemness of the concept and thefew known examples availablefor and ysis Tourism often follows from the cretion of MPAs, beneiting coastal communities locted neer a reserve However, the increme in tourism may be viewed by the locd community as either positive or negative Positive effects ind ude incresed employment, economy and livelihood of the adjacent coastd communities On the other hand, some peoplemay beopposed to the increes in tourism In a reserve in Nev Zeland (TeWhanganui-aHe Marine Reserve) most of the community approved of a marine reserve, but others were concemed that the price of land would inflate and that the increse in tourists would dhange the nature of thetown. A major complaint was that the reserve would restrict recretional fishing. In theevent, ninety percent of the locd community surveyed after the establishment of the reservesupported the idee of more marine reserves being implemented in New Zeland (Codklin \ddagger al. 1998).

There are cases where a marine reserve has been documented to benefit a community and the locd economy. The marine protected aree at Cape Rodney in New Zetand is now a popular tourist destination and contributed greatly to theeconomy of the coastal town (Porter 1999). Similarly, the Leigh MarineReserve in New Zeland is an example of how incorporating the cormunity and al stakedelers into the design and menagement of a reserve can providebenefits to all involved, as well athe ecosystem (Cocklin \& al. 1998). Many of thesestakend ders believethat the reserve hæs lifted the profile of Leigh and theeconomy has benefited as the area is now a popular tourist destination. Even commercid and reaetiond fishemen approve of the reserve, stating that fishing has improved outsidethe boundary. Locd fishers are now very protective of the reserveand areinvol ved in poliding any fishing or other illegal activity in the reserve In contrat, Gribble\& Dredge (1994) showed that community tension resulted from the creation of temporary reserves in the Queensland pramn fishery. Seesond dosures of the area are used to maximise yidds, mainly for limiting growth ovefishing on pramss (Pemeerseculetus). Area dosures resulted in an increed effort by fishers in the region and movement of non-locd fishers into the region aiming to capitalise on incresed catches outside the reserves occurring through spillover.

Other uses of marinereserves are also revarding for locd communities and visitors, and rearetional marine parks can be used for educational and intepretive purposes, which can encourage support for marine reseves and sustainable fisheries in generd (Novaczk 1995). A series of Ref Observation Arees are proposed for the

Abrol hos Istands, Westem Austrdia as marine reserves for combined fisheries protection and community eduction purposes (Bunting 2001). Using reserves as eductiond fadilities is usful in promoting an understanding of how the heath of cceens can diretly or indirectly benefit fisheries as wel asthegenerd community.

Tourism and conservation can sometimes conflid if management arrangements are inadequate When a mutual retaionship is formed though, the beneits can encompass cultural, ethicd, economic and physica forms (Kelleher \& Kenchington 1990). Experience has shown that the success of marine reserves, or any conservation strategy, works most effective ly if there is support from the locd community. Reserves to which access by the community is restrided, therefore, could proveto be more difficult to implement unless the community is well informed on thebenefits the reserve will deliver (Ballantine 1999). Hence education plays a very important role in thesuccess of any marine reserveimplementation.

6.2 Stakeholder Views

There has been much conflidt over the development of marine reserves due to the difference in goals and the requirements of different marine users. Some of the viens from opposing stakenolders in Austrdia are discussed below. These are presented as representative views of many such stakenolder groups, both in Australia and oversem

6.2.1 Reserve Advocates

Many people with strong environmental and soientific views believe that more reserves should beestablished, with preferencegiven to largeno-takeares Conservationists believethat the benefits to marine biodiversity through the protection afforded by reserves are numerous and that there is a drastic need for arees of the marineenvironment to be protected because of dedining populations of target fish species and habitat degradation caused by fishing pratices Conservationists urgefor aress of the oceen to best ajdefor protection, as the amount of degradation in the marineenvironment is difficult to assess due to the invisibility of some impats (ACIUCN/ANPWS 1991). They believe that there is a growing need for changeto fisheries management because of the substantid depletion of many of Austrdia's (and indeed the world's) expl oitable marine spedies. Many fisheries areoverfished or fully exploited and advances in fishing technology are continuing to enhance the exploitation rate(ACIUCN/ANPWS 1991).

Documents produced by environmenta groups and govemment agendes dealing with environmental issues tend to foaus more on the potential and actud benefits of reserves to biodi versity and providelittleevidence on the sodid and economic effects, espedialy as these re tate to fisheries (eg. Gubbay 1996). Such a foous may beentirdy approprite for speific locdities and issues, but overdl, reseves can only be effectived y established and sustaned if they have a broad bæe of support from al key stakend ders that have an interest in thearea where the reserves areto be ded ared. This will dways ind ude fishing communities, and many othe locd users of marine resources, but too often, such communities and interests are ovelooked.

6.2.2 Fishing Industry Opposition

In contrast to the belifs hedd by conservationists dbout establishing reserves, there is much apprenension and hesitation by industries such as the industry that rey either directly or indiredly on marine resources A common complaint by fishers is that no-takemarine reserves reduce yidds, however there is very little eidence to suggest this occurs (CALM 1999) (but see McClanahan \& Mangi 2000). Buxton, reported in the Queensand Fishemen's newsletter (Buxton 1999), considers that the proposed benefits of reserves are 'alittle exaggerted' mainly because of thesmal size of most existing reserves, but that there is also insufficient evidenceto show that biodiversity has been thretened by fishing. He considers that the conventiond methods of fisheries management will be more likely to guarantee the future of Australia's fisheries

TheAustraian Seefood Industry Coundi (ASC 1998) believes that MPAs can "add up to a load of troubl efor the (sefood) industry", and can beespedidly disastrous sodidly and economically if MPAs are badly planned. ASC considers that MPAs should ensurecetainty in employment, havesensibleenvironmenta goals, and that there should beless conflidt asociated with MPAs than in the past if the obj ectives are acceptable to the fishing industry. ASC argues that MPAs should be planned and managed on a regional scele with der and agreed objectives, and no-takezones should belimited and flexiblefor changing conditions. Also, existing MPAs in Austrdia should be assessed for their effectiveness, dong with sodid and economic impats, before new MPAs are established. ASIC believes that if an MPA is ineffective it should beremoved or modified, and the fishing and sefood industries should be central to dedision meking. ASC also suggests that MPAs be enacted under fisheries management arangements.

The Tammanian Fisheries Industry Coundi (TFIC; Lister 1998) considers that the current management arangements in Tæmenia for rock lobster and abalone(Total Allowable Cath) are adequate and sustainable, and reserves are therefore not needed. In redtion to the theory that reserves crete an increme in egg production due to increesed size of focd spedes, TFIC considers that there ationship between eggs and weight of lobsters results in sightly fewer eggs produced by a tonne of largefemes than a tonne of small femeles (due to the inceed number of small individuds in a tonne). This reationship would therefore meen, according to TFIC, that protecting femples in a reserve would ither maintain current yidds or decreese them Sincethelaval dispersd mechanism for lobster is unknown, Lister (1998) suggests that it would besefer to protect egg production regionally until there is more reseerch conducted. Hedoubts that reserves allocted to incremegrowth will incremeyidds as effort would have increesd dseawhere, thereby resulting in growth ovefishing in the fishableares He conduded that whileit is important to protect lobsters from havest for the purposes of soientific reserch, the perceived benefits of reserves to thefishery will ocour at the expense of ares outside the reseve (Lister 1998).

In response, Edgar \& Barett (1998) assert that an increme in density of rock lobsters in reserves would result in a density decrese in ares outside the reserve if the reserve was dosed to fishing. However, in tems of Total AllowableCatch (TAC), emigration of protected speimens (which are usually about twice the weight of spedimens in fished $\mathbf{r e m})$ from the reserve into surrounding arees would maintain the TAC and save at leat two non-reserve organisms for each emigrated reserve lobster. Rock Idbsters inside resenes grow to a much larger sizethan lobsters outsidesanctuaries

6.3 Management Considerations

In order for MPAs to be used in fisheries management, all stakeholders need to cometo a consensus, and further reserch foaused on key issues will hep aid this process Murawski \& al. (2000) dedarethat fisheries failures are attributable to signi ficant havest overcapaity, combined with ineffectiveenforcement of regulations, little adaptability within management to changing stock conditions, technol ogicd improvements in fishing deved opment, and difficulties in addressing allocation issues It has been suggested that the most efficient fishing technologies such as trawis and seines be restricted, athough not banned entirdy, and bycatch and discard beminimised (Novaczk 1995). Hastings \& Botsford (1999a) produced a modd to detemine differences in yidd between mainereserves and traditional fisheries management and found thereto be no difference between the two. They conduded that marine reseves would be a better attenative because of the protection against ovefishing afforded by dosed arees In addition of course, there would, at leest potentially, bemany other benefits that accured outside the fishing industry, induding benefits to sectors such as tourism, and the broader conservation of biodiversity of non-focd speies

It is apparent from the experience of reserve ded ardions in many countries that community and industry support is essential if conservation and management goals for reserves are to beachieved and maintained on alating basis Therefore, a collaborativemanagement approach is necessary in the deved opment of reserves, with govemments, sientists, fishers, conservationists, community groups and marine resourceagencies working together (Fiske 1992, Novaczk 1995, Pitcher (ed.) 1997). An example is the proposed La Parguera marine sanctuary in Pueto Rico wherefishers fett that they were not ind uded in the management plan development and they did not fully understand the details of the senctuary and its consequences Onemeeting was hedd in English only, which displeed them further and hencethey devd oped an unswerving resistance to the sanctuary even though restrictions wereminimal (Fiske 1992). In contrast, most fishers at St. Thomes aresupportive of a permenently dosed off areat a grouper aggregation site because of the perceived benefits in increese catch of thesefish (Beets \& Friedlander 1999). Similarly, fishers supported protection of spawning arem as a management tool at Georges Bank (Muravski \& al. 2000).

In developing polides, strategies and proposds for MPAs, many countries (eg. Australia, Sweden, Canada) havetzken the approach of incorporating al stakendelers and thegenerd community, and zoning arees into differing levels of protection depending on the objectives of the MPA (Nilsson 1998). The govemments of Canada and British Col umbia are devel oping a marine protected arees strategy coordi nated aross all jurisdidtions and induding the public in the dedision making process, aiming to devdop an extensivesystem of protected arees by the yer 2010 (Canada and British Col umbia Govemments 1998). All the MPAs will protect arees from the dameging ffects of oceen dumping, dredging and exploration and there will be multiplelevels of protection depending on the objectives for each site

Westem Austrdia enacted the Ads Amendment (MarineReserves) Act 1997 that endbles the cretion of a multiple usemarineconservation resevesystem Petroleum drilling and production, mining, fishing, peerling, aquaculture, tourism and rearetion will not be permitted in zones which are highly protected and wheresuch disturbance would bein conflid with the conservation purposes of thezone The Ministers for Mines and Fisheries must both give their consent before a marine reserve is creted or if there areany menagement changes within an al ready etablished reserve (Govemment of Westem Austraia 1997).

Considerdble attention needs to be paid to meny issues if environmenta, social and economic benefits from reseves are to be relised. There needs to be a political cormmitment, effectivelegistaion, comprehensible policies and sufficient funding (Eidsvik 1992, Allison $\&$ al. 1998). Thefrequency of surveys, cost effectiveness and degre of adaptability in fisheries management also needs to be addressed (Pitcher (ed.) 1997). When preparing a management plan for MFSs, a register of habitats and speies, spedies range requirements, population stability and sensitivity should all be considered (Ballantine 1991, Eidsvik 1992). Also, the issues of culturd values and of aborigind rights needs to be addressed to detemine whether access for fishing in no-takearees is to be permitted (Pitcher (ed.) 1997). In Canada aborigines are to beinduded in the management of MPAs and will be working together with soientists to share information and protect ares of cultural significance Speid consideration will begiven to traditional aboriginal ativities during the planning and establishment of reserves (Fisheries and Oceens Canada 1998). It is also suggested that stakenol ders be adequatdy compensted, or provided with an altenative form of employment or income genertion, if they are displaced and can no longer conduct their adivities in the proposed reservearea (Fiske1992).

Enforcement and sufficient penaties are necessary if MFSs areto work. In the Great Barrier Ref MarinePark, fifty boats per yeer travied illegally during a study into reserve effectiveness, compromising reserch efforts and reduing the contrast between fished and unfished arees (Gribble\& Robetson 1998). Large endosures would bemost affected by illegal fishing along the boundaries of the reserve, with little fishing occurring in the centre, wherees small endosures are much more likely to be illegal ly trawled throughout the entire reserve(Gribble\& Robetson 1998). Murawski $\&$ al. (2000) found that poliding is effective through the use of high levels of ship and aircrat patrol, high penalties for violators, and stellitebased vessed monitoring.

6.4 Issues in Reserve Design

The spatial size of reserves and thetype of management necessary to most benefit industry and the environment has been debated by many reseerchers. Robets (1997c) and Porter (1999) believethat no-take reserves are more eeily managed and work more fficiently than multiple useor zoned reserves Prideax \& al. (1998) agree stating that reserves should be stridtly no-takearess with multiple use aress surrounding them and should be protected foremost for themaineecosystem Ballantine (1999) discussed the sodia benefits of marine reserves in New Zeland. Heconsiders that no-takereseves are more efficient in terms of planning and management than multiple use reserves Single use reserves do not depend on detailed information and provide insurance and buffers against menagement error. Healso considers that the public needs timeto become accustomed to the ide of a reserve and to be shown examples of reserves in othe locations that have worked. It may be more sodially acceptable, however, if only cetain arem are protected in a reserve and others areopen to extractive uses The Great Barrier Ref MarinePark iszoned into different sections each with different uses Some of these uses indudereaetional fishing, conservation, scientific reserch, and commeria fishing, and the regulation and enforcement of these differs in response to the use permitted within a zone Permits are used if adivities have the potential to ham theref, conflidt with other uses, or need to bestridly controlled in a location (Alder 1993).

It has been suggested that the ided design of an MPA will rardy be adopted in practice because of the need to stisfy multiple interests simultaneously, resulting in a compromised outcome (Attwood \& al. 1997b). The reduction in risk to a fishery assoiated with marinearea reservation may encourage their acceptance to otherwise di saffected communities (H diland \& Brazee 1996). In fact, a concem has been expressed that future marine reseve successes may be exploited by fishers once initial reservations have been overcome (Hat 1996). It is deer that education of fishers and the broader community about the value of successful MFSS will be a crudid expect of their ongoing menagement and sustained success (NAS 2000). The difficulty is the circula argument of having somesuccessful MFSs that can bewdl documented and used ∞ modds for discussion and education within receptive coastal communities
To condude therehave not been many documented sodia benefits of MFSs, but increes in locd tourism have been noted, hence benefiting the community and economy. The oceen is regarded as a "commons' and so management requires a careful integration based on input from al stakenolders. For consideration of marinefisheries sanctuaries, theleve of involvement should beequal among stakenolders, induding the locd community, thetourism industry, fishing industry, exploration industry, and the conservation sector, and should remain equad throughout the whol eprocess from planning to implementation. The size of, and menagement arrangements for, any MFSs will depend on the planned objectives, which should be deided upon by al participants, to ensure that benefits flow to a broad range of stakenolders ind udi ing the fishing industry.

7. AN EVALUATION FRAMEWORK

In this section we develop an approach for evaluating the benefits of marine fisheries sanctuaries and suggest a set of indicators and criteria as the basis for assessment.

7.1 Evaluating The Benefits

No-takemarine fisheries reserves (MFSs) are rare, and there has been very limited opportunity for fisheries menagers to devel op operational procedures or meesurement systems that can be used to evd uatetheir benefits. Thelimited gldod history and experience with the use of MPAs also mens there are no wel-teted approadhes that can be used 'off theshdf' by fisheries managers to confidently eval uate the benefits of MFSS

Here we disauss the issues surrounding the evduation of sanctuaries for fisheries management purposes, and develop procedures for their evduation and a generic se of criteria and indicators that are appropriatefor any fisheries reserverd ated dircumstances The approach (framework) and the criteria and indi cators may be used to assess the literature on the performance of marine reseves, in planning aset of fisheries reserves (to help with establishing objectives, and boundaries), to support the development of a peformance monitoring program, as pat of a management accreditation program, and contributeto the community debateon Ecol ogically Sustainable Devd opment (ESD) of marine fisheries A comprenensive and workable modd for assessing the benefits of reserves will makean important addition to thetod kit of fisheries managers as they consider how to best assess the rol e of no-tzkearees, and where appropriate, conduct trids, and eventually build them into their more traditiona fisheries menagement systems.

7.2 The Approach

Fisheries menagement is considered here to encompass the concepts of the management of fisheries and fishing in the context of ESD. This is to distinguish it from thesimpler concept of management and sustainability of fish stocks done, which is only one pat of the broader concept of ESD for fisheries.

Ecol ogically sustainabl efisheries management involves (amongst others) maintaining target stocks at acceptabl elevels, and managing fisheries to causeminima and acceptabl e damage to non-target speies and habitas, either directly or indirectly. Inceemingly however, commerial fisheries management policies are being seen to have broader ramifications, paticulaty in relation to regiond economies, rurd employment, reaetiona æpirations, and quality of life matters (seefor example Kenchington 1990, Halliday \& Pinhom 1997, Ledbitter \& al. 1999).

Failures of traditional stock management approades (eg. Dayton \&al. 1995, Lakin 1997, Ludwig \& al. 1993, Robets 1997b) have been a major motivation for the considertion of the use of marine protected aress as fisheries management tods in many countries (eg. Robets \& al. 1995, Holland \& Brazee 1996, Bohnsadk 1996b, 1998). Although in Australia fisheries stodks have perhaps fared better than in many other countries,
increeing calls for maine reserves for non-fisheies purposes, as wdl as concem about more precautionary management of existing fisheries, meen that MPAs have attrated the attention of many stakend ders with an interest in the conservation and uses of marine ecosystems.

Given the objectives of MFSs to protect both fished and non-fished species, MFSs will be evduated for benefits within two very different contertual settings first their ability to contributeto stock maintenance enhancement, or sustainability of thefishery (the 'fishery benefits'); and second, for their ability to contribute to mitigation of the unavoidable environmenta impats of fishing and to the soid, collurd, environmenta and economic issues of locd and regional communities (the 'non-fishery benefits'). In effect, no matter what the express intentions and dojectives for a MFS are, they will beevd uated by a range of stakend ders in order to decidehow effecive they areat achieving a range of outcomes, only some of which will bethe primary management responsibility of a fisheries agency (Bohnsadk 1998). For example the effectiveness of a MFS could beevaluted on, amongst others, its contribution to regiond conservation goals for highly valued noncommerid speies such as seebirds, or a highly valued and sensitive habitat such as cord refs. These goals might beeither explidt or implidt in theidentification, selection and menagement of the MFS, but because marineecosytems are "common' propety, a range of stakend ders will have a direct and legitimate interest in their consevation and use

In the first context, sustenance of thestock and thefishery, theeevd uation would be primarily managed by the fishing industries and their agendes Comprenensivestraegies are in placeto keap tradk of exploited populations, induding routinestock assessments. To evduatefishery benefits, evduation of the performance of MFSs could be reedily achieved by using traditiond stock assessment and fishery indi cators, deployed at the appropriate time and spacescdes to match to fisheries management objectives, and with the addition of some spedific indi cctors especially designed to assess the performance of the individud reserves.
In the second context, theevaluation process is much broader, and invol ves a wide range of interested stakeholders, induding the fishers themed ves, their locd communities, NGOs, govemment agendes at a range of levels, and for sometrans-boundary fisheries and issues, even intemationa govemment agendies and NGOs. An evduation of reserve performancefor non-fishery benefits is much more complex, because it will interad with other efforts made to conseve the same dements of biodiversity. Complexities arise when indi viduad jurisdictions develop different indictors and criteria for assessing the performance of a valued dement of an ecosystem Such compleities can beeven further compounded if different methods are used to colledt data and evduate indicators within different jurisdidions.

There is, therefore, a citicd need for an integrated approach to evduction of the pefformance of marine sanctuaries This indudes, but is obviously not restricted to, an integrated approach to identifying criteria and devel oping appropriate indicators so that the peformance of MFSs can beevduated across thefull range of ecosystem-protection and use objectives, induding fisheries stock maintenance

An evduation of the effectiveness of a reserve should consider the purposes for which the reserve was intended, and evalute outcomes of the reserve's functions in terms of its objectives. However, reserves established for purely stock management purposes will aso have other biologicd values that aremeintained in a purely coincidental (or at lest uni intended) manner. These additiona values may result from dojectives for management that areeithe implidit, or aresimply coincidental. In either coes, the reservemay have a range of values other than thosespedific fishery values for which it was originally intended, and overal,
a MFS may havebroad-ranging social and economic significance in the locd arear in the broader region. For many stakenolders these indidental values will be of equal importance to thoseredaing to the focd stocks of importance to the fisheries management system Recognising theseadditiond, and perhaps coincidental vdues, could add significantly to the recognition of MFSs a a legitimatestrategy for conservation of marine ecosystems, and could assist substantially in gaining broader acceptance of fishing strategies in the wider community.

To beable to evd uate the effectiveness of such reserves against their intended objectives, the processes of reserve design and sedection will need to considered, and evduated to the extent possible, as will the ongoing management adivities that redte to the reserve Without this, characteristics of reserves that meet, or fail to meet, their objectives cannot beidentified. For non-fishery benefits, which may beimportant dements of achieving ESD of fisheries in the eyes of many stakenolders, evduations should dso be baed on loced and regional conservation objectives for fishing-affected speies, habitats and ecosystems

7.3 Development of Criteria and Indicators

In detemining whether MFSs have been (or arelikely to be) effectivefor the maintenance, conservation and management of harvested speies and non-commerial species and habitats, their effectiveness should be assessed using ast of citeria and indi cators that cover thefull range of potential reserve ffects and interations If reserves are not assessed in a comprehensivemanne, there is a significant risk that fisheries might be badly affected by poorly pefforming reseves, becausesuch reseves convey a false sense of security (Car \& Reed 1993). A full evduation would cover theextent to which:

- the reserves have been identified, planned and sel ected to deliver speific management outcomes, and the contribution of spedific tools to this process,
- objectives for management of the reserve have been spedified expliditly, or impliditly in someother form of statement of activity, and have been achieved;
- the reserves achieve (by coindidence or design) other valued outcomes, such \equiv positive effects on locd economies and other sector activities (such as tourism), and the provision of retted functions such as support for reserch to increeseknowledge on naturd ecosystems or to assess the naturd dynamics of ecosystem components, and
- appropriatemanagement strategies, plans and actions are implemented for the reserve ind uding pefformence evduation, seaurity of tenure, control of ativities in and around the reserve, compliance assessment, and reporting procedures to stakenolders

A broad spread of types of indicators will ensurethat the contribution of MFSs to regiond ESD goals can bequantified, and for new MFSS, they will hep to definemenagement objectives that are intended to fulfill a broader rolethan simply support for the management of harvestal espedes

For the purposes of this work we have adopted the FAO nomend atureon indi Cators of sustainablefisheries, where citeria are (usualy) broad statements to guide decisions, with one or more meesurable varidble termed
indi cator that will assist to make an evduation of each ariterion. Theindictors will usually benumerically based, and should be meesurable variables in the context of theevduation. The indi cators and the criteria may be weighted a required for different purposes (such as use in evduation modds), but here we do not consider the use of weights (or spedific modes) for usein interpreting or evduating indi ctors or citeria These should be devel oped as required for eed speific application circumstance The indi cators can also havetarge levels attached to them, in the form of referencepoints. Here, wesugges the direction of changethat might be considered to be desirdble (i.e a dhangefor the better), but identifying numeic targets is well beyond the scope of this reviev. Similarly, thereare various systems for synthesis of numeric scores on multiple biodiversity assessment ariteria but such details are not the subject of this review.
We derive here a list of suggested criteria and indi cators that can be used to make a comprenensiveevduation of existing or intended fisheries reserves Evduation of the performence of actual reserves against criteria and indicators is only feeribleby using a system of ranked scores developed a prici. Various scoring systems might beapplicable in different dircumstances, but a generical ly appli icdbleevduation could use the following system:

na $=$ not applicable to this reserve or situation
$u=$ unknown situation (missing value)
$0=$ data not collected to permit an evaluation to be made
$1=$ condition undesirable
$2=$ condition slightly undesirable
3 = condition unchanged
$4=$ condition slightly desirable
5 = condition desirable.

For eech indi cator, the direction of 'desirable' (the converse of 'undesirdble') will need to be defined and spedified in detail in each spedific application of theevduation process

7.4 The Criteria and Indicators

Not all these Criteria and Indi cators will apply in all reseves or in al circumstances. This is a comprenensive st from which therdevant and appropriate Criteria and Indi cators can bechosen to suit a speific set of droumstances. Whilenot al the Indiccors will apply in al resevedroumstances, the Criteria arelikely to be used in most dircumstances In some speific ceses, theremey beatemative indicators that can be defendably used to evd uate the spedific Criteria we identify below.

Selection Process (establishes boundaries, sizes, location, network interactions,

 from a set of previously identified candidate areas)1. putative objectives devd oped?
2. selection modds areasedection outcomes, scientifically robust?
3. precautionary approaches applied?
4. interactions with other used/dbjectives integrated?
5. security of tenure (timeand/or space)
6. adequate resources provided for planning adivities?

Declaration Process (underpins broad sustainability of the reserve's existence)
7. patidiptory, to crette locd and stakenolder ownership of the outcomes?
8. explidit and accountable?

Management Planning (underpins the continued performance of the reserve)
9. menagement strategies, plans and ations in place?
10. operationa goals and objectives in place?
11. patidipatory devdopment of the management regimeand adivities?
12. enforcement of regulations, monitoring of compliance
13. appropriate penalties and disincentives agreed and implemented?
14. capaity to changestrategies, plans and ations in the light of new information/data?
15. adequate resources provided for menagement activities?
16. ative program of benchmarking management plans and ations?
17. ative program of stakend der educction about the values of the reserve?

Performance Assessment Process

18. routine monitoring and evaluation used to assess achievements of goals and objectives?
19. processes underpinning reseve peformance ative y studied?
20. thretening processes known or being evd uated?
21. part of an integrated system or network of reserves?
22. functions as effective havest refuge?

Biological Outcomes (after Roberts \& Polunin 1991, Dugan \& Davis 1993, Guenette etal. 1998) Local Benefits (within the reserve)
Populations of Focal Species
23. enhanced dbundance and/or density?
24. enhanced meen age and/or size?
25. natural sex ratio maintained?
26. natural agesizesex population structure maintained?
27. reproductive output (eggs/ lavæ) enhanced?
28. spaming stock protected?

Community/Biodiversity

29. aress of undisturbed habitta etablished/mantained?
30. habitat compleity enhanced?
31. spedies diversity enhanced?
32. community complexity (eg. trophic complexity) enhanced?
33. important locd ecosystem processes maintained?

Regional Benefits (outside the reserve)
Population of Focal Species (for the stock as a whole)
34. fishery yidds enhanced?
35. dbundance and/or density enhanced?
36. resenve provides reauitment source through export of eggs and/or laree?
37. reserve provides source of post-lard stages through emigration?
38. abundancemaintained?
39. agesizesex structure improved?
40. reseve provides insurance against management failures (i.e stock coll apse)?
41. intrappedific genetic diversity protected?

Community/Biodiversity

42. habitt complexity, species diversity and/or community complexity enhanced?
43. important regiona ecosystem processes maintained?

Populations of other Targeted Species
44. fishery yid ds maintained?

Management Outcomes

45. enforcement simplified?
46. eee of public understanding and acceptance of management?
47. provides sites and fadilitates multi-disaiplinary sientific study of natura ecosystem structure function and dynamics?
48. defends against non-sustainable deve opment options for the reservesite, by exd uding incompatibleativities?
49. contributes to integrated ecosystem-bæed management of marine ecosystems?
50. data-coll ection requirements reduced?
51. contributes to improved estimates of focd species population parameters (such a natural mortality, population structure)
52. provides sites and failitates education and training opportunities?

Economic Outcomes Local and Regional Effects

53. locd economies augmented?
54. economic opportunities enhanced and di versified?
55. opportunities for employment in locd industries enhanced?
56. opportunities for low-impact traditiona or subsistencefishing or gathering of naturd marineresources enhanced?

Social Outcomes

57. quality of life of the majority of stakenolders, paticularly the locd communities, improved?
58. sodid and cultural well-being of locd communities maintained?

7.5 A Minimum Set of Criteria

The objective of selecting a small subset from the criteria above is to provide a menn of quantitatively evduating the biol ogicd pefformence of a MarineFisheries Sanctuary (or marine park, marine protected area or other form of havest refugium) using rel data that is ither dready available or could becollected for a relistic cost. We recognisethat, in many fisheries, there is alredy a substantial amount of availabledata and information that could be used as the basis for design and ded artion of MFSs However, for the MFSs to function fully in the intended manner, and to achievefisheries and conservation dbjectives, the designs of initial reserves may need to beimproved to optimise their peformance Here we identify a minimum set of citeriathat can be used to detemine if a MFS is pefforming effectively.

The citicd issue is whethe, for a managed speeies, a MFS (or other reserve) enhances fishery yied ds compared to the system without the reserve, and whether it does so in an environmentally and sodidly acceptable way. Vey few direct assessments of this issue have ever been attempted, insteed reserchers have tried to answer thequestion indirectly. A marine reserve is expected to enhancefishey yidd because it crettes a number of changes to the dynamics of thestock. Within the reserve in the absence of fishing mortality, the reauitment rate, size, age, number and/or density of fish is expected to increese This is then expected to result in three phenomena that result in theoverdl enhancement of thestock: spill-over, the movement of 'excess adult fish out of the reserve lavd export, the ne movement of lavæout of the reserve and stability, an insurance buffer against a failure of menagement practices or an unpredi ited acident or natural event. Spillover and lard export areexpected to produce, over time discemi ble changes in thestock outside the reserve compardble to those seen inside the reserve, which is expected to result in an increesed number of fish being caught, and, ultimately, an incresed fishery yidd.

However, the benefits of these biologicd processes may be offset by the aggregation of fishing effort into the peri-reserve district, such effort being either displaced from the reseve or attrated from dsenhere by the potential for bigger yieds. Depending on the form of thefisheries management system, this may reduce effort in other aress, or permit increes effort in the peri-reservearea In ither ces, the yidd aross the whole fishey may change as a diredt result of theinteration between the reserve ded action and the fisheries management system, and this could happen independent of thebiol ogicd processes described dbove The displacement of fishing effort from the reserve area by the ded artion process might also have detrimenta effects on other fisheries locted in nerby arees, as fishers from this fishery might doose to foaus on different targe species or different places in the neerby district. The community acceptability of a sanduary (size, placement, management objectives) will retate how the dedaration of a reserve dels with the question of resourceallocation. For example, will the reserve adequate y enabl e other stakenol ders (recretional fishers, traditional fishers, conservation) to see biologica resources of concem to them equitably d locted; will the reseve crete a subsidy for other sectors (such as tourism); or, will the displacement of fishing ativity cause economic hardship to a locd town.

In considering both the biol ogicd and management system issues surrounding marine fisheries reserves, there arefive dasses of evidence at a minimum that will provide defendable evidence of successful reserve paformance for fisheries purposes, and these might be considered as the key benefits that a MFS stands to deliver:

1. enhanced conservation of fishing-affected species or habitats either in or outside the reseve
2. stock enhancement within the reserve
3. stock enhancement overdl or outside the reserve,
4. improved overal fishery yidds, and
5. improved socio-economic outcomes for locd communities

To evduate these, alarge number of indicators could besdected from the complex set of processes that begin within the reserve, produce changes in biological dharateristics of thestock within and then outside the resenve, and, ultimatdy, result in enhanced fishery yidds or other reservebeneits (see Section 4 and Section 5). Howeve, below we list theminimum se of citeria with somesuggested indictors, that are considered to be essential to beableto provide adequateevidence of the peformance of a MFS (or network of MFSs) in fishery enhancement. The indi cators are arranged within 7 ariteria each of which is considered essential for reserve evaluation purposes. As for the broader st of ariteria and indi cators in Section 7.4, each criterion could be evduated using a mix of different indictors, and these bdow is presented as a suite of indi cators from which speific indi cators can be chosen to evduate the 7 aiteria within a patioular reserve

The indi cators below are not necessarily the best for use in all ircumstances, nor will they meesureall of the potentia beneits of fishery reserves They also are not adequate on their own for establishing objectives and the planning for new marine fisheries reserves, because they take only limited account of theenvironmenta, sodid and economic aiteria that areimportant in developing and defending new reserves bejond the criteria of direct re evance to fisheries stocks. Also, all these indi cators suffer, somemore than others, from the methodological problems discussed in Section 5.1.4. In the circumstances of any spedific MFS, the choice of an appropritest of indicators will dways be influenced by the potential for robust data and information to be captured for each indictor.

The minimum-st citeria below are listed roughly according to how dose they are to providing direct evidence of fishery benefits that flow from marine fisheries sancuaries. The indi cators are drawn from, inter alia, alarger set baed on thework of Robets \& Polunin 1991, Rowley 1992, Dugan \& Davis 1993, Bohnsedk 1998, and Guenete $£$ al. 1998.

1. Biological Outcomes-fishery benefits, inside the reserve

- Increed sizedage of focd species of fish
- Increed abundance (density) of focd species of fish
- Increed size of spawning stock
- Increed reproductive output at agefor focd spedies of fish

2. Biological Outcomes-fishery benefits, outside the reserve

- Net movement of adult focd species of fish from inside to outside of reserve
- Increed abundance (density) of focd species (across total fishery)
- Increesed individua size of focd species (across tota fishery)
- Increesed yied of focd speies, standardised for fishing effort (arross total fishery)
- Yiedds in other fisheies in region/district maintained

3. Biological Outcomes-non-fishery benefits, inside the reserve

- Establishment/maintenance of arems of undisturbed habita
- Enhanced habitat complexity
- Enhanced spedies diversity
- Enhanced cormmunity complexity (eg. trophic complexity)
- Improved populations of fishing-affected species

4. Biological Outcomes-non-fishery benefits, outside the reserve

- Maintenancelenhancement of habitat complexity, species diversity and/or community compleity
- Maintenance/enhancement of populations of fishing-affected species

5. Management Outcomes

- Simplified enforcement
- Contributes to integrated ecosystem-baed management of marineecosystems
- Reduced datacoll ection requirements

6. Economic Outcomes

- Enhanced and diversified locd and regional economic opportunities
- Enhanced qpportunities for employment in locd industries
- Enhanced and diversified regiona economic opportunities

7. Social Outcomes

- Maintenance and enhancement of thesocia and cultura wel-being of loca communities

8. CONCLUSIONS

In this section we summarise our findings using the context of three key questions. We also identify some gaps in current knowledge, and make some suggestions for future strategies to resolve these

8.1 Do sanctuaries help with fisheries management issues?

Sanctuaries Severd casestudies document increses in yidd to fisheries as a result of sanctuary cretion; could maintain, they cover a range of fishery types and durations (Alcda \& Russ 1990, Bennett \& Attwood and possibly 1991, McClanchan \& K aundaArara 1996, Sluka \ddagger al.1997). Also, many fisheries are improve economic
benefits, but
thereare
no well-
dbarmented considered to beable to maintain level sof havest becauselarge proportions of the populaions of their target spedes are effectively isolated from fishing mortaity within inaccessibleares that operde as defactosanctuaries (eg. Beverton \& Holt 1957, Davis 1989, Dugan \& Davis 1993, J amieson 1993, Lozano-Alverez \& al. 1993, Walters \& al 1993, Bohnsadk 1996a Watters \& Maguire 1996, Ault \& al. 1997b, Fonteneau 1997 Bohnsadk 1998, Levy 1998, Watters 1998). However, there are no wal-documented examples where marine fisheries sanctuaries have been shown to provide and maintain net economic beneits for previously existing fisheries Ne benefit is important in the (common) stuation where MFSs are intended to be establ ished within existing fisheries, nd fishing effort overdl is to be reduced or displaced to accommodate the sancuary. Nonetheess, thereare many arguments, and considerabl eecol ogica evidence, that indicates that marine fisheries sanduaries could maintain, and possibly improve, economic benefits, across a whol e fishery in the medi um to long-term, even though somefishers right be displaced and suffer consequentia loss in the process of reserve cretion, espedally in theshort term

Spedific fisheries management meesures such as a reduction in totd effort may becapable of being implemented efficiently and effectively through the use of sanctuaries, with consequential wholeof-fishery benefits These benefits however, will beadhieved in only somefisheries. Key issues that will detemine which fisheries will benefit from sanduaries indudethe extent to which the biologica benefits can be converted into economic or management benefits for the fishery, and thus depends on the life history charaderistics of thetarget spedies, theintensity of the havest regime the susceptibility of thestock to extenal factors such ∞ environmental dhange and the willingness of fishers
Sanctuaries offer to incorporate sanctuaries into ther traditiona systems of fishey management most benefit to and respect the controls and rules. Fisheries that stand to benefit most are
fisheries that are - Ovefished or on thesteap pat of thestock/recruitment curve
over-exploited . Exploit high trophic leve, large, highly valued spedies, or
harvest high
trophic leveds, or havebigimpacts
on habitats

Sanctuaries Nonetheses, theexad typeand extent of benefits are difficult to predict, and the
help to make experienceand predidions of many studies indicatethat benefits will adso depend on loced
fisheries environmental conditions, induding oceenographic regimes, and the extent of acceptance management of sanctuaries by fishers and locd cormunities
more In addition, sanctuaries apper to be in the unique position of being able to asist precautionary traditional fisheries menagement systems to becomeconsiderably more precautionary, and, and contribute simultaneously, make asignificant contribution to regional conservation goals for marine to regional ecosytems For spedies that are not broad ranging or highly migratory, and are affected conservation by fishing ger, discards, trophic disuption, and bycatch effects, or other appects fishing, sanctuaries will form highly effectiverefuges Such refuges will be espedaly important for those spedies whose 'naturd' refugia have been recruitment overfished, or diminated, or areat risk from refugia reduction through such factors as technol ogy orep or coastd development. Reducing theimpacts of fishing, by providing arems where species, assemblages and habitas that are offected by fishing can recover, and be conserved, will dso assist a fishery in meeting broader obligations under the N ational Strategy for Ecol ogically Sustainable Deve opment, the National Representative System of Marine Protected Arees and Australia's Ocens Policy.

8.2 What are the non-fishery benefits of fisheries sanctuaries?

Sanctuaries Sanctuaries that are designed to assitt with fisheries management will dso confer benefits assist with on a range of non-commercial spedies The nature and extent of these benefits will depend biodiversity on the design of the sanctuary, but paticularly on the nature of the focd species and oonservation its management system (because this will didtethe design, location and management by providing system for thesanctuary), the effects of fishing, and the nature of the habitas the focd finia formany speies normally occoupy. Fisheries sanctuaries will assist with reduring the locd effects species and of fishing, such as the direct damege of habitats by ger, the impacts of fishing on non reducing target species (diversity, size structure, life history trats), and trophic interactions (predator reaucing removal, prey removal, speies replacement, scavengers and discards). Although the nature impadts of and extent of such locd beneits are difficult to predict, many authors (such as NAS 2000) fishingon consider that sancuaries will also assist to minimise the broader regiona effects of fishing
habitats provided sanctuary design and management is appropriate and fisheries impats in nonreserved aress are managed in a manner consistent with the objectives of the sanctuaries

Valuable for Fisheries sanctuaries are dso likey to offer a range on non-biologica benefits for locd and
tourism, regiond economies These indudeopportunities for non-destructive forms of tourism; racreation, recreation (such a nature appreciation and selected types of recreationa fishing); trainingand eduction, reserch and training; and the indiret benefits these activities bring to locd scientific communities In somelocations, MFSs will also offer the opportunity for co-menagement with aborigina owners and atisand fishers to conserve their customs and traditions
national The non-fishery benefits conferred by sanctuaries are likely to make an important hiodiversity contribution to the conservation of biodiversity in Australia's jurisdiction because at oonservation present therearefew reserves in the N tiond Representative System of Marine Protected

Arees (NRSMPA) that meet the criteria for a MFS. A well designed system of MFSs would meet the highest protection criteria of the NRSMPA, and could assist ajurisdidtion to meet merine conservation goals for its region, depending on the scele of the fishey and the design of the sanctuaries

8.3 How can sanctuaries deliver benefits?

Sanctuary The two main processes for delivering beneits from fisheries sancuaries are spillover and benefits are land export. Spillover of juveniles or of targe-sized fish will most likey beneit fisheries ddiveredmainly ner the boundaries of sanctuaries, whil elarvd export is more like y to deliver more throughspillover broadly-bæed benefits, as lavæor other propagules are distributed widdy into availdble andlarval export settlement habita. These benefits would bemost extensive in fisheries that are ovefished, and will depend on their stock-reanitment situation

Sanctuaries Sanduaries that are effective are a so like y to confer considerdblestability on fishing help to protect management systems, by reducing and spreeding the risk of ovefishing, environmental
against impats on the fishery, or inadvertent failures of themanagement system This benefit management could beexpected in all fisheries, not just overfished ones. Increesingly, fisheries are failures seeking to implement more precautionary management systems, and many authors conside that sanduaries arean important opportunity to hedge the bets within a menagement system that has to deal with a number of substantial uncetainties Marine Fisheries Sanctuaries may beabl eto achieve their fisheries objectives as well as support a range of non-consumptive uses Such uses, which may have high locd value, may indude someforms of rearetion, tourism, education, reserch and training. Biodi versity beneits are conferred on the non-commerdid species conserved in the sanctuary, and like fishery beneits, these might flow to arees outide the sancuary, depending on the spedies and the preise nature of the reserve and the surrounding habitas.
Asystematic In order to optimisetherange of benefits captured from sanctuaries, it seems most likely approach to that in each fishery, networks of sanctuaries will be required, and that they will need to
design of comprise a mix of large and small arees, strategically designed and locted to maximise sanctuaries is spedific benefits Whilethere is no generd agreement on a mode for how such networks essential should be designed, it is deer that different speies and habitats will have a range of spatia requirements, that for many, is variable through time There is thus no der consensus amongst authors on required sizes or loctions of MFSs, but a range of sizes spatially alocated for different reesons will minimisetherisk that thefull range of spatial scdes and habitat types that may be important to the fishery are not represented in thesanctuaries

8.4 Gaps in the evidence

Ned to build Theinformation we have revieved indicates that implementation of sanduaries is likely on existing to makean important contribution to the conservation of afocd spedes Generdly knowledge in 7 speeking, such sanctuaries could be designed and implemented in many fisheries now,
key areas with littleadditional knowledge beyond that a reedy available However, to optimise their success, and to enable other fisheries to leam from those experiences, we consider that there is additiond knowledgethat will makethe process of designing and implementing

1. A detailed understanding of thestock-reauitment redtionship for the focd species, and what the varition in that redtionship in space and timemeens to achieving benefits from a MFS system Without a detailed understanding of how reauits to the fishery provide net economic benefit to fishers, it will beextremdy difficult to design and locte MFSs that are compledy effective
2. Documented experience about theextent to which MFSs reduce the ris of fisheries coll lapse caused by environmental stresses, failure of thefisherie management system, or mis management of thefishery. While protection from these factors are widd y dited potentia benefits of sanctuaries, and difficult to implement in other ways, thereare no wel-documented examples that can be used as the design basis for new MFSs
3. Documented experiences on the response of fishers to the design and establishment of MFSS intended to assist with the menagement of their fishery. Many MFS benefits are likely to be realised in the medi um and long-tem, but fishers are subject to short term economic imperatives that may force them to trade off the recognised long term benefits for short termsurviva. Documented experiences of the process of design and implementation of MFS that focuses on the behaviour of fishers in redtion to MFS issues is crudid to enable efficient future sanctuary dedaration processes and to minimiseeconomic and socid disurption to locd communities Assummarised by the USN ationd Research Coundil (NAS2000): "MPA proposds often raisesignificant controversy..." "The controversy persists because welack a scientific consensus on the optimal design and use of reserves and we have only limited experience in determining the costs and benefits relaive to more conventiona management approaches"
4. Empirica meesurements of the benefits that are realised by an Austrdian fishery from the implementation of a network of MFSS, and supporting evidence of the processes responsible for delivering those benefits. This would invol veknowledge baed on a detailed asessment of such matters a catch, effort, costs, profits, resourceallocation, compliance, employment in locd communities, and indired socio-economic impacts in locd and regional communities
5. Thelack of explicit procedures and modds for identifying which fisheries will benefit from MFSs, and experience with designing and implementing Australian MFSs that areoptimised across the range of competing objectives of the range of stakenolders This is particularly oudid to ensure that benefits for fisheries areconsidered in the light of therange of broader benefits that may accure to othe interests
6. Knowiedge about the ecol ogicad processes within an MFS that underpin lavd export or spillover. Uncertainty about theeetent to which spillover or land export contributeto rearuitment into the fishery make predi ctions dbout sanctuary improvements highly complex. Knowledge of how sanctuaries deliver benefits to fisheries is cuucia to ensure that complementary stock menagement tools (such as quotas or effort alocation) are correctly applied taking into account the way in which the reserve contributes to the fishey-wide returns. Much existing information is based on knowledge derived fromfishing grounds, but species may have vey different charateristics in non-fished arees, and this will affect the way in which sancuaries operte The key processes indude the interations between the focd spedies and predators or competing species, both within and outside thesanctuary.
7. Detailed knowledge of thelaval export charateristics of thefocd species in fully exploited and over-exploited fisheries Without this process-based knowledge, thepotential for MFSs to contributeto more precautionary management systems for thefocd speies will be difficult to assess with any cetainty. Likevise, it will be difficult to assess the potentia for sanctuaries to maintain or imorovestock sizes/yidds in fished arees Also, MFSs intended to assist such focd spedies may beincorrectly designed, locted or menaged because they are not matched to the needs of dispersal and settlement of propagules of thefocd species Criticd arees of knowledge indudethere ationship between the spedies' dispersd charateristic and the hydrographic regime, and theinteradion between that reationship and the design, placement and number of reserves

8.5 The future

Benefits will be Marinefisheries sanctuaries have many theoreticd benefits for fisheries, but they areas yet broad-ranging poorly documented. The spedific beneits that an individuad fishery stands to gain cannot and extend be predicted without a detailed knowledge of eech fishery and careful design of eech beyond the reservest, but it is deer that benefits are likely to bebroad-ranging and extend beyond fishery thefishery itsedf.

Although the fishery benefits are not well documented and are difficult to predid precisdy, non-stock benefits are perhaps eesie to identify. The benefits for regional conservation goals, non-consumptive activities such as tourism, receetion, locd employment, and bæeline reseerch, arelikely to besubstantia. Theextent to which these non-stock issues are recognised and promoted will support atempts by afishery to demonstrate its ecol ogical sustainability in both stock and non-stock issues
Benefits will It appeers therefore that MFSs may beabl e to deiver a broad range of benefits, induding need to be to the fishery itself. However, the major chal lenge is to identify speific approaches and
assessed, design methodol ogies that will produce rediable MFSs that achieve these benefits.
doarmented In order to achieve maximum benefit for implementing MFSS, considerable effort will and promoted dso be needed to document and promote the benefits to ensure that the fishing industry is propely recognised for its role in managing marine ecosystems in an ecol ogically sustainable menner. The important dements in this process are the careful and systematic design, identification, selection, menagement and monitoring of MFSs We recognisethat MFSs can be designed and implemented now in concet with other fisheries management tools, and in many fisheries this could bebæed on existing knowledge However, we consider that this should be based on a systematic andysis and design process to ensure that, even though such MFSs may initially not befully optimised, they will nonetheress function effectively in their erly yers to providene benefit for fisheries Without this, MFSs risk losing the confidence of fishers and fisheries managers. The design and implementation of effective MFSs will therefore have a high initid cost for the establishment phæ⿸e, but routine fishey-wide management costs are like y belowe than at present, and environmental conflids reduced because of the eistence of demonstrated evidence of sustainability.
Fisheries Implementing networks of sanctuaries for fisheries purposes in Australia appeers to provide sanctuaries will the capture fisheries sector with an opportunity to demonstrate its legdership in marine
makean conservation, and to confirm its cormmitments to the prindiples of precautionary
important management and to the pratice of ecol ogi cally sustainable deval opment. contribution
to marine
oonservation
goals and
fisheries
management

Taxa/locality	Abundance	Age \& size	Fecundity	Reference source
FINFISH				
Red hind Virgin islands	Equivocal results	Increased average length; sex ratio normalization	Not reported	Beets \& Friedlander 1999
Common fish assemblage South Africa	Key species recovered to nonexploited abundance levels in 4 years	Species protected by reserve attained non-exploited size	Not reported	Bennett \& Attwood 1991
Galjoen South Africa	Catch rates (CPUE) within a marine reserve were at least double the CPUE outside	Not reported	Not reported	Bennett \& Attwood 1993
Sparids South Africa	Abundance higher in reserve than in a similar but fished area	Average size and maximum size greater in reserve	Not reported	Buxton \& Smale 1989
Sparids South Africa	Not reported	Size greater in reserve than in surrounding areas	Not reported	Buxton 1993
Grouper Bahamas	Nassau grouper more abundant in reserve; abundance non-target grouper greater in fished areas; higher spp. richness in reserve compared with outside	Higher mean size and biomass of target spp. of grouper in reserve; sig. greater densities of larger grouper spp. in reserve	Grouper more sexually mature in reserve; greater egg production of Nassau grouper	Chiappone \& Sealey 2000
Reef fish Red moki, snapper, blue cod New Zealand	No clear trends in fish abundance	Larger snapper generally more abundant inside reserve	Not reported	Cole et al. 1990
Assemblage (41 fish spp) France	Equivocal results - no clear patterns in abundance of species	Large individuals significantly more populous inside reserve	Not reported	Dufour et al. 1995
Bastard trumpeter, ling, marble fish, draughtboard shark Tasmania	Sig. increase in abundance of fish in all but one reserve; increase of trumpeter in largest reserve; no increase in density of fishes at smallest reserve; increase in spp. richness in largest reserve	Large fish increased sig. in abundance over the years in reserves	Not reported	Edgar \& Barrett 1999
Coral grouper Great Barrier Reef	Not specified	No significant difference in age and size structure between areas	Not reported	Ferreira \& Russ 1995
Reef fish Seychelles	Spp. richness higher in highly protected reserves	Biomass in highly protected reserve sig. greater than in less protected areas	Not reported	Jennings et al. 1996
Littoral fishes Western Mediterranean Sea	Declines in abundance of juveniles in all three spp. after settlement both in and out of reserve	Not reported	Not reported	Macpherson et al. 1997
Common fringing reef taxa Kenya	Density and diversity $2 x$ greater in reserves than outside; increase in spp. richness in reserve	Not reported	Not reported	McClanahan 1994

Summary of the Empirical Evidence for the Effect of Reserves on Focal Species				
Taxa/locality	Abundance	Age \& size	Fecundity	Reference source
FINFISH				
Eight families of reef fish Kenya	Density of fish 5 to 10 times higher inside protected areas	Not reported	Not reported	McClanahan 1997a
Reef fish Kenya	Poor recovery of fish in reserve (due to sea urchin abundance)	5 fold increase in total fish wet weight	Not reported	McClanahan 1997b
Reef fish communities Africa	Overall increase of fish abundance in reserves	Fish biomass $3 x$ higher in reserve than outside	Not reported	McClanahan et al. 1999
Reef Siganidae, Acanthuridae, Lethrinidae Kenya	Increased abundance in fished areas adjacent to reserve	Increased size of fish in catches from areas adjacent to reserve	Not reported	McClanahan \& Mangi 2000
Groundfishes New England	Abundance of groundfishes increased after reservation	Not reported	Spawning stock biomass increased after reservation	Murawski et al. 2000
Baldchin groper (wrasseChoerodon rubescens) and coral trout (Plectropomus leopardus)	In reserves: between 8 and 16 fold estimated increase in densities of P. leopardus; possible increase in C. rubescens density of large fish	All size classes of P. leopardus increased in reserves	Not reported	Nardi et al. manuscript
Abrolhos Islands, Western Australia				
Reef fish California	Density of fish 12% \& 35% greater at 2 reserve sites than non-reserve	Average lengths sig. greater at 2 reserve sites protected the longest (1yr reserve did not differ sig.); biomass >2 x higher in reserve than non-reserve sites (no diff. in 1yr reserve)	Reproductive output greater for reserve sites but similar in 1 yr reserve	Paddack \& Estes 2000
Lincod and rockfish Puget Sound	Higher abundance of rockfish and lincod at reserve	Significantly larger lincod and rockfish; large rockfish not often observed in harvested sites	Egg production increased by many orders of magnitude inside reserve	Palsson 1997
36 families of tropical reef fish West Indies	25 of 36 recorded taxa more abundant inside reserve	18 of 24 recorded taxa were of larger mean size inside reserve	Not reported	Rakitin \& Kramer 1996
Snapper, grunts St Lucia	Not reported	Biomass of fish inside reserve more than double that outside; predator biomass $4 \times$ higher in reserve than outside	Not reported	Roberts \& Hawkins 1997
Groupers, parrotfish, snappers, surgeonfish Red Sea	One grouper species more abundant in reserve; mixed results for other species	One grouper species an average of 14 cm longer within reserve; equivocal results otherwise	Not reported	Roberts \& Polunin 1992

Taxa/locality	Abundance	Age \& size	Fecundity	Reference source
SHELLFISH				
Queen conch Bahamas	Sig. greater density of conch in reserve	Not specified	Larval densities of conch highest ever recorded in reserve	Chiappone \& Sealey 2000
Sea urchins and rock lobster New Zealand	Sea urchins 20% more abundant inside reserve than outside; striking increase in abundance of rock lobster within reserve	Mean size of snapper and rock lobster greater in reserve than outside	Not reported	Cole et al. 1990
Spiny lobster Jasus edwardsii New Zealand	3.9% increase in shallow (40 m) sites and 9.5% increase in deep ($\boldsymbol{\wedge}_{10 \mathrm{~m})}$ per year of protection	Mean size increased by 1.14 mm per year of protection in reserves; mean biomass increased by 5.4% per year of protection	Egg production increased by 4.8 and 9.1% per year of protection for shallow and deep sites respectively	Kelly et al. 2000b
Rocky infratidal macrofaunal assemblages South Africa	Higher abundance of 7 spp . in reserve compared with non-reserve	Biomass higher for some spp. inside reserve compared with non-reserve; many spp. found only within reserve	Not reported	Lasiak 1998
Spiny lobsters New Zealand	Spiny lobsters 3 to 50 times more abundant within reserve	Large individuals predominant inside reserve; biomass up to 10 times greater inside reserve	Not reported	MacDiarmid \& Breen 1993
Sea urchins Kenya	Sea urchin decreased in reserve through predation	Not specified	Not reported	McClanahan 1997b
Atlantic sea scallop New England	Abundance of scallop increased following reservation	Biomass of scallop increased 14 -fold in closed area after protection	Not reported	Murawski et al. 2000
Queen conch Bahamas	Adult density inside reserve up to 15 times greater than fished area	Increase in size not related to reservation	Larvae an order of magnitude more abundant inside reserve	Stoner \& Ray 1996
Northern Abalone Vancouver Island	Abalone less abundant in reserve, densities lower than pre-exploitation levels as reserve area was not self-recruiting	Abalone significantly larger and older in reserve	Reserve area 1.2 x and 1.4 x as fecund as two harvested areas	Wallace 1997
Abalone British Columbia	Equivocal results	Oldest reserve sig. larger abalone	Fecundity greater in enforced reserves than coast-wide reserve	Wallace 1999

Summary of the Empirical Evidence for Reserve Effects

Reference	Scientific name	Reserve details	Type of study	Specific effects
Beets \& Friedlander 1999	Epinephelus guttatus	Coral reef off St. Thomas, U.S. Virgin Islands (protected for 7 yrs); $48 \mathrm{~km}^{2}$	Snapshot before and after study; visual census using transect and video transect, also angling samples; previous study (1oyrs earlier) data obtained from fishers	Average length of red hind in reserve increased 70.7 mm after 7yrs of protection; sex ratio skewed 15 females/male before closure, changed to 4 females/male after 7yrs of protection; abundance varied considerably throughout monitoring period
Bennett \& Attwood 1991	Surf-zone species Coraciuns capensis Diplodus sargus Diplodus cervinus Lithognathus lithognathu, Rhabdosargus holubi Sparodon durbanensis	De Hoop Marine Reserve, South Africa; 46 km long sandy beach and beach rock platform; patch rock	Exploited site survey from 2 yrs before reserve to 4.5 yr after reservation; non-exploited site monitored $2.5-4.5 \mathrm{yr}$ after protection; samples collected by angling	Catch per unit effort of key species increased to and stabilised at 90% of CPUE recorded at unexploited site; slight increase in mean size of fish
Bennett \& Attwood 1993	Coracinus capensis Diplodus sargus	De Hoop Marine Reserve (South Africa); 46km long sandy beach and beach rock platforms; patch rock	Two sites monitored by shore angling over time frames ranging from -2 yrs to $6.5 y r s$ and 2.5 to 4 yrs protection	Reserved sites returned mean angling CPUE of 233 and 163 fish/hr; other non-reserve studies report 7 to 150 fish/hr
Buxton \& Smale 1989	Sparids Chrysoblephus laticeps C. cristiceps Petrus rupestris	Tsitsikamma Coastal National Park (South Africa); 60 km long, 5 km seaward boundary for most of length; closed to fishing for <0 years	Comparative evaluation with a physiographically and biologically similar but exploited site 150 km east of the Park. Survey restricted to shallow component (35 m) of species depth range	Abundances of C. laticeps and P. rupestris were significantly higher in reserve (0.025 and $0.013 \mathrm{~m}^{-2}$ resp.) than at fished site (0.006 and $0.001 \mathrm{~m}^{-2}$)
Buxton 1993	Sparids Chrysoblephus laticeps C. cristiceps	Tsitsikamma Coastal National Park (South Africa)	Creel census of recreational catch in areas (several hundred km) surrounding the Park, compared to fish caught during research fishing conducted in the Park	Proportion of males significantly reduced in fished areas compared to reserve; the mean size and size distribution was greater in the reserve.
Castilla 1996	Concholepas concholepas Loxechinus albus	$1-2 \mathrm{~km}^{2}$ reserves (Chile) fished on a 2-4 yr rotational basis	Inside-outside contrast studies over five years; CPUE and visual census using transects inside (when fishing banned) and outside reserve	CPUE of gastropods 91-540/hr inside reserve (15-143 outside); sea urchin CPUE 409/hr inside reserve (129 outside)

Summary of the Empirical Evidence for Reserve Effects				
Reference	Scientific name	Reserve details	Type of study	Specific effects
Chiappone \& Sealey 2000	Serranidae, Strombus gigas.	Exuma Cays land and Sea park, Bahamas; closed to all types of fishing in 1986; covers $442 \mathrm{~km}^{2}$; diversity of contiguous shallow-water habitats	Studies comparing reserve (after 4yrs reservation) and adjacent unprotected areas; visual census using transects, plankton tows, and also towing snorkeler behind boat (counts)	Greater spp. diversity, density, biomass, potential reproductive output, and larval densities for fishery target spp inside reserve; overall grouper spp. 35% sexually mature in reserve, (average 11% at other sites); Nassau grouper -4.5-7x greater egg production in reserve, $2 x$ as abundant and biomass $3 x$ larger in reserve; other spp. greater biomass in areas outside reserve (preyrelease effect); higher abundance of conch larvae in reserve; juvenile aggregations of conch covered nearly 4\% of bank area surveyed, 1.6\% at another site
Cole et al. 1990	Reef biota - Pagrus auratus Evechinus chloroticus Parapercis colias Jasus edwardsii	Leigh Marine Reserve (New Zealand) 4 km long and 8oom offshore, comprising rock habitat and kelp forests at depths greater than 10m	Longitudinal study from 1976 (when reserve declared) until 1988; inside-outside contrast undertaken in 1988; visual census using transects (fish) and quadrats (shellfish)	Red moki increased over $6 y r s$ in reserve; other spp. showed no clear trend with time (study design issues, protection effect already in place, migration); sea urchin density $6 / \mathrm{m}^{2}$ inside (5 outside) modal snapper size $20-40 \mathrm{~cm}$ inside reserve ($10-30 \mathrm{~cm}$ outside); higher density and mean size of rock lobster inside reserve compared with outside
Dufour et al. 1995	Diplodus sargus Diplodus vulgaris Mullus surmuletus Scorpaena porcus oblada melanura Symphodus tinca	Banyuls-sur-Mer Reserve (France) $15 \mathrm{~km}^{2}$ coastal reserve, rocky and sandy bottom	Comparison of visual census data gathered in 1992 with 1980 data; contrasting reserve and non-reserve	Six of 35 species more abundant inside reserve in 1992 than 1980; 9 species more abundant outside (prey-release effect); larger D. vulgaris specimens ($\rightarrow_{2} 8 \mathrm{~cm}$) inside reserve

Summary of the Empirical Evidence for Reserve Effects				
Reference	Scientific name	Reserve details	Type of study	Specific effects
Edgar \& Barrett 1999	Reef biota Latridopsis forsteri Jasus edwardsii Notolabrus tetricus Haliotis rubra	Maria Island Reserve7 km length, Tinderbox Marine Reserve - 2 km , Governor Island and Ninepin Point Marine reserves -1 km ; reserves 7 mths old (Tasmania); shallow reef ecosystem	Visual census using transects and quadrats comparing reserves with adjacent unprotected areas and temporal changes within reserve over 5 yrs	Overall 243% increase in abundance of fish between fished and unfished areas; 2 orders of magnitude increase in abundance of trumpeter (absent outside reserve); sig. increase in abundance of rock lobster at largest reserve (260% inside and 12% outside reserve); biomass of rock lobster over legal size increased over 20x in 5yrs; fish $>300 \mathrm{~mm}$ increased in abundance and 300mm decreased at 2 largest reserves over time (unchanged outside); mean abalone size increased sig. at largest reserve from $128 \mathrm{~mm}-136 \mathrm{~mm}$ shell length; increase in spp. richness in largest reserve
Ferreira \& Russ 1995	Plectropomus leopardus	Glow, Yankee, Hopkinson and Grub mid-shelf reefs ($\sim 4 \mathrm{~km}^{2}$) 100 km offshore Townsville	Two open and two closed reefs sampled by angling twice annually 3 and 4 years following area protection; age determined from otoliths and gonads	Mean coral grouper size 44 cm inside reserve (42.5 cm outside); mean age in reserve 6.3 yr (5.5yr outside); sex ratios not sig. different between protected and unprotected sites
Jennings et al. 1996	Reef fish communities 16 families, 115 spp.	Seychelles - Inner Seychelles Group; 4 reserves established for $45 y$ rs with varying degrees of protection; fringing coral reef and granitic reef	Visual census (random point counts) comparison of reserves with differing protection	Spp. richness of many families and communities higher where protection was greater; biomass $40-60 \%$ higher at most protected areas than less protected areas
Kelly et al. 2000b	Spiny lobster Jasus edwardsii	New Zealand; 4 reserves and nearby areas in north-eastern NZ; rocky reef and adjacent sand habitats; reserves of different sizes; protection from 3 to 21 years.	4 reserve and 4 control locations 2 sites in each location 2 depths in each site 5 visual transects in each depth	Reserves show increased abundance, larger individuals, higher biomass, and higher egg production; most of these greater effect in deeper water than in shallow.

Summary of the Empirical Evidence for Reserve Effects

Reference	Scientific name	Reserve details	Type of study	Specific effects
Lasiak 1998	Rocky infratidal macrofaunal assemblages	Mkambati, Hluleka and Dwesa nature reserves stretching 273 km in Transkei, South Africa; protected since late 1970s; gently sloping rock platforms, strong wave action	Multivariate comparisons of samples collected with hammers and paint scrapers from random quadrats in several replicate shores situated within and adjacent to 3 reserves	Marked differences in community structure between reserves and exploited sites; biomass higher for a bivalve spp., a barnacle, a sea anemone, an opisthobranch and a chiton; higher biomass, or only found, in reserve: 9 molluscs, 2 echinoderms, 2 barnacles, a sea anemone and a crab; higher average abundance of 4 sessile species, 3 small grazers, lower average abundance of small phytal-associated spp. in reserve
MacDiarmid \& Breen 1993	Jasus edwardsii	Leigh Marine Reserve (New Zealand); shallow (40 m) habitat of bedrock and tumbled boulders surveyed	Marine reserve sampled irregularly for 14 yrs following protection; compared to five outside sites; visual census using transects and quadrats	Lobsters 400 mm comprised 90% of size classes inside reserve (outside ~36.5\%); in-reserve biomass $4400-8481 \mathrm{~g} / \mathrm{m}^{2}$ (outside $163-1192 \mathrm{~g} / \mathrm{m}^{2}$)
Macpherson et al. 1997	Diplodus puntazzo Diplodus sargus Diplodus vulgaris	Mediterranean coast off Spain, France and Italy. 8 protected, 13 unprotected sites located where settlement occurs; different habitat types	3yr study-3 settlement / post-settlement events; visual census (counts)	Mortality rates of juveniles in reserves did not differ sig. from unprotected areas after settlement (densitydependent mortality)
McClanahan 1994	Species grouped into eight families of common fish	Malindi, Watamu, Kirstie and Mombasa MNPs (Kenya); shallow fringing reef lagoons on hard substrate along southern coastline	Comparison of 4 protected and 4 unprotected reefs; visual census using transects, quadrats and DGS method	Fish density 380/500m ${ }^{2}$ in protected sites (170/500m ${ }^{2}$ outside); diversity $40 \mathrm{spp} / 500 \mathrm{~m}^{2}$ in reserve (20 outside)
McClanahan 1997a	Reef biota Chelinus trilobatus, Balistapus undulatus, Echinothrix diadema, Diadema savignyi	2 reserve and 4 unreserved areas in Kenya consisting of fringing and patch reef types	Comparison of 2 protected and two unprotected reefs sampled once by visual census; tethering experiment on sea urchin-plots; transects (benthic and fish) and DGS method (fish)	Total wet fish weight inside reserves 730 to $1100 \mathrm{~kg} / \mathrm{ha}$ ($80-150 \mathrm{~kg} / \mathrm{ha}$ in non-reserve areas)

Summary of the Empirical Evidence for Reserve Effects

Reference	Scientific name	Reserve details	Type of study	Specific effects
McClanahan 1997b	Coral reef community e.g. Balsitapus undulatus Chelinus trilobatus Echinothrix diadema Diadema savignyi	Mombasa Marine Park (Kenya); coral reef	Combines monitoring studies on sites in reserve and experimental reduction of sea urchins in 2 sites within reserve; data compared with older protected reefs and unprotected reefs; sampled annually using visual census transects and plots; changes over 1 yr of study	Fish recovery evident in some places within reserve but in others the abundance of sea urchins prevented full recovery; 5 fold increase in total fish wet weight (averaged $1700 \mathrm{~kg} / \mathrm{ha}$ in protected reefs, 150 in unprotected); sea urchin population in reserve reduced by 60% through predation; coral cover increased from 8% to 45% over 7 yrs; coral 40% cover in protected reefs $(18 \%$ cover in unprotected)
McClanahan et al. 1999	Macrobenthic and reef fish communities.	2 protected reefs in Southern Kenya (protected since 1974$10 \mathrm{~km}^{2}$) and northern Tanzania (protected since 1991-500m long); coral surveys conducted in reefs off Dar es Salaam; back-reef sites on patch and rock island reefs	Comparison of reserves with unprotected areas; visual census using line transects (benthic), search sample technique (coral), plots (urchins), transects and DGS method (fish); tethering experiment on urchins	Coral cover 20% higher in protected reefs but not sig.; total fish wet weight estimates 3.5 x higher in reserve than unprotected reefs; 25% decrease trend in spp. density between protected and unprotected reefs at $500 \mathrm{~m}^{2}$ scale; predation $2 x$ lower on tethered urchins in unprotected reefs than reserves
McClanahan \& Mangi 2000	Reef fish species	Mombasa Marine Park and Reserve (Kenya); coral reef	Research fishing over 4-month period with baited traps adjacent to Park; supported by measurements of seagrass leaf bite patterns; analysis of 7 years of landings at a local beach (12d/mo)	Spillover from the Park detected for exploitable species of rabbitfish, emperors, and surgeonfish, and stocks adjacent to the Park were considered to be increased; this was influenced by extent of management controls, and by reef morphology and tides. Variability of fish catch was reduced by Park creation, although overall catch was maintained at levels lower than those prereservation. Reduction in area of reserve increased fish catch in adjacent areas, suggesting an optimum reserve size of about 10 to 15% of the inshore potential fishing grounds.

Summary of the Empirical Evidence for Reserve Effects				
Reference	Scientific name	Reserve details	Type of study	Specific effects
Murawski et al. 2000	Placopecten megellanicus Gadus morhua Melanogrammus aeglefinus	3 areas on Georges Bank and in Southern New England totalling $5000 \mathrm{~m}^{2}$ closed yearround to any gears capable of retaining groundfish; gravelcobble pavement	Benthic surveys using standardised dredge surveys; sampled before reservation and yearly for $4 y r s$ after	Spawning stock biomasses increased for groundfishes, sea scallop (14 -fold); abundance of scallop increased after 4yrs protection; relative and absolute abundance of groundfishes increased
Nardi et al. manuscript	Baldchin groper (wrasse -Choerodon rubescens) coral trout (Serranidae Plectropomus leopardus)	Coral reef areas; survey of reef slope and back reef habitats	2 reserve sites and 2 control sites; back reef and reef slope habitats at each site; 4-5 replicate visual census surveys at each habitat; sampled before reserve creation and 3 times subsequently over 6 year period	Higher abundance of all size classes of P. leopardus in reserves; increase at final sampling of larger C. rubescens.
Paddack \& Estes 2000	Kelp forest fishesmainly Sebastes spp. Also, Ophiodon elongatus Hexagrammos decagrammus, Semicossyphus pulcher, Scopaenichthys marmoratus.	Three reserves in Central California; kelp forest	$2 y r$ study in 3 reserves and at least 2 sites next to each reserve; visual census using transects and quadrats (habitat)	No sig. differences in density in reserves, although positive trend observed; average length of Sebastes was greater in 2 of 3 reserves; more larger sized fish and greater reproductive potential in reserves; 1yr old reserve showed no sig. increases in density or biomass
Palsson 1997	Ophiodon elongatus Sebastes caurinus Sebastes maliger	Edmonds Underwater Park (Puget Sound) protected fish and shellfish from harvest since 1970	4 harvested sites and a reserve were compared over a 4 yr period; visual census using transects	Larger individuals of all 3 spp . observed in reserve (Sebastes spp. 40 cm in reserve, rare in harvested areas); egg production 100x greater for S. caurinus, 10x greater for O. elongatus
Rakitin \& Kramer 1996	89 species belonging to 36 families were recorded	2.2 km long coastal reserve (West Indies) comprising 5 fringing reefs	Five reserve sites and 8 adjacent non-reserve sites surveyed 10 yrs after area reservation	Species abundance average 66% higher inside reserve; actual sizes and statistical significance very low
Roberts \& Hawkins 1997	Lutjanus analis Haemulon macrostomum Anisotremus surinamensis	2.6ha coral reef reserve (St Lucia) surrounded by heavily fished reef habitat	One reserve and several nearby non-reserve sites sampled two years after establishment	Fish biomass $4 \mathrm{~kg} /$ count inside reserve (2kg/count outside); predator biomass $2 \mathrm{~kg} /$ count (0.5 kg / count outside)

Summary of the Empirical Evidence for Reserve Effects

Reference	Scientific name	Reserve details	Type of study	Specific effects
Roberts \& Polunin 1992	Variola louti Acanthurus nigrofuscus	Sinai coast of Egypt, reserve protected since the early 1970 s	Comparative census of 9 sites subjected to 3 fishing intensities unfished, recreational, commercial	Grouper mean 14 cm longer and 3 times heavier within reserve; surgeonfish (prey) more abundant outside reserve
Roberts \& Polunin 1994	Mycteropera bonaci Lutjanus griseus Serranidae spp.	Hol Chan Marine Reserve (Belize); $2.6 \mathrm{~km}^{2}$ reef	Not specified	Biomass of commercial fish $77 \mathrm{~g} / \mathrm{m}^{2}$ at edge of reserve and $340 \mathrm{~g} / \mathrm{m}^{2}$ at centre (elsewhere reported $\sim 45 \mathrm{~g} / \mathrm{m}^{2}$)
Russ \& Alcala 1996a	Serranidae spp Lutjanidae spp Lethrinidae spp	10ha Apo Reserve \& 22.5ha Sumillon Reserve (Philippines) on fringing coral reef slope protected intermittently since 1975	Two reserved and two unreserved sites ranging from -2 years to 9 years of protection, visually censused using transects	Overall abundance increased from 1.1 to 9 fish/1000m2 at (Apo); density increased from 1 to $10 \mathrm{~kg} / 1000 \mathrm{~m}^{2}$ (Sumillon)
Russ \& Alcala 1998a	Reef fish community 178 spp. in 18 families censused.	10ha Apo Reserve \& 22.5ha Sumillon Reserve (Philippines) protected intermittently since 1975; fringing coral reef slope	Compared protection with natural fishing within 2 reserves over 10-year period; visual census using transects	Fish community biomass sig. affected by fishing, but not density; species richness increased by 1.31 during non-fishing at Sumilon; large predators (caesionids, pomacentrids, chaetodontids) recovered in density when protected for 5 yrs in Sumilon, labrids declined; increase in density by factor of 1.43 after 6yrs of protection at Sumilon; biomass rose at Sumilon by factor of 1.6 after 6yrs; biomass at Apo rose by factor of 1.53 (after 6yrs of protection) and 1.55 (after $9 y r s$)
Russell 1997	Plectropomus leopardus	Differing complexity of hard and soft coral, sand and bare substratum (Great Barrier Reef)	Visual census (transect) data on coral trout collected annually at 1 test and 3 control sites for-1 yr , 3.5 yr reservation, 1 yr re-opening	Abundance of large fish (38 cm) increased in density (9.5 to $49 / \mathrm{ha}$) in reserve; average outside density of 28 fish/ha

Summary of the Empirical Evidence for Reserve Effects				
Reference	Scientific name	Reserve details	Type of study	Specific effects
Samoilys 1988	Coral reef fish-188 spp Chaetodontidae and Serranidae.	Kenyan coast, between Simambya and Mwamba Midjira reefs; seaward reef slopes; reef degradation is evident in some reserves; illegal fishing	Visual censuses using transects carried out over 4 mths at 19 sites, which were protected, semi-protected, and unprotected	Species richness higher in reserve; lowest spp. richness at dynamited unprotected reef; biomass not different except for serranids (16 x higher in reserve than unprotected reef); abundance similar in reserve and fished areas; density of serranids at lightly fished site 13 x greater than heavily fished site
Sasal et al. 1996	Gobius bucchichii	Cerbere-Banyuls Marine Reserve (Mediterranean), mainly sandy habitat	Three area types protected, partially and unprotected-sampled irregularly between March and June 1994	Mean length of male and female fish 87.5 and 78 mm inside reserve; (77 and 74.5 mm in unprotected area)
Sluka et al. 1997	Epinephelus striatus	Exuma Cays Land and Sea Park $456 \mathrm{~km}^{2}$ (Bahamas); sites in patch reef, channel reef, fringing reef, windward hard-bottom	Data on Nassau grouper collected at 75 sites within and up to 10 km outside reserve; visual census using transects	Mean grouper size inside park 42 cm (32cm outside); biomass 5748/100m2 inside reserve $\left(137 / 100 \mathrm{~m}^{2}\right.$ outside); 8.61M eggs/ha inside (1.4M outside)
Stoner \& Ray 1996	Strombus gigas	Exuma Cays Land and Sea Park (Bahamas); sand, coral rubble, seagrass $\varangle 5 \mathrm{~m}$; sand coral ridges 45 m	Fished and unfished areas sampled in 1991 and 1994 (surveys confirmed inter-annual population stability)	Conch density inside reserve 70.1/ha (13.3 outside); mean larval density $20.7 / \mathrm{m} 3$ inside reserve (1.3 outside); larger specimens in reserve due to protection by depth (conchs unable to be collected by divers)
Tupper \& Juanes 1999	Haemulidae - 3 spp.	Nine fringing reefs (Bahamas), 7 km section of coast; 3 sites in reserve, 3 north of reserve, 3 south of reserve; distance separating adjacent study reefs 780 m	Visual census using transects and mark recapture techniques (subcutaneous injections) comparing reserve and non-reserve sites	Predator density sig. higher in reserve than exploited reefs, mean predator size sig. higher in reserve; density of adults grunts sig. higher in reserve; mean size of older juvenile grunts did not differ; density of early juveniles grunts much lower in reserve (predator density); mean settlement of grunts was higher on exploited reefs

Summary of the Empirical Evidence for Reserve Effects				
Reference	Scientific name	Reserve details	Type of study	Specific effects
Wallace 1997	Haliotis kamtschatkana	William Head, south coast of Vancouver Island (British Columbia)	2 control areas (CPUE data based on commercial fishers' logbooks); historical data compared with a restricted area; lengthfecundity model applied	Abalone 16 mm larger and 8 yrs older $1.2 x$ and 1.4 x as fecund as 2 unprotected sites; not self-recruiting, however
Wallace 1999	Haliotis kamtschatkana	Juan de fuca Strait (British Columbia); 2 reserves (one protected since 1958 and other since 1980); coast-wide closure of abalone harvesting (1990); sloping bedrock at 3-7m	Comparison of sites with differing protection status; visual census using transects and surveys	1958 reserve abalone sig. larger (16 mm larger) than other sites; 26.5% of abalone $<330 \mathrm{~mm}$ and on average zoyrs old at oldest reserve; $1 / 3$ of specimens $<00 \mathrm{~mm}$ in 1958 reserve, $\sim 55 \%$ of specimens <oomm in other reserves; 1958 reserve had highest reproductive output
Wantiez et al. 1997	205 species from 9 common commercially important families	Five coralline lagoonal island reserves $1.5-18 \mathrm{~km}$ off Noumea coastline (protected since 1989); $27 \mathrm{~km}^{2}$ in total area	5 reserves visually censused using transects prior to protection and 5 years after; compared with six non-reserve sites	Species richness increased 67%, density 160%, biomass 246% inside reserve after 5yrs; density and biomass of 9 families increased sig. after reservation; density in reserve increased by 89% over 4yrs; density of Chaetodontidae and Labridae increased in reserve over 5yrs; decrease in mean size of fishes (influx of small fishes-recruitment)
Zeller \& Russ 1996	Plectropomus leopardus	Lizard Island, Great Barrier Reef, area closed to fishing $0.4 \mathrm{~km}^{2}$; fringing and patch reefs	Visual census, recapture \& ultrasonic telemetry (tagging) sampling undertaken contrasting inside and outside reserve 12 years after closure	Density of coral trout inside reserve $5.5 / \mathrm{m}^{2}$ (outside density $4.6 / \mathrm{m}^{2}$)

REFERENCES

ACIUCN and APWS (Australian Cormittefor IUCN and Australian Parks and Wildlife Service). 1991. Protection of Marineand EstuarineArees - A Challenge for Australians. (eds. A. Ivanovia, D. Tateand M. Olsen). Proced ings of theFarth Feme Corferencon theEni romert, Canberra, 9-11 October 1991

Abrchams, M.V. and M.C. Heley. 1990. Variation in the competitive abilities of fishemmen and its influence on thespatial distribution of the British Columbia salmon troll flet. Canadian J amal of Fisheries and Aquatic Siènes 47: 1116-1121.

Adam, M.S., R.C. Anderson and H. Shaked. 1997. Commeriad exploitation of ref resources examples of sustainable and non-sustainable utilization from the Maldives. In: Proceings of the8th Intemational Coral Reff Symposium Vdumell. H.A. Lessios and I.G. Mad ntyre (Editors). Smithsonian Tropical Reserch Institute, Baboa, Republic of Panama Pp 2015-2020. Adams, P.B. 1980. Life history pattems in marine fishes and their consequences for fisheries management. Fishey Bullein 78: 1-12.

Adcock, G.J ., P.W. Shaw, P.G. Rodhouse and G.R. Carvalho. 1999. Miorostel lite and ysis of genetic diversity in the squid ll ex argertinus during a period of intensive fishing. MarineEcoogy Progess Series 187: 171-178.

Agardy, M.T. 1994. Advances in marine consevation: the rol e of marine protected arem Trencs in Ecdogy and Evdution 9: 267-270.

Agardy, T.S. 1997. MarinePrdeted Aress and Oeen Consevation R.E. Landes, Austin, Texas Agardy, T. 2000. Information needs for marine protected arees scientific and socied. Bulfin of MarineSience66: 875-888.

Alcda A.C. 1980. Fish yidd of Sumilon Isand reserve Philipines Nad. Canal Philippines Bul. 77: 4-20.

Alcala A.C. 1981. Fish yidd of cord reefs of Sumilon Isand, central Philippines Nat. Res Canal Prilipines Res Bul. 36: 1-7.

Alcda A.C. 1988. Effects of marinereserves on cord fish abundance and yidds of Philippines coral refs Antiol1: 194-199.

Alcda A. C. and G. R. Russ 1990. A direct test of the effects of protective management on abundance and yidd of tropicd marine resources J amal du Consil 46: 40-47.

Alde, J. 1993. Permits, an evolving tod for the day-to-day management of the Caims Section of theGret Barier Ref MarinePark. Coastal Managenert 21: 25-36

Alles W.C. 1931. Arimal aggregation: a study in general saidogy. University of Chicago, Chicago, Illinois

Allison, G.W., J. Lubchenco and M.H. Car. 1998. Marine reseves are necessary but not sufficient for marineconservation. Eadogical Apdications8: 79-92.

Alverson, D.L., Murawski, S.A. and J.G. Pope 1994. A global assessment of fisheries bycatch and discards FAO Fisherieterrical Paper 339.

Anderson, D. J. 1982. TheHomeRange A New Nonparametric Estimation Tedhnique Eadosy 63: 103-112

Anderson, G.R.V., A.H. Ehrlich, P.R. Ehrlich, J.D. Roughgarden, B.C. Russel and F.H. Talbot. 1981. The community structure of coral ref fishes American Natural is 117: 476-495.
Andre, C. and M. Lindegath. 1995. Fertilization efficiency and gamete vidbility of a sessile freespaming bivelve, Ceatolemme odndia 43: 215-227.
Anonymous 1921. The history of trawling: its riseand deve opment from the eerliest times to the present day. Fish Trades Gazete21.

ANZECC 1998. Guiddines for Establishing the National Representaive System of Marine Protected Arees Australian and New Zelland Environment and Conservation Coundi, Takk Forceon Marine Protected Arees December 1998. Environment Austraia Canbera 15pp.

ASC (Austraian Seffood Industry Coundil) 1998. Policy Statement - Implementation of Marine Protected Arees

Apollonio, S. 1994. The use of ecosystem characteristics in fisheries management. Reiens in Fisheries Síme2: 157-180.

Appedoorm, R.S. 1996. Modd and method in reef fishery assessment. In: Reff Fisheries N. Pollunin and C. Robets (editors). Chapmen and Hall, London. Pp 219-284.

Arcese, P. and A.R.E. Sindair. 1997. Therol e of protected arees a ecol ogical basd ines J amal of WildifeManagenett 61: 587-602.

Armstrong, D.A., T.C. Wainwright, G.C. Jensen, P.A. Dinne and H.B. Andersen. 1993. Taking refuge from bycatch issues red king ordb (Paralithones cantshatias) and trawl fisheries in theestem Being See Canadian J amal of Fisheries and A quatic Ciences 50: 1993-2000.

Aronson, R.B. and W.F. Precht. 1995. Landscapepattens of reef cord diversity: atest of the intermedi ite disturbancehypothesis J amal of Experimetal MarineBidogy and Ecdogy 192: 1-14.

Attwood, C.G. and B.A. Bennett. 1994. Varition in dispersal of gadjoen (Corainus capensis) (Teoostei: Coradinidæ) from a marine reserve Canadian J amal of Fisheries and Aquatic Sienes 51: 1247-1257.

Attwood, C.G. and B.A. Bennett. 1995. Modeling the effect of marine reserves on the recreationd shorefishery of the south-westem cape, South Africa Sath African J amal of MarineSience16: 227-240.

Attwood, C.G., B.Q. Mann, J. Beaumont and J.M. Haris 1997a Review of thestate of marine protected aress in South Africa sath African J amal of MarineSience18: 341-367.

Attwood, C.G., J.M. Haris and A.J. Williams 1997b. Intemationd experience of marine protected ares and their relevanceto South Africa Sath African J amal of MarineSience 18: 311-332.

Ault, J.SI, J.A. Bohnsadk and G.A. Meester. 1997a A retrospective (1979-1996) multispedies asessment of cord reef fish stocks in the Florida Keys. Fishery Bullein 96: 395-414.

Ault, J.S., J.A. Bohnsadk and G.A. Meeter. 1997b. Florida Keys Nationa MarineSanduary: retrospective (1979-1995) ref fish asessment and a cose for protected marinearees In: Dectqing and Sutai in ing World Fisheries Rearcerthestateof Sienceand Managerfit. D.A. Hancock, D.C. Smith, A. Grant and J.P. Beume (Editors). CSRO, Collingwood, Vidtoria Australia Pp 415-425.

Ault, T.R. and C.R. Johnson. 1998. Spatially and temporally predi dablefish communities on cord refs Ecdojcal Monoraphs68: 25-50.

Auster, P. and N. L. Shackel. 1996. Sustainablefisheries and maintenance of biodiversity: Therole of MarineProtected Aress In: Marineand Costal Workshap MarinePrdeted A ress Pape. TheRde of MPA sin SutainableF isheries and Mai ntenanceof Bicol versity P. Auster (editor). IUCN World Conservation Congress (WCC), 13-23 October 1996, Montrea, Canada

Auster, P.J. and N.L. Shackel. 1997. Fishery reserves In: Nathmet AttanticGrandistr Pergoetives m a Fishery Cdlapse Boremen, J., B.S. Nakąhima J.A. Wilson and R.I. Kendal (Editors). American Fisheries Sodity, Behesda Maryland. Pp 159-166.
Auster, P.J. and R.J. Matatesta 1995. Assessing the role of non-extractive reseves for enhanaing havested populations in temperteand bored marinesystems In: MarinePrdeted Aress and Sutai nable Fisheries N.L. Shackell, and J.H.M. Willison (Editors). Acadia University, Wolfville, Nova Scotia Pp 82-89.
Auster, P.J ., R.J. Matatesta R.W. Langton, L. Watling, P.C. Valentine, C.L.S. Donaldson, E.W. Langton, A.N. Shepard and I.G. Babb. 1996. Theimpat of mobilefishing gerr on sefloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish popultions Reiens in Fisheries Sience4: 185-202.
Auster, P. J., R. Midnal qpoulos, P.C. Valentine, K. J Oy, and V. Cross 1998. Use of acoustic methods for dassifiction and monitoring of seflooor habitt complexity: Description of approadhes In Linking
 Ascriation, Wolfuille, Nova Scotia
Babcock, R. and J. Keesing. 1999. Fetilization biology of theabalone Hal idislaeigata: Idbortary and field studies Canadian J armal of Fisheries and Aquatic Siences 56: 1668-1678.

Bakun, A. 1998. Oceen triads and radica interdecadal variation: bane and boon to scientific fisheries management. In: Remerting Fisherie Managemet. T.J. Pitcher, P.J. B. Hat and D. Pauly (Editors). Kluwer Acedemic, London. Pp 331-358.

Balantine, W.J. 1989. Marine reserves lessons from New Zealand. Proges in Undewate Saience13: 1-14.

Balantine, W. 1991. Marinereserves -theneed for networks. New Zeal and J amal of Marineand Fretwater Reserch 25: 115-16.

Ballantine, W.J. 1995a Neworks of 'no-tzké marine reseves are practicd and necessary. In: Marine Prdeted Aress and Sutai mableFisheries N.L. Shackell and J.H.M. Willison (Editors). Acadia University, Wolfville Nova Scotia Pp 13-20.

Ballantine W.J. 1995b. TheNew Zealand experience with 'no-take' marine reserves. In: Reiev of the Used MarineFishey Reeves in theU.S Sathestem Attantic C. Robets, W.J. Ballantine, C.D. Buxton, P. Dayton, L.B. Crowder, W. Milon, M.K. Orbad, D. Pauly and J. Treder (Editors). NOAA Terrical MerrandmNMFS-SEFSC-376. Pp C15-C31.

Ballantine, W.J. 1997. 'No-take' marine reserve networks support fisheries In: Detqing and sustaining warld Fisheries Rearces Thestated Siemeeand Managment. D.A. Hancock, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSTRO, Collingwood, Vidtoria, Australia Pp 702-706.

Balantine, W. 1999. Marine reserves in New Zeland: the development of the concept and the principles Paper for Workshop on MPAs KORDI, Korea November 1999.

Barkai, A. and G. M. Branch. 1988. Theinfluence of predation and substrat complexity on reauitment to settlement plates a test of the theory of altenativestates J amal of Experimertal Marine Bidogy and Ecdogy 124: 215-237
Barett, N.S. 1995. Short- and long-term movement pattens of ix temperteref fishes (Families Labridæand Monacanthi dæ). Marineand Fretmater Resarch 46: 853-860

Barett, N. 1998. An Oevien of theBenfits of 'No Take MarinePrdeted Aress Report to the Environment and Conservation Coundil. Hobart, Tarmenia
Bareet, N. and G. Edgar. 1998. How marine reserves work for thefish. FishingTaday 11: 23-27.
Bergh, M.O. and W.M. Gez 1989. Stability and harvesting of competing populations with genetic variation in life history strategy. Theretical Pquiation Bidagy 36: 77-124.

Beets, J. and A. Friedlander. 1999. Evduation of a conservation strategy: spavning aggregation dosure for grouper in the Virgin Istands. Envirometal Bidagy of Fishe 55: 91-98.

Bennett, B.A. and C.G. Attwood. 1991. Evidencefor recovery of a surf-zone fish assemblagefollowing the establishment of a marinereserveon the southem coast of South Africa MarineEcdogy Process Series 75: 173-181.

Bennett, B. A. and C. G. Attwood. 1993. Shoreangling catches in the De Hoop Nature Reserve, South Africa and further evidencefor the protective value of marine resenes sath African J amal of Marine Siences 13: 213-222.

Beveton, R.J.H. and S.J. Holt. 1957. On theDynamics of Exploited Fish Populations. Fishey In mesi gations(UK) Series II, VolumeXIX. Ministry of Agriculture, Fisheries and Food, Lowestoft, England.

Beveton, R.J.H., J.G. Cooke J.B. Csirke, J.B. Doyle G. Hempe, S.J . Holt, A.D. MacCal, D.J . Poli cansky, J. Roughgarden, J.G. Shepherd, M.P. Sissenwineand P.H. Wiebe 1984. Dynamics of single species In: Expditation of MarineCommonities R.M. May (Editor). Springer-Velag, Belin. Pp 13-58.
Bodhlet, G.W. 1996. Biodiversity and thesustainability of marine fisheries Ocencoganty 9: 28-35.
Bohnsedk, J.A. 1989. Arehigh densities of fishes at atificid refs the result of habitat limitation or behaviord preference? Bulfin of MarineSiemce44: 631-645.

Bohnsedk, J.A. 1992. Ref resource habitat protection: theforgotten factor. MarineRereational Fisheies 14: 117-129.

Bohnsadk, J.A. 1993. Marinereserves They enhancefisheries, reduce conflids, and protect resources Ocenus 36: 63-71.

Bohnsadk, J.A. 1994. How marinefishery reserves can improve ref fisheries Procee ings of theGu ff and Cariblemn Fisherie Institute43: 217-241.

Bohnsedk, J.A. 1996a Maintenance and recovery of ref fishery productivity. In: Reef Fisheries N.V.C. Polunin and C.M. Robets (Editors). Chapman \& Hall, London. Pp 283-313.
Bohnsack, J.A. 1996b. Marinereserves, zoning, and the future of fishery management. Fisheie 21: 14-16.

Bohnsed, J.A. 1997. Consensus devd opment and the use of marine reserves in the Florida Keys, USA. Prozee ings of the8th Intenational Coral Ref Sympoium2: 1927-30.

Bohnsadk, J.A. 1998. Application of marine reserves to ref fisheries management. Australian J amal of Ecocos 23: 298-304.

Bohnsadk, J.A. 1999. Incorporating no-tzke marine reserves into precautionary management and stock assessment. In: Proicing SiettificAdvicetol Imperert thePreautionary Appraach Undry theMagnuson-Steers Fishey Consenation and Managenert Act Restrepo, V.R. (Editor). NOAA Tedhnicd Memorandum NMFS-F/SPO-40. Pp. 8-16.

Bohnsedk, J.A. and J.S. Ault. 1996. Management strategies to conserve marine biodiversity. Ocenograhty 9: 72-82.

Bohnsedk, J.A., B. Causey, M. Crosby, R. Griffis, M. Hixon, T. Hourigan, K. Koltes, J. Maragos,
A. Simons and J. Tilmant. Manuscript. A rational efor minimum 20-30\% no-take protetion.

Bohnsadk, J.A., D.E. Haper, D.B. McClellan, and M. Hulsbeck. 1994. Effects of reef sizeon colonization and assemblagestructure of fishes at atificial reefs off southestem Florida U.S.A. Bullifin of MarineSience55: 796-823.

Booth, J. D. 1979. North Cape- a nursery area for the Packhorse Rock Lobster J asus verexi, New Zeland. New Zeland J amal of Marineand Fresmater Rexarch 13: 521-528

Booth, D.J. and D.M. Brosnan. 1995. The role of reanuitment dynamics in rodky shoreand cord ref communities Advances in Ecdagical Reerarch 26: 309-385.

Booth, D.J. and G. Wellington. 1998. Settlement preferences in cord-ref fishes effects on patterns of adult and juvenil edistributions, individual fitness and population structure Australian J armal of Eadoy 23: 274-279.

Borisov, V.M. 1978. Thesdective ffect of fishing on the population structure of species with a long life cyde J amal of Idthydogy 18: 896-904.

Botsford, L.W., J.C. Castilla and C.H. Peterson. 1997. Themanagement of fisheries and marine ecosystems sience277: 509-515.

Botsford, L.W., L.E. Morgan, D.R. Lockwood and J.E. Wilen. 1999. Marine reserves and management of the Northem Califomi a red sea urchin fishery. Cali fornia Coperative Oearic Fisheries Inesigetion Report 40: 87-93.

Bouchon-Navaro, Y., C. Bouchon and M.L. Harmelin-Vivien. 1985. Impact of cord degradation on a chaetodontid fish assemblage (Moorea French Polynesia). Prozee nos of the5th I itemational Coral Ref Conges 5: 427-432.

Brande, K. 1981. Disapperrance of common skate, Raia batis from the Irish Sea Nature London 290: 48-49.

Brown, B.E. 1997. Cord bleching: causes and consequences Coral Refs 16: S129-5138.
Brown, G. and J. Roughgarden. 1995. An ecologica economy: notes on havest and growth. In: Biofiversty Loss Econoricand Edajcal Isues Perings, C., K. -G. Male, C. Folke, C.S. Holling, and B. -O. Jansson (editors). Pp. 150-189. CambridgeUniversity Press, Cambridge, UK.

Brown, R., Sheehan, D. and B. Figuerido. 1998. Response of cod and haddock populations to area dosures on Georges Bank. ICES C.M. 1998/U:9. 20pp.

Bryant, H.E., M.R. Dewey, N.A. Funicelli, G.M. Ludwig, D.A. Meindeand J. Menge. 1989. Movement of fivesdected speies of fish in Everglades National Park. Bulein of MarineSience44: 515 (abstrat).

Buckworth, R.C. 1998. World fisheries are in cisis? Wemust respond! In: Rementing Fisheies Managerett. T.J. Pitcher, P.J. B. Hat and D. Pauly (Editors). Klumer Academic, London. Pp 3-17. Bunting, J. 2001. Fish Protection Meesures to EnsureFish for theFuture Fisheries Management Paper No. 141, Fisheries Westem Austrdia, Perth WA.

Buxton, C.D. 1992. Marinereserves-the way dheed. Speial Pudication of theOernogradric Reserch Insitute2: 170-174

Buxton, C.D. 1993. Lifehistory dhanges in exploited ref fishes on theest coast of South Africa Envirametal Bidogy of Fishes 36: 47-63.

Buxton, C. 1996. The role of marine protected arees in the management of ref fish: a South African example Deetqing Austral ia's ReqeentativeSytemof MarinePrated Aress-Ocen Reque2000 workthp Series R. Thackway (editor) 114-124.

Buxton, C.D. 1999. MarineProtected Arees somebenefits "exaggerted". TheQuentand Fishemran, June 1999, p. 17.

Buxton C.D. and J.A. Allen 1989. Mark and recapturestudies of two ref sparids in theTsitsikamma Coosta Nationa Park. Koerce32: 39-45.

Caddy, J.F. 1973. Undemwter observation on tracks of dredges and trawls and some effects of dredging on a scd lop ground. J amal of theFisheries Rexarch Bcard of Canaca 30: 173-180.

Caley, M.J. 1993. Predation, reanuitment and the dynamics of communities of cord-reef fishes, Marine Bidogy 117: 33-43.

Caley, M.J. 1998. Agespedific mortality rates in ref fishes evidence and implications Autralian J amal of Ecdogy 23: 241-245.

Caley, M.J., M.H. Carr, M.A. Hixon, T.P. Hughes, G.P. J ones and B.A. Menge 1996. Rearuitment and the locd dynamics of open marinepopulations Amual Reiev of Ecdogy and Syterratic 27: 477-500.

CALM/MRPA. 1999. NotakeAress in Weten Autralia's Muti de UseMarineConervation ReerveSytem A Disurion Paper. Maine Management Series, Report No. 1. J.G. Colman and C.J .Simpson (editors). Westem Australia Depatment of Conservation and Land Management/Marine Parks and Reserves Authority, Peth.

Campbel, A. and D.G. Robinson. 1983. Reproductive potentia of threeAmerican Iobster (Hamarus americanus) stocks in the Canadian Maritimes Canadian J amal of Fisheies and Aquatic Sièere40: 1958-1967.

Canada and British Columbia Govemments. 1998. Marine Protected Arees A Strategy for Canada's Padific Coast Disaussion Paper. August 1998.

Carlton, J.T. 1993. Neoextinctions of marine invertebrates American Zadogis 33: 499-509
Carpenter, K.E. and A.C. Alcda 1977. Philippine cord ref fisheries resources, Pat 2, muro-ami and kayckas ref fisheries, benefit or bane? Phili pinej amal of Fisherie 15: 217-235.

Carr, M.H. and D.C. Reed. 1993. Conceptuad issues revent to marinehanest refuges examples from temperteref fishes Canadian J amal of Fisheies and Aquatic Siences 50: 2019-2028.

Carr, M.H. and M.A. Hixon. 1995. Predation effects on eerly post-settlement suvivorship of cord-ref fishes MarineEcdosy Process Series 124: 31-42.

Carr, M.H. and P.T. Raimondi. 1999. Marine protected arees as a precautionary approach to management. Cal ifomia Coperati ve Ocerri C Fisheie I nves igation Repot 40: 71-76.

Carr, M.H., J.E. Neige, J.A. Estes, S.J. Andemen, R.R. Wame, J.L. Largier and J. Lubchenco. In Press Comparing marine and terestria ecosystems implications for prindiples of reserve design in coastal marine ecosystems. Edacjcal Apdications(2001).

Cater, J. and G. R. Sedberry. 1997. The design, function and use of marinefishery reseves a tools for the menagement and conservation of theBeizeBarrier Ref. Proceer nos of theEigth Coral Reff symposium2: 1911-1916.
Caselle J.E. 1999. Early post-settlement mortality in a cord reff fish and its effect on locd population size Eadojcal Monograhs69: 177-194.

Caey, J.M. and R.A. Myers 1998. Ner extinction of a large, widdy distributed fish. Sience281: 690-692.

Castilla J. 1996. Chilen resources of benthic invetebrates fishery, collapses, stock rebuilding and the rol e of coastal management arems and nationd parks In: Deetqing and Sutaining Warld Fisheries Rearces thestate of Siemeand Managernet. D.A. Hancodk, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSRO, Collingwood, Vidtoria Austraia Pp 130-135.
CatillaJ.C. and L.R. Duran. 1985. Humen exdusion from the rodky intetidd zone of central Chile the effeets on Conchd pres conchdepes (Gastropoda). akos 45: 391-399.
Chambers, R.C. 1997. Environmenta influences on egg and propagule sizes in marinefishes In: Early LifeHistory and Remitmet in Fish Pquiations R.C. Chambers and E.A. Trippd (Editors). Chapmen \& Hal, London. Pp 63-102.
Chambers, R.C. and W.C. Leggett. 1996. Matend influences on variation in egg sizes in temperte marinefishes Amrican Zodogis 36: 180-196.
Chesson, P. 1998. Recruitment limitation: atheoretica perspective Autralian J armal of Ecdagy 23: 234-240.

Chiappone, M. and K.M. Seley. 2000. Marine reserve design citeria and meesures of Success Lessons lemmed from the Exuma Cays Land and Seø Park, Bahames Bullein of MarineSaence66: 691-705.

Churchill, J.H. 1989. The effect of commeriad trayling on sediment resuspension and transport over the Middle Atlantic Bight continental shif. Continetal Sheff Reserch 9: 841-864.

Clark, C.W. 1996. Marinereserves and the precautionary management of fisheries Ecdajcal Apdications 6: 369-370.

ClarkeB.M. (editor) 1998. NoTakeZones (NTZs) A Relistic Tool for Fisheries Management? Marine Conservation Sociey. Information Press, Oxford.

Claro, R. 1991. Changes in fish assemblages structure by the effect of intensefisheries activity. Trapical Ecdogy 32: 36-46.

Cliff, G. 1983. Early col onization by fish of an atificial ref in FalseBay, South Africa Transeations of the Rogal Soidy of Sath Africa 45: 63-72.
Cochrane, K., D. Butteworth, J. DeOliverra and B. Rod. 1998. Management procedures in a fishery baed on highly variabl estocks and with confliding objectives experiences in the South African Peagic Fishery. Reiens in Fish Bidogy and Fisheries: 177-214.

Cocklin, C., M. Craw and I. Mcauley. 1998. Marinereserves in New Zeiand: userights, public attitudes, and sodia impats coastal Managenert 26: 213-231.

Cole R., T. Ayling and R. Creese 1990. Effects of marinereserveprotection at Goat Isand, northem New Zeland. Nev Zelland J amal of Marineand Fresmater Reserch 24: 197-210.
Collie J.S., G.A. Escanero and P.C. Valentine 1997. Effects of bottom fishing on the benthic megrauna of Georges Bank. MarineEdogy Proges Series 155: 159-172.

Commonweath of Australia 1998. Austrdia's Oceens Policy. Environment Australia Canberra http://umw.environment.gov.av/marine/oceens/ocnpol.pdf

Connel, J.H. 1978. Diversity in tropical rainforests and coral refs sieme 199: 1302-1310.
Connel, J.H. 1985. The consequences of variation in initiad settlement vs, post-settlement mortaity in rocky intetida communities J amal of Experimertal MarineBidogy and Ecodogy 93: 11-45.
Connel, J.H. 1997. Disturbance and recovery of cord assemblages Coral Refs 16: S101-S113.
Conrad, C. 1997. Areholothurian fisheries for export sustainable? In: Proceei ngs of the8th Intemational Coral Ref Symposium VolumelI. H.A. Lessios and I.G. Madntyre (Editors). Smithsonian Tropica Reserch Institute, Balboa, Republic of Panama Pp 2021-2026.

Courchamp, F., T. Clutton-Brock and B. Grenfel. 1999. Inverse density dependence and theAlle effect. Trends in Ecdagy and Evdution 14: 405-410.

Cox, E.F. 1994. Resource use by cordlivorous butterflyfishes (family Chætodontidæ) in Havai. Bullein of MarineSience54: 535-545.

Culotta E. 1994. Is marine biodiversity at risk? Sience263: 918-920.
Curmings, S.L. 1994. Colonization of a nershoreatificiad ref a Boca Rton (Palm Beach County), Florida Bullein of MarineSience55: 1193-1215.

Currie, D.R. and G.D. Parry. 1996. Effeets of scal lop dredging on a soft sediment community: a large scd e experimental study. MarineEdayy Proges Series 134: 131-150.

Cushing, D.H. 1975. MarineEdoosy and Fisheries Cambridge University, London.
Davis, G.D., P.L. Hałke and D.V. Richards 1996. Status and trends of white abalone at the Califomia Channe Islands Transedians of theA nerican Fisheries Soiel 125: 42-48.

Davis, G.E. 1977. Fishery hanvest in an undewter park. Procee ingsof the3rd I itemational Coral Reff symposium2: 605-608.

Davis, G.E. 1981. On the rol e of undewater parks and sanctuaries in the management of coastd resources in the southeestem United States, Enviromertal Conservation 8: 67-70.

Davis, G.E. 1989. Designted harvest refugia the next stage of marine fishery management in Califormia Cal iforia CoperativeOernic FisherieI Inestigation Repot 30: 53-58.

Davis, G.E. and J.W. Dodrill. 1980. Marine parks and sanctuaries for spiny lobster fisheries menagement. Proceer ngs of theGuf and Caribean Fisheries Intitute32: 194-207.

Davis, G.E. and J.W. Dodrill. 1989. Receetiona fishing and popul ation dynamics of spiny lobsters, Panulinsargus in Florida Bay, Everglades National Park, 1977-1980. Bulemin of MarineSience44: 78-88.

Davis, G.E., P.L. Haker and D.V. Richards 1998. Theperilous condition of white abdoneHalidis scremeeri, Batsch, 1940. J amal of Shelfish Research 17: 871-875.

Davson Shepherd, A.R., R.M. Warwick, K.R. Clarke and B.E. Brown. 1992. An andysis of fish community responses to coral mining in the Madives Enviramertal Bidogy of Fishes 33: 367-380.

Dayton, P., E. Sala M.J. Tegner and S. Thrush. 2000. Marine protected aress parks, bæedines, and fishery enhancement. Bulewin of MarineSiemce66: 617-634.

Dayton, P. and M.J. Tegne. 1990. Bottoms below troubled waters benthic impats of the 1982-84 El Niño-Southem Osdillation in the temperatezone In: GIdmal Consequnes of the1982-84 El Niño Sathem Osillation P. Glynn (Editor). Elseie Ocenographic Serie 52: 433-472.

Dayton, P.K., S.F. Thrush, M.T. Agardy and R.J. H ofman. 1995. Environmenta effects of marine fishing. Aquatic Conservation: Marineand Frermater Ecosytens 5: 205-232.

Dayton, P.K., M.J . Tegner, P.B. Edwards and K.L Riser. 1998. Siding bæed ines, ghosts, and reduced expectations in ke p forest communities Eacogical Apdications 8: 309-322.
Defee, O. 1996. Experimental management of an exploited sendy beech bivalve population. Reista Chilena deHistoria Natural 69: 605-614.
deGroot, SJ. 1984. Theimpatt of bottom trawling on benthic fauna of the North See Oexn Managemet 9: 177-190.

DeMartini, E.E. 1993. Modeling the potentiad of fishery reserves for managing Padific cord ref fishes Fishey Bullin 91: 414-427.
DeMatini, E.E. 1998. How might reauitment reserch on cord-ref fishes hep managetropical ref fisheries Australian J amal of Ecdogy 23: 305-310.

Denny, M.W. and M.F. Shi bata 1989. Consequences of surf-zoneturbulencefor settlement and extema fetilization. American Natural ist 134: 859-889.

Dixon, J.A. 1993. Economic benefits of marine protected arees, Ocemus 36: 35-40.
Dohety, P. and T. Fowier. 1994a An empirical test of reanitment limitaion in a cord ref fish. Siemce 263: 935-939.

Dohety, P. and T. Fowler. 1994b. Demographic consequences of variable reauitment to cord ref fish populations a congeneric comparison of two damed fishes Bullin of MarineSience54: 297-313.

Dohety, P.J. 1981. Cord reff fishes recuitment limited assemblages? Protee nos of theFarth Intenational Coral Reef Symposium2: 465-470.

Dohety, P.J. and D.M. Williams 1988. Thereplenishment of cord ref fish populations Ocencegadhy and MarineBidogs, an Armual Reiev 26: 487-551.
Dohety, P.J. and P.F. Sale 1985. Predation on juvenilecord reef fishes an exd usion experiment. Coral Refs 4: 225-234.

Domeie, M.L. and P.L. Colin. 1997. Tropica ref fish spawning aggregations defined and reviewed. Bulfin of MarineSience60: 698-726.
Done, T.J. 1992. Phæeshifts in cord ref communities and their ecol ogical significance Hycrdidaga 247: 121-132.
Done, T.J. and R.E. Reichat. 1998. Integrated coastal zoneand fisheries ecosystem management: generic goals and peformenceindices Ecadoj cal Appications8: 110-118.

Dufour, V., J awene, J-V. and R. Galzin. 1995. Study of a Mediterraneen ref fish Assemblage Comparisons of popul ation distributions between depths in protected and unprotected aress over one decade AquaticLiving Rearces 8: 17-25.

Dugan, J.E. and G.E. Davis 1993. Applications of marine refugia to coastal fisheries management. Canadian J amal of Fisheries and Aquatic Síences 50: 2029-2042.

Dustan, P. 1999. Cord refs under stress sources of mortality in theFlorida Keys, Natural Rearce Foum23: 147-155.
Dyer, M.I. and M.M. Holland. 1991. The Biosphere Reserve concept: needs for a network design. Biosience41: 319-325.

Edgar G.J and N.S. Barett. 1997. Short term monitoring of biotic change in Tarmanian marine reserves J amal of Experimertal MarineBidogy and Ecdogy 213: 261-279.

Edgar, G.J . and N.S. Barett. 1998. Benefits of marine resenves for theRodk Lobster fishery-a response FistingToday 11 (4) August/September: 32-33.
Edgar G.J and N.S. Barrett. 1999. Effects of thededaration of marinereserves on Tarmanian ref fishes, invertebrates and plants J amal of Experimertal MarineBidogy and Ecdosy 242: 107-144.

Edgar, G., J. Moveley, N. Barrett, D. Peters and C. Reed. 1997. The conservaion-red ated benefits of asystematic marine biological sampling programme the Tasmanian reef bioregiondistion « a cesestudy. Bidajical Conservation 79: 227-40.
Edwards, R.R.C. 1984. Comparisons of growth in weight of temperate and tropical marinefish counterpats Canadian J amal of Fisheries Managmert 7: 580-588.

Edyvane, K.S. 1993. An ecosystem-bæed approach to marine fisheries management. In: sutai mable Fisheiestrang SutainingFish Habitat. D.A. Hancock (Editor). Austrdian Govemment Publishing Service Canberra Pp 21-27.

Eggleston, D. B. 1995. Recruitment in Nassau Grouper Epineqdusstriatus post-settlement abundance, miorohabitat feetures, and ontogeneic habitat shifts. MarineEcoogy Proges Serie 124: 9-22.

Eggleston, D.B., R.N. Lipius and J.J. Grover. 1997. Predator and shette-size effects on cord reef fish and spiny lobster prey. MarineEcdagy Proress Serie 149: 43-59.

Ehrlich, P.R. 1975. The popultaion biology of cord ref fishes Ocenography and MarineBidogs, an Amual Reien 6: 211-247.

Eidsvik, H. K. 1992. Strengthening protected arees through philosophy, sience and management: a global perspective In: Siefreand theManagenert of Pratetel Aress Proceei nos of an I intemational CorfernceHed at Acadia Uni versty, Noua Sectia, Canada. J.H. Martin Willison, S. Bondrup-Nidsen, C. Drysdale T.B. Hemmen, N.W.P. Munro and T.L. Pollock (editors). In: Deetarretts in Landscape Managenet and Urban Plarring 7: 9-18.

Eldredge L.G. 1987. Poisons for fishing on cord reffs In: Humran Impactson Coral Reffs Facts and Reeommendations B. Salvat (Editor). Antenne Museum, French Polyneia Pp 61-66.
Eletheriou, A. and M.R. Robertson. 1992. The effects of experimental scallop dredging on thefauna and physicd environment of a shallow sandy community. NetherlandsJ amal of See Rearch 30: 289-299.

Estes, J.A. and D.O. Duggins. 1995. Semotters and kedp forests in Alazka generdity and variation in a community ecol ogical paradigm Edajcal Manoraphs65: 75-100.
Estes, J.A. and J.F. Palmisano. 1974. Sea otters their role in structuring neershore communities Síence185: 1058-1060.
Estes, J.A., M.T. Tinke, T.M. Williams and D.F. Doak. 1998. Killer whal epredation on see atters linking oceenic and neershore ecosystems. sience282: 473-476.

FAO. 1994. Review of the State of World MarineFishery Resources FAO Fisheries Tetrical Pape 335.
FAO. 1995. Precautionary approad to fisheries Pat I: guiddines on the precautionary approad to capturefisheries and speies introductions. FAO Fisheies Temrical Pape 350/1.

Ferreira B.P. and G.R. Russ 1995. Population structure of the leopard cord grouper, Pleatrapomes leepardus on fished and unfished refs off Townsville, Central Gret Barier Ref, Austraia Fishey Bulein 93: 629-642.

Fisheries and Oceens Canada 1998. MarineProtected Arems Program Minister of Public Works and Govemment Sevices Cenada Cat. No. Fs 23-236/1998. Ottava, Ontario, Canada

Fiske, S. 1992. Soioculturd appets of establ ishing marine protected arees Oexn and Costal Managereat 18: 25-46.
Flaten O., A. Savanes, T. Schweder and Δ. Ulltang. 1998. Fisheries management under uncertaintyan oveviev. Fisheries Reserch 37: 1-6.

Fogaty M. J. 1999. Essentia habita, marine reserves and fishery management. Trends in Eadosy and Evdution 14: 133-134.

Fogaty, M.J. and S.A. Murawski. 1998. Large scde disturbance and thestructure of marinesystemfishery impacts on Georges Bank. Ecdajeal Apdications 8: 56-522.
Fogaty, M.J ., M.P. Sissenwineand E.B. Cohen. 1991. Rearuitment variability and the dynamas of exploited marine populations. Trends in Ecdagy and Evdution 6: 241-246.

Fogaty, M.J., J.A. Bohnsack and P.K. Dayton. 2000. Marine reseves and resource management. In: Sessat theMillerium An Enirometal Eval Lation Vdumelll GIdal Ispues and Proceses C.R.C. Sheppard (Editor). Pergamon, Elsevier Saience, New York. Pp. 375-392.

Fonteneau, A. 1997. A critical review of tunastocks and fisheries trends world-wide, and why most tuna stocks are not yd overexploited. In: Dełqqing and Sutaining World Fisheries Reares TheState of Sienceand Managmert. D.A. Hancock, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSIRO, Collingwood, Vidoria Austrdia Pp 39-48.

Franis, R.C. and S.R. Hare 1994. Decadd-scderegimeshifts in thelarge marine ecosystems of the North-est Paific a coefor historicd soience Fisheies Oemograhty 3: 279-291.

Francour, P. 1994. Pluriannud andysis of the reserve effect on idhthyofanna in the Scandol a naturd reseve (Corsica Northwestem Mediteranean). Oemndogica Ada 17: 309-317.

Frank, K.T. and W.C. Legget. 1994. Fisheries ecology in the context of ecol ogical and evolutionary theory. Amual Reiev of Ecdogy and Sytematic 25: 423-441.

Fretwel, S.D. and H.L. Lucas 1970. On teritoria behaviour and othe fators influending habita distribution in birds 1. Theoreticd devdopment. Ada Biathertica 19: 16-36.

Frid, C.L.J . and S.J . Hall. 1999. Inferring changes in North Sea benthos from fish stomach and ysis MarineEdocy Proges Series 184: 183-188.

Fujita R.M., T. Foran and I. Zevos 1998a Innovative approaches for fostering conservation in marine fisheries Eacogical Apdications 8 (Supplement): 139-150.
Fujita R.M., V. Willingham and J. Freita 1998b. A Review of the Pefformance of Some US West Coost MarineReserves Environmenta DefenseFund, Oakland Califomia Pp. 23

Gaggiotti, O.E. and R.D. Vetter. 1999. Effect of lifehistory strategy, environmental variability, and overexploitation on thegenetic diversity of pelagic fish populations. Canadian J amal of Fisheies and Aquatic Siences 56: 1376-1388.
Garia S.M. 1994. The precautionary prindiple its implications in capture fisheries management. Oexn and Coatal Managenert 22: 99-125

Gardia S.M. and C. Nevton. 1997. Current situation, trends and prospects in capture fisheries In: Gldoal Trends in Fisheries Managerert. E.K. Pikitch, D.D. Huppett and M.P. Sissenwine(Editors). American Fisheries Soriety, Bethesda, Mayland. Pp 3-27.

GaróaChaton, J.A. and Pére-Ruzafa 1999. Ecologica heterogeneity and theevaluation of the effects of marine reserves Fisheries Rearch 42: 1-20.

Garstang, W. 1900. Theimpoverishment of thesea Jamal of theMarineBidajcal Soidy of theU.K. VI: 1-69.

Gilbet, D.J. 1997. Towards a new reauitment pardigm for fish stocks Canadian J amal of Fisheies and Aquati c Sience 54: 969-977.

Gillis, D.M., R.M. Petemman and A.V. Tyler. 1993. Movement dynamics in a fishery: application of the ided freedistribution to spatial alocation of effort. Canadian amal of Fisheries and Aquatic Ciences 50: 323-333.

Gilman, E. 1997. Community baed and multiple purpose protected ares, a mode to select and manage protected aress with lessons from the Padific Islands Coastal Managenert 25: 59-91.

Gitschlag, G. R. 1986. Movement of Pink Shrimp in redaion to Tortugas Sanctuary. Noth Amrican J amal of Fisheries Managenert 6: 328-338.
Goeden, G.B. 1978. A monograph on the cord trout. Quend and Fisheries SeniceRerarch Bullein 1: 1-42.
Goeden G.D. 1979. Is the Gret Barier Ref being overfished? Australian Fisheries September 1979 18-20.

Golani, D. and A. Diamant. 1999. Fish colonization of an atificid ref in the Gulf of Elat, northem Red Sea Enviromertal Bidogy of Fishes 54: 275-282.
Goñi, R. 1998. Ecosystem effects of marinefisheries an overviev. Ocern and Coastal Managmert 40: 37-64.

Govemment of Westem Australia 1997. New Horizons: the Way Aheed in MarineConservation and Management. Westem Austrdia Depatment of Conservation and Land Management, Perth.

Gray, J.S. 1997. Marinebiodiversity: pattems, threets and conservation needs Bicoiversity and Conservation 6: 153-175.
Greenstreet, S.P.R. and S.J. Hall. 1996. Fishing and groundfish assemblage structure in the northwestem North Ser an and ysis of long-tem and spatial trends J amal of Arimal Edoog 65: 577-598.

Gribble, N. and M. Dredge 1994. Mixed-spedies yidd-pe-rearuit simulations of the effect of seesond dosure on a centra Queensland coastd prawn trawling ground. Canadian J amal of Fisheies and Aquatic Siences 51: 998-1007.

Gribble, N.A. and J.W.A. Robertson. 1998. Fishing effort in thefar northem section cross shad dosure are of theGret Barier Ref MarinePark: the effectiveness of aremdosures J amal of Enviromental Managerert 52: 53-67.

Grimes, C.B., C.F. Idd berger, K.W. Able, and S.C. Turne. 1988. Thereproductive biology of tilefish Lqindatilus chameenticeps Goode and Ben, from the United States Mid-Atlantic Bight, and the effeets of fishing on the breeding system Fishey Bullein 86: 745-762.
Gubbay, S. 1995. Fisheries and marine protected arees-aUK perspective In: MarinePrateted Ares and SutainableFisheries N.L. Shadkell and J.H.M. Willison (Editors). Acadia University, Wolfville, Nova Scotia Pp 183-188.

Gubbay, S. 1996. Marine refuges thenext step for nature conservation and fisheries management in the North-Eat Atlantic? A Report for WWF-UK. 22pp.
Guenette, S., Lauck T. and C. Clark. 1998. Marine reserves from Beverton and Holt to the present. Reiens in Fish Bidogy and Fisheies8: 251-72.

Gurman, H.M. and G. Jacome 1998. Artisan fishery of Cayos Cochinos Biological Reserve, Honduras Reista deBidaja Trqical 46: 151-163.

Hal, S. J. 1998. Closed arees for fisheries management-the case consol idates Trends in Ecology and Evdution 13: 297-298.

Hall, SJ. 1999. TheEffects of Fishing on Marine Ecosystems and Communities. Blackwel Saience, Oxford.

Hall, S.J . and M.J.C. Harding. 1997. Physica disturbance and marine benthic communities the effects of mechanica harvesting of cockles on non-target benthic infauna J amal of Apdied Ecdoss 34: 497-517.
Haliday, R.G. 1988. Use of semonal spawning area dosures in the management of haddock fisheries in the northwest Atlantic. NAFO Sientific Conil Sudie 12: 27-36.

Haliday, R.G. and A.T. Pinhom. 1997. Policy frameworks In: Nathwes AttanticGrandfist Pergoetives on a Fishey Cdlapse J. Boremen, B.S. Nakashima J.A. Wilson and R.I. Kendal (Editors). American Fisheries Socity, Bethesda, Maryland. Pp 95-109.
Halpen, B. In Press The impact of marine reserves do reserves work and does resevesize matter? Eadajcal Apdications (2001).

Harmelin, J.-G., F. Bachet and F. Garia 1995. Mediteraneen marine reserves fish indices as tests of protection efficiency. MarineEcdogs-Puddicaziori dłla StazioneZodogy 16: 233-250.

Hat, P. 1996. Controlling illegal fishing in dosed arems the case of Mackerd off Norway. In: Deetqi ing and Sutai ing Wold Fisheries Rearce TheStateof Sieinceand Managenert. D.A. Hancock, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSRRO, Collingwood, Vidoria Australia Pp. 411-414.

Hastings, A. and L.W. Botsford. 1999a Equivdence in yidd from marine reserves and traditiond fisheries management. Saience284: 1537-1538.

Hastings, A. and L. Botsford. 1999b. Marinereserves net reliablefish catch. Weves 6: (2) p.10. Source Seaveb Oceen Update Fish, Wildlife and Conservation Biology, Uni versity of Califomia Davis

Hayward, T.L. 1997. Padific Ocem dimate change tmospheic fording, oceen dircultion and ecosytem response Trends in Ecdogy \& Evdution 12: 150-154.

Heppell, S.A. and S.S. Heppel. (Manuscript). A modd to assess conservation strategies for hemaphroditic grouper

Hemkind, W.F. and R.N. Lipius 1986. Habitat use and population biology of Bahamian Spiny Lobster. Proced ings of theGuf Caribean Fisheries Inditute39:265-278.

Hesinga G.A., O. Orak and M. Ngiramengior. 1984. Cord ref sanctuaries for trochus shels MarineFisheries Reiev 46: 73-80.

Hilbom, R. 1997. Uncetainty, risk and the precautionary prindiple American Fisheries Saidy Symposium 20: 100-106.

Hilborm, R. and C.J. Walters. 1992. QuantitativeFisheries Stock Assessment: Choice, Dynamics and Uncetainty. Chapmen \& Hall, New York.

Hixon, M. and J.P. Bets. 1993. Predation, prey refuges, and the structure of cord-reef assemblages Ecdajcal Monographs63: 77-101.

Hixon, M.A. 1991. Predation as a process structuring cord ref fish communities In: TheEcdogs of Fisheson Coral Refs P.F. Sale (Editor). Academic Press, San Diego, Califormia Pp 475-508.

Hixon, M.A. 1998. Population dynamics of cord-reef fishes controversid concepts and hypotheses AutralianJ amal of Ecdogy 23: 192-201.

Hixon, M.A. and W.N. Brostoff. 1983. Damseffish a keystonespeies in reverse intemediate disturbance and diversity of ref algæ sience220: 511-513.

Hobson, E.S. 1973. Did feeding migrations in tropical ref fishes Hegs Wiss Merenter. 24: 671-680.
Hockey, P.A.R. and G.M. Branch. 1997. Criteria objectives and methodology for evduating marine protected ares in South Africa sath African J amal of MarineSience18: 383-369.

Hofmann, E.E. and T.M. PowdI. 1998. Environmental variability effects on marine fisheries four coeehistories Edajcal Apdications8: 23-32.

Holland, D.S. and R.J. Brazee 1996. Marinereserves for fisheries management. MarineRearceEcanorics 11: 157-171.

Holland, K.N., C.G. Lowe and B.M. Wetherbee 1996. Movements and dispersad pattens of blue trevaly (Caran× meampgas) in afisheries conservation zone Fisheies Reserch 25: 279-292.

Holland, K.N., J.D. Peterson and B.M. Wetherbee 1993. Movements, distribution and growth rates of the whitegoatfish Mulides flavdinemusin a fisheries conservation zone Bulein of MarineSience52: 982-992.

Holling, C.S. 1973. Reilience and stability of ecological systems. Amual Reiev of Edooy and systeratics 4: 1-23.

Holling C.S. 1996. Surprisefor science, resilience for ecosystems, and incentives for people Ecdajeal Apdications 6: 733-735.

Holmund, C.M. and M. Hammer. 1999. Ecosystem senvices generted by fish popultions Ecdajcal Econorics 29: 253-268

Houde, E.D. 1987. Fish early lifedynamics and reanitment variability. Arrerican Fisheries Saiey symposium2: 17-29.

Hubbal, S.P. 1997. A unified theory of biogeography and redaive speeies abundance and its application to tropicd rain forests and cord refs Coral Refs 16: 9-21.

Hughes, T.P. 1994. Catastrophes, phæeshifts, and large scde degradation of a Caribbeen cord ref. Sience265: 1547-1551.

Humphrey, S.R. and B.M. Smith. 1990. A balanced approach to conservation. Conservation Bidagy 4 341-343.

Huntsmen, G.R. 1994. Endangered marine finfish: neglected resources of beets of fiction? Fisheie 19: 8-15.

Hutchings, J.A. 1995. Seesonal marine protected arees within the context of spatio-temporal variation in the northem cod fishery. In: MarinePrcteted Aress and Sutai nableFisheies N.L. Shackell and J.H.M. Willison (Editors). Acodia University, Wolfville, Nova Scotia Pp 39-47.

Hutchings, J.A. 1996. Spatial and tempord variation in the density of northem cod and areview hypotheses for the stodk's collapse Canadian J amal of Fisheries and Aquatic Siences 53: 943-962.

Hutchings, P. 1990. Review of the effects of trawling on macrobenthic epifaund communities Australian J amal of Marineand Frestmater Reserch 41: 111-120.

Iles, T.C. 1994. A review of stock-reauitment retaionships with referenceto flatish populations NetherlandsJ amal of Sex Restarch 32: 399-420.

IUCN. 1994. Guidłines for Prdeted Area Manageret Categries Cormission on Nationa Paks and Protected Arees with the asistance of the World Conservation Monitoring Centre, Gland, Switzeland

Jadkson, J.B.C. 1997. Reefs sinceColumbus Coral Reffs 16: 23-32.
Jacoby, C., C. Manning, S. Fritz and L. Rose 1997. Threerecent initiatives for monitoring of Australian coasts by the community. Ocen and Costal Managmert 36: 205-226.

J amieson, G.S. 1993. Marine invetebrate conservation: evduation of fisheries over-exploitation concems. American Zodogis 33: 551-567.

Jennings, S. 1998. Cousin Istand, Seychelles a small, effective and intemationally managed marine reserve Coral Refs 17: 190.

Jennings, S. and J.M. Lock. 1996. Population and ecosystem effects of fishing. In: Ref Fisheies N.V.C Polunin and C.M. Robets (Editors). Chapmen \& Hal, London. Pp 193-218.

Jennings, S. and M.J. Kaise. 1998. The ffects of fishing on marine ecosystems. Advanees in Marine Bidogy 34: 201-351.

Jennings, S. and N.V.C. Polunin. 1996. Effects of fishing effort and catch rate upon the structureand biomess of Fijian ref fish communities J amal of Apdied Edagy 33: 400-412.

Jennings, S. and N.V.C. Polunin. 1997. Impacts of predator depletion by fishing on the biomess and diversity of non-target reef fish communities Caral Refs 16: 71-82.

Jennings, S., J.D. Reynolds and S.C. Mills. 1998. Life history corredtes of responses to fisheries exploitation. Procer ngs of theRoyal Saidy of London Series B-Bidajical Siences 265: 333-339.

Jennings, S, S.P.R. Greenstreet and J.D. Reynolds 1999. Structura dhange in an exploited fish community: a consequence of differential fishing effects on species with contrasting life histories Jamal of Arimal Ecoogy 68: 617-627.

Jennings, S., S.S. Marshall and N.V.C. Polunin. 1996. Seychelles' maine protected arees comparaive structure and status of ref fish communities Bidajcal Consevation 75: 201-209.

Johannes, R.E. 1978. Traditiond marineconservation methods in Oceenia and their demise Armual Reiev of Ecdoyy and Syterratios 9: 349-364.
J ohannes, R.E. 1998a The cosefor data less marine resource management: examples from tropica neershorefinfisheries Trends in Ecdagy and Evdution 16: 243-245.

J ohannes, R.E. 1998b. Tropicd marine reserves should encompass spawning aggregation sites Parks 8 : 53-54.

J ohnson, D. R., N.A. Funicelli, , and J.A. Bohnsack (1999). Effectiveness of an existing estuarine no-takefish sanctuary within the Kennedy Space Center, Florida Nath American Jamal of Fisheries Managmet 19: 436-453.

Jones, G.P. 1984. The influence of habitat and behavioura interactions on the locd distribution of the wrasse Psenddabrusctidtus Eniromertal Bidogy of Fishes 10: 43-58.

J ones, G.P. 1988. Experimental evduation of the effeets of habita-structure and competitive interactions on the juveniles of two cord reff fishes J amal of Experimertal Bidogy and Ecoogy 123: 115-126.

J ones, G.P. 1990. The importance of rearuitment to the dynamics of a cord ref fish population. Ecdasy 71: 1691-1698.

Jones, G.P. 1991. Post reanuitment processes in the ecol ogy of cord ref fish populations: a multifactorial perspective In: TheEcdogy of Fishes on Coral Refs P.F. Sale (Editor). Academic, San Diego, California Pp 294-328.

Jones, G.P. and C. Syms 1998. Disturbance, habitts structure and the ecol ogy of fishes on cord reefs Autralian J amal of Ecdogy 23: 287-297.

Jones, J.B. 1992. Environmental impad of trawling on the seebed: areviev. Nev Zeal and J armal of Marineand Fretmater Reserch 26: 59-67.

Jones, R. 1983. The dedine in hering and madkerd and the assodited increme in other spedies in the North See In: Procer ings of the Expert consitation to ExarnineChanges in Abundanceand Speries Conposition of NeiticFish Rearces G.D. Shap and J. Cirke, (Editors). FAO, Rome Pp 507-520.

J ones, P.J.S. 1994 A review and and ysis of the objectives of marine nature reserves Ocen and coestal Managerret 24: 149-178.

Kaise, M.J. and B.E. Spencer. 1996. The effects of beem-trawl disturbance on infaunal communities in different habitđts J amal of Arimal Ecday 65: 348-358.
Keleher G. 1996. A global representativesystem of marine protected arees Ocean and cosesal Manageret 32: 123-126.

Kellener G., C. Bleakley and S. Wells 1995. A Gldal RepreatativeSytemof MarinePrdetted Ares Gret Barrier Ref MarinePark Authority, The World Bank, IUCN. Vols 1 to 4.

Kellene, G. and R. Kenchington. 1990. Politicd and sodid dynamics for establishing marine protected arees Natureand Rearces 26, 2: 31-38.

Kelly, S., A.B. MadDiarmid and R.C. Babcock. 1999. Characteristics of spiny lobster, J ass eemardisi, aggregations in exposed ref and sandy aress Marineand Fredmater Research 50: 409-416.

Kelly, S. R.D. Babcock and A.B. MaCDiarmid. 2000a Impact of marine reserves on spiny lobsters (j asuseemardii) and the lobster fishery. Report to Department of Conservation, New Zeland by Audkland Uniservices Limited. February 2000. 50pp.

Kelly, S., D. Scott, A.B. MacDiarmid and R.C. Babcock. 2000b. Spiny Iobster, J asuseemardii, recovery in New Zelland marinereserves Bidagical Conservation 92: 359-369.

Kenchington, R.A. 1990. Managing MarineErviroments Taylor \& Frandis, New York.
Keough, M.J. 1988. Benthic populations is reauitment limiting or just fashionable? Procee ngs of the 6th Intenational Coral Reef Symosium1: 141-148.

Kefoot, W.C. and A. Sih (Editors). 1987. Prestaior Diret and I ndiret I mpoats on Aquatic Commenities Uni versity Press of New England, Hanover, New Hampshire

Klima E.F., G.A. Mathens and F.J . Patela 1986. Symopsis of the Tortugas pink shrimp fishery, 1960-1983, and the impat of theTortugas Sanctuary. Nath Anreican J amal of Fisheries Managenett 6: 301-310.

Knowiton, N. 1992. Thresholds and multiplestablestates in cord ref community dynamics American Zodajs 32: 674-682.

Kosow, J.A., F. Hanley and F. Widklund. 1988. Effects of fishing on reef fish communities at Pedro Bank and Port Royd Cays, J amica MarineEcdogy Proges Series 43: 201-212.

Kosow, J.A., J. Bell, P. Virtue and D.C. Smith. 1995. Fecundity and its variability in orange roughyeffects of popultion density, condition, egg size and senescence J a mal of Fish Bidagy 47: 1063-1080.

Kosow, J.A., N.J. Bax, C.M. Bulmen, R.J. Kloser, A.D.M. Smith and A. Williams 1997. Managing the fishdown of the Austraian orange roughy resource In: Dertaing and sutaining world Fisheies Reares thestated Siereand Manegrert. D.A. Hancock, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSRRO, Collingwood, Vitoria Austrdia Pp 558-562.
Krame, D.L. and M.R. Chapman. 1999. Implictions of fish homerangesize and recoction for marine resevefunction. Enviromental Bidagy of Fishe 55: 65-79.
Lamea, G. and M. Vacchi. 1999. An and ysis of the coesta fish assemblage of the Usticalsand
 147-165.

Lande, R. and G.F. Barrowdough. 1987. Effective population size, geneic variation, and their use in population menagement. In: ViablePquiatios for Conervation M.E. Soulé (Editor). Cambridge University, Cambridge U.K. Pp 87-123.

Lakin, P.A. 1977. An epitaph for the concept of meximum sustaned yidd. Traneacionsof theA merican Fishrie Scidy 106: 1-11.
Lasson, R.J. 1980. Teritoria behaiour of the black and yellow rockfish and gophe rockish (Scorparnidæ, stbate.). MarineBiday 58: 111-122.
Laidk, T. 1998. Multivaritecomparisons of rocky infratida macofaund wsemblages from replicte exploited and non-explaited locedities on the Tranidk Coast of South Africa MarineEdacoy Proces Sries 167: 15-23.

Lauck, T., C.W. Clark, M. Mangd and G.R. Munro. 1998. Implementing the precautionary principle in fisheries management through marine reserves Eciojical Appicatios 8 (Supplement 1): 72-78.
Leedbitter, D., T.J. Ward and K. Ridge 1999. Mäntaining Biodiversity in Sustainable Marine Fisheries-A Reviev and Scoping of FutureDirections 86 pp. Department of Environment and Heitage Canberra
Leggett, W.C. and E. Deslois 1994. Recruitment in marinefishes is it regulted by stavation and predation in theegg and laval stages? Nethelanots amal of Sel Reerch 32: 119-134
Leis J.M. 1991. Thepeagic stage of ref fishes thelaval bilogy of cord ref fishes In : TheEados of Fisheson Coal Refs P.F. Sale (Editor). Accaleric, New York. Pp 183-230.

Leum L.L. and J.H. Chot. 1980. Densty and distribution pattems in a temperatemarinefish, Cheilobaty us spetabli is (Cheilodatylidæe), in a refe environment. MarineBidogy 57: 327-337.
Lein, P.S. 1998. Thesignificance of varidbleand density-independent post-recuitment mortaity in loca populdions of reff fishes Autrali ian J ama of Edacos 23: 246-251.

Leitan, D.R. 1991. Influence of body size and popultion density on fettilizaion success and reproducive output in a freespamning invettebrate Bidajal Bullein 181: 261-268.
Leitan, D.R., M.A. Sevell and Chia F.-S. 1992. How distribution and abundance influence fetilization success in the sem urchin Stronglaetrausfranisanas Edaosy 73: 248-254.
Leitan, D.R. 1995. Theecology of fetilization in free spamning invettebrates In: Ecdogy of Marine InvetterateLanee L. McEdward (Editor). CRC Press BocaRton, Florida Pp 123-156.

Leitan, D.R. and C. Petersen. 1995. Spermlimitaion in the em Trenchin Ecdogy \& Evdution 10: 228-231.
Ley, S. 1998. Watey watdands Nev Siertis 158, 40-44.
Levin, R. 1986. Supply-sideecology. Sieme234: 25-27.
Levis, A.R. 1997. Rearuitment and post-rearuit immigration affet thelocd population size of cora reff fishes Coral Reff 16: 139-149.

Lincoln-Smith, M.P., J.D. Bedl and C.A. Hair. 1991. Spatid varition in abundance of recently settled rocky ref fishes in Southeetem Austrdia implications for deteding change MarineEdagy Proges Serie 77: 95-103.
Lindholm J., M. Ruth, L. Kaufman and P. Auster. 1998. Post-sttlement surnivorship of juverile groundfist: implications for the deign of marine reseves and fishey menegement. In: Effets of Fisting Gere on thesealicr of Neve End and Consevition Law Founddion, Botan. Pp 123-128.

Lindhalm J.B., P.J. Auster and L.S. Kaufmen. 1999. Habitt-mediated survivorship of jivenile (O-yer) Atlantic cod Gadismmina. MarineEdogy Proges Serie 180: 247-255.

Lipdius R.N., W.T, Stockhausen, D.B. Eggleston, L.S. Marshal and B. Hickey. 1997 Hydrodymaric decoupling of rearuitment, habita quaity and adult abundancein the Caibben spiny lobster: source sink dynarics Marineand Frestmater Reserch 48: 807-815.

Lister, R. 1998. Maine Reserves - but at what cost to Tammenia? FistingToby 11: 24-25.
Lock, J.M. 1986. Effects of fishing pressure on the fish resurces of the Part Moresby barier and fringing reffs Teatrical Reot 86/3. Depatment of Primary Industry, Fisheries Division, Part Morebby, Papuan New Guinea

Lozano-Alvare, E., P. BrionesFourzan and F. Negrete Soto. 1993. Occurrence and sersand varitions of spiny Iobsters, Pandinsargus (Latreille), on theshd foutside Bahia delaAscension, Mexico. Fishey Bullein US 91: 808-815.
Ludwig, D., R. Hilbom and C. Watters 1993. Uncertainty, resourceexploitaion, and conservaion. Sieme260: 17-18.

MacDia mid, A.B. and P.A. Breen. 1993. Spiny lobster population changes in a marine reserve In: Proceringso the2nd I itemational TenperateRef Sympoi um Battershill, C.N., D.R. Schid, G.P. Jones R.G. Creseand A.B. MaCDiarmid (Editors). NIWA Marine, Wellington, New Zeland. Pp 47-56.

Mace, P.M. 1997. Devdoping and sustaining world fisheies resources the state of the science and management. In: De\&qing and Sutai ing World Fisheies Rearces The Stateof Siéereand Managenett D.A. Hancock, D.C. Smith, A. Grant and J.P. Beume (Editors). CSIRO, Collingwood, Vidoria Austraia Pp 1-20.

Macpherson, E., F. Biagi, P. Francour, A. Garóa Rubies, J. Hamdin, M. Harmelin-Vivien, J.Y. Jawend, S. Planes, L. Vigliola and L. Tunesi. 1997. Martality of juvenilefishes of thegenus Dipodus in protected and unproteted arees in the westem Mediterraneen Sea MarineEdagy Proges Series 160: 135-147.

Mange, M. 1998. No-takearees for sustainability of harvested species and a conservation invariant for marine reseves Ecdogy Leters 1:87-90.

Mangd, M. 2000a Irreduable uncertainties, sustainablefisheries and marine reserves Evdutionary Ecdosy Resarch 2: 547-557.

Mangd, M. 2000b. Tradeoffs between fish habitat and fishing mortality and the role of reseves Bullitin of MarineSience66: 663-674.

Mange, M. 2000c. On thefraction of habitat dlocted to maine reserves. Edagy Latters3: 15-22.
Mapstone B.D. and A.J. Fowle. 1988. Rearuitment and the structure of assemblages of fish on cora reff. Trends in Ecdogy and Evdution 3: 72-77.

Mathews, K. R. 1985. Spedies similaity and movement of fishes on naturd and atificial refs in Monterey Bay, Califormia Bullein of MarineSaience37, 1: 252-270.

Mathews, K. R. 1996. Did movement and habitat use of Califormia Golden Trout in the Golden Trout Wildemess, California Transations of theAmrican Fisheries Saidy 125: 78-86.

McArdle, D.A. 1997. Cal iforia MarinePrdeted Ares Califomia Sem Grant College System, LaJ dia Califormia

McClanahan, T.R. 1994. Kenyan cord ref lagoon fish: effects of fishing, substrate complexity, and see urchins Coral Refs 13: 231-241.

McClandhan, T.R. 1995. Fish predators and scavengers of theseaurchin Edinomera mathee in Kenyan cord-ref marineparks Enirometal Bidogy of Fishes 43: 187-193.

McClandhan, T.R. 1997a Effects of fishing and ref structureon Eat African cord refs. In: Proceer nos of thesth I intemational Coral Reff Symposium VolumelI. H.A. Lessios and I.G. Mad ntyre (Editors). Smithsonian Tropicad Reserch Institute, Balboa, Republic of Panama Pp 1533-1538.

McClanchan, T.R. 1997b. Recovery of fish populations from heemy fishing: does timehel all? In: Procer ings of the8th Intenational Coral Ref Symposium Volumell. H.A. Lessios and I.G. Mad ntyre (Editors). Smithsonian Tropica Reserch Institute, Balboa Republic of Panama Pp 2033-2038.

McClanahan, T.R. 1997c. Primary succession of cord-ref agae differing pattens of fished versus unfished refs J amal of Experimertal MarineBidogy and Ecdagy 218: 77-102.

McClanahan, T.R. 2000. Recovery of a cord ref keystone predator, Balistapusunduatus in Eat African marineparks Bidojcal Conservation 94: 191-198.

McClanahan, T.R. and B. KaundaArara 1996. Fishery recovery in a cord-reef marine park and its effect on the adjacent fishery. Conservation Bidasy 10: 1187-1199.

McClanahan, T.R. and N.A. Muthiga 1988. Changes in Kenyan cord ref community structure and function dueto exploitation. Hycrdidaja 166: 269-276.

McClanahan, T.R. and R. Arthur. 2001. The effect of marinereserves and habitat on popultaions of Eat African cord reff fishes Eadajcal Apdications 11: 559-569.
McClandhan, T.R. and S.H. Shafir. 1990. Causes and consequences of see urchin abundance and diversity in Kenyan cord ref lagoons oedogia 83: 362-370.

McClandhan, T.R. and S. Mangi. 2000. Spillover of exploitablefishes from a marinepark and its effect on the adjacent fishery. Ecdogical Apdications 10: 1792-1805.

McClandhan, T.R., A.T. Kamukuru, N.A. Muthiga M. Gilagabher Yebio and D. Obura 1995. Effect of semurchin reductions on alge, cord and fish populations Conervation Bidosy 10: 136-154.
McClanahan, T.R., H. Glæesd, J. Rubens and R. Kiambo. 1997. The effects of traditional fisheries menagement on fisheries yidds and the cord-ref ecosystems of southem Kenya Erni romental Conservation 24: 105-120.

McClanahan, T.R., A. Muthiga A.T. Kamukuru, H. Madhano and R.W. Kiambo. 1999. The effets of marine parks and fishing on coral refs of northem Tanzania Bidajcal Conervation 89: 161-182.

McClanchan, T.R., T.J. Doneand N.V.C. Polunin. In Press Reiliency in cord ref ecosystems In: Reilienceand Sutai nablity in Largescal eEcosytens L. Gunderson, B.-O. Jansson, C.S. Hollings and C. Folkes (Editors). Isand Press

McCormick, M.I. 1998. Condition and growth of reef fish at settlement: is it important. Autralian J amal of Ecdogy 23: 258-264.

McGarve, R. and J.H.M. Willison. 1995. Rationdefor a marine protected areadong the intentaiond boundary between U.S. and Canadian waters in the Gulf of Maine In: MarinePrdeter A reas and sustainableFisheies N.L. Shackel and J.H.M. Willison (Editors). Acadia University, Wolfville Nova Scotia Pp 74-81.

MCKenna J.E., Jr. 1997. Influence of physicd disturbance on thestructure of cord reef fish assemblages in theDry Tortugas Caribben J amal of Sience33: 82-97.

MdManus, J.W. 1994. The Spratly Istands amarinepark? Ambio 23: 181-186.
MoManus, J.W. 1996. Sodial and economic aspects of reef fisheries and their management.
In: Coral Reff Fisheies N.V.C. Polunin and C. Robets (Editors). Chapmen and Hall. Pp 249-281.
MdManus, J. W. 1997. Tropica marinefisheries and thefuture of cord refs a brief review with empharis on Southeest Asia Coral Refs 16: Suppl S121.

MdManus, J.W. and L.A.B. Meñez 1997. The proposed intentiona Spratley Isand MarinePark: ecologicd considerations In: Prozeer ings of thesth I itemational Coral Ref Sympoi um Panama J une 24-29, 1996. VolumeII. H.A. Lessios and I.G. Mad ntyre (Editors). Smithsonian Tropical Reseerch Institute, Baboa Republic of Panama Pp 1943-1948.

MdNeill, S.E. 1994. Thesdection and design of marine protected arem. Australia as a cosestudy. Bioriversity and Conervation 3: 586-605.

McShane P.E. 1995. Rearuitment variation in dbal one its importanceto fishery management. Marineand Fretmater Rexarch 46: 555-570.

Mesa, M.G., T.P. Poe D.M. Gadomski and J.H. Petersen. 1994. Areall prey creted equaa review and synthesis of differential predation on prey in substandard condition. J amal of Fish Bidas 45: 81-96.

Messid, S.N., T.W. Rowel, D.L. Per and P.J Cranford. 1991. The effects of trawling, dredging, and oceen dumping on the Eastem Canadian Continenta Shef seebed. Continental Shef Reserch 11: 1237-1263.

Milicich, M.J. and P.J. Dohety. 1994. Lavd supply of cord reef fish populations. magnitude and synchrony of replenishment to Lizard Isand, Great Barrier Ref. MarineEddogy Proges Series 110: 121-134

Mille, T.J ., L.B. Crowder, J.A. Riceand E.A. Marschall. 1988. Land size and reauitment mechanisms in fishers toward a conceptual framework. Canadian J amal of Fisheries and Aquatic Siéences 45: 1657-1670

Moreno, C.A., K.M. Lunedkeand M.I. Lepez 1986. The response of an intetida Conchdeprs conchdepres (Gastropoda) population to protection from Man in southem Chileand the effects on benthic sessile assemblages akos 46: 359-364.

Morgan, G.R., B.F. Phillips and L.M. J oll. 1982. Stock and reauitment reationships in Panuirus ggnus the commerial rock (spiny) Iobster of Westem Australia Fisheie Bullein 80: 475-486.

Morgan, M.J., C.E. Wilson and L.W. Crim 1999. The effect of stress on reproduction in Atlantic cod. J amal of Fish Bidogy 54: 477-488.

Munro, J.L. and D.M. Williams 1985. Assessment and management of cord ref fisheries biologicd, environmental and socio-economic appects Procee ngs of the5th I itemational Coral Ref Sympium 4: 544-576.

Munro, J.L. and N.V.C. Polunin. 1997. A decade of progress in cord ref fisheries reserch: 1986-1995 In: Proteer nos of the8th Intenational Coral Reef Symposium Panama J une 24-29, 1996. Volumell. H.A. Lessios and I.G. Mad ntyre (Editors). Smithsonian Tropicad Reserch Institute, Baboa, Republic of Panama Pp 2003-2008.

Munro, J.L., J.D. Parish and F.H. Talbot. 1987. The biol ogicd effects of intensivefishing upon cord reff communities In: Human I mpadson Coral Reffs Fads and Rearmmendations B. Salvat (Editor). Antennes Museum E.P.H.E., French Polynesia Pp 41-49.

Murawski, S.A. 1991. Can we manage our multispedies fisheries? Fisheie 16: 5-13.
Murawski, S.A., R. Brown, H.-L. Lai, P.J. Rago and L. Hendrickson. 2000. Largescde dosed arees a a fishey management tool in tempertemarinesystems theGeorges Bank experience Buliein f MarineSiance66: 775-798.

Murdoch, W.W. 1994. Population regulation in theory and practice Eacoy 75: 271-287.
Murray, S.N., R.F. Ambrose, J.A. Bohnsad, L.W. Botsford, M.H. Carr, G.E. Davis, P.K. Dayton, D. Gotshal, D.R. Gunderson, M.A Hixon, J. Lubchenco, M. Mange, A. MacCal, D.A. McArdle, J.C. Ogden, J. Roughgarden, R.M. Star, M.J. Tegner and M.M. Yoklavich. 1999a No-take reserve newworks sustaining fishery populations and marine ecosystems Fisheries N aentrer 1999. 11-25.

Murray, S.N., T. Gibson Denis, J.S. Kido and J.R. Smith. 1999b. Human visitation and thefrequency and potentia effects of collecting on rocky intertida populations in Southem Cal formia marine reserves Cal iforia Coperati ve Oteri CFisheries I nesigation Repot 40: 100-106.

Myers, R.A. 1997a Comment and reendysis paradigms for reauitment studies Canadian J amal of Fisheries and Aquatic Cieieres 54: 978-981.

Myers, R.A. 1997b. Why do fish stocks collapse? Theexample of cod in Atlantic Canada Ecdojical Apdications 7: 91-106.

Myers, R.A. and G. Metz 1998. Thelimits of exploitation: a precautionary approach. Ecdajcal Apdications8: 165-169.

Myers, R.A. and N.J. Barrowmen. 1996. Is fish reanitment re tated to spammer dbundance? Fishey Bullein 94: 707-724.

Myers, R.A., J. Barowmen, N.J.A. Hutchings and A.A. Rosenberg. 1995. Population dynamics of exploited fish stodks at low population levds Sience269: 1106-1108.

Nesson, K. and Soulé 1987. Genetica conservation of exploited fishes In: Pquilation gentics and fishey managenert N. Ryman and F. Utte (Editors). Uni versity of Washington, Settle Washington. Pp 345-368.

NMFS (Nationd Marine Fisheries Senice). 1993. Or living acens repat on thestatus of US living marine rearce 1993. NOAA Technica Memorandum NMFS/SPO-15. Wahington, D.C.
Norcooss, B.L. and R.F. Shaw. 1984. Ocemic and estuarinetransport of fish eggs and lanve areview. Transedions of theAmerican Fisherie Saidy 113: 153-165.

Novacze, I. 1995. Possible roles for marine protected arees in establishing sustainable fisheries in Canada In: MarineProtetel Aress and Sutai madeFisheries N.L. Shackel and J.H.M. Willison (Editors). Acadia Uni versity, Wolfville, Nova Scotia Pp 31-36.

Nardi, K., G.P. J ones, M. Moran, and Y.W. Cheng. Manuscript. Contrasting effects of marine protected arees on the abundance of two exploited ref fishes at the sub-tropicd Houtman Abrol hos is ands, Westem Australia

NAS (Nationa Accdemy of Siences). 2000. Marine Protected Arees. Tools for Sustaining Oceen Ecosystems. National Academy Press, Washington DC. 181pp + apps

NRC (National Reserch Coundi). 1995. Understanding MarineBiodiversity: A Reserch Agenda for the Nation. Nationd Academy, Washington, D.C.

Nilsson, P. 1998. Criteria for the Selection of MarineProtected Ares, an andysis. Report 4834. Swedish Environmental Protection Agency, Stockholm 54 pp.

Nuhfer, A.J. and G.R. Alexander. 1994. Growth, survivd, and vul nerability to angling of three wild brook trout strains exposed to different levels of angling exploitation. Nath American J armal of Fisheries Managemet 14: 423-434.

Ogden, J.C. and T.P. Quinn. 1984. Migration in cord ref fishess ecol ogical significanceand orientation medhanisms In: Metharissso of Migration in Fishes J.D. McCleave, G.P. Dodson and W.H. Neill (Editors). Plenum, New York. Pp 293-308.

Öhman, M.C., A. Rajasuriya and E. Ólafsson. 1997. Ref fish assemblages in north-westem Sri Lanka distribution pattems and influences of fishing pradices Enviromental Bidagy of Fishes 49: 45-61.

Olson, R.R. 1985. The consequences of short-distancelarval dispersa in a sessilemarine invetebrate Eadoy 66: 30-39.

Orensanz, J.M.L., J. Armstrong, D. Armstrong and R. Hilborn. 1998. Crustaceen resources are vulnerdble to serial depletion: the multifaceted dedine of σ rab and shrimp fisheries in the greeter Gulf of Alaska Reiens in Fish Bidogy and Fisheries: 117-176.

Paddack, M. J. and J.A. Estes 2000. Kedp forest fish populations in marine reserves and adj acent exploited arees of central Califomia Ecacjeal Apdications 10: 855-870
Palsson, W. A. 1997. The response of rodky ref fishes to marine protected arees in Puget Sound. In: TheDeign and Moritoring of MarineReenes (ed. T. J. Pitcher). UBC Fisheries Centre Workshop Feb. 18-20 1997. Fisheries Center Reserch Report 5: 1.
Palsson, W.A. 1998. Monitoring the response of rodkfishes to protected aress in Washington State In: MarineHanet Refugia for wet Coast Rakfistr A Workstap M.M. Yoklavich (Editor). NOAA Technicd Memorandum NOAA-TM-NMFS-SWFSC-255. Pp 63-72.

Palsson, W.A. and R.E. Pacunski. 1995. The response of rocky reef fishes to havest refugia in Puget Sound. In: Pug\# Sand Reerch '95 Procee nos Volume1. Puget Sound Water Quality Authority, Olympia Washington. Pp 224-234.

Palumbi, S. (manuscript). The ecol ogy of maine protected arems

Pama A.M. and R.B. Deriso. 1990. Dynarics of age and size composition in a population subject to sizese ective mortality: effects of phenotypic variability in growth. Canadian J amal of Fisheries and Aquatic Síences 47: 247-289

Parish, J.D. 1989. Fish communities of interacting shallow-water habitas in tropical oceenic regions MarineEcdogy Proges Serie 58: 143-160.

Parish, J.K. 1999a Using behavior and ecology to exploit schooling fishes Envirometal Bidasy of Fishes 55: 157-181.

Parish, R. 1999b. Marine reserves for fisheries management: why not. Cal iforia Coperati ve Ocearic Fishaies I mesigation Repat 40: 77-86.

Parsons, T.R. 1992. Theremovd of maine predators by fisheries and the impat of trophic structure MarinePdlution Bulfin 25: 51-53.

Pauly, D. 1979. Theory and menagement of tropical multispedes stocks a review with emphasis on the southees Asian demersal fisheries ICLARM Sudies and Reiens 1: 1-35.

Pauly, D. 1987. Theory and practice of overfishing: a southest Asian perspective Expditation and Managertit of MarineFishey Reares in Sath Asa. Indo-Padific Fishery Commission, RAPA Report 1987/10.

Pauly, D. 1988a Fisheries reserch and the demersd fisheries of Southeest Asia In: Fish Pquiation Dymanics J.A. Gulland (Editor). Wiley Interscience, New York. Pp 329-348.

Pauly, D. 1988b. Somedefinitions of overfishing relevant to coattl zonemanagement in Southeat Asia Trqical Costal Arem Managerett 3: 14-15.

Pauly, D. 1995. Anecdotes and the shifting bæedinesyndrome of fisheries Trends in Ecdogy and Evdution 10: 430.

Pauly, D. 1997. Putting fisheries management back in places Reiens in Fish Bidogy and Fisheies 7 : 125-127.

Pauly, D., G. Silvestreand I.R. Smith. 1989. On development, fisheries and dynamite a brief reviev of tropical fisheries management. Natural RearceMorking 3: 307-329.
Pauly, D., V. Christensen, J. Dalsgærd, R. Froese and F. Torres 1998a Fishing down marinefood webs Sience279: 860-863.

Pauly, D., P.J. B. Hat and T.J. Pitcher. 1998b. Speeking for themed ves new acts, new actors and a New Deal in a reinvented fisheries management. In: Rementing Fisheies Managernert. T.J. Pitche, P.J. .B. Hat and D. Pauly (Editors). Kluwer Acedemic, London. Pp 409-415.

Pennington, J.T. 1985. The ecol ogy of fetilization of echinoid eggs the consequences of sperm dilution, adult aggregation, and synchronous spaming. Bidajcal Bulein 169: 417-430.

Penn, J.W., R.A. Watson, N. Caputi and N Hall. 1997. Protecting vul nerdblestocks in multi-species fisheries In: Defqiang and Sutai ring World Fisheies Rearees Thestateo Siemceand Managmert
D.A. Hancock, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSIRO, Collingwood, Vidtoria Austrdia Pp 122-129.

Perry, R.I., C.J. Watters and J.A. Boutillier. 1999. A framework for providing scientific advice for the management of new and developing invetebratefisheries Reiens in Fish Bidogy and Fisheries 9: 125-150.

Petersen, C.W., R.R. Wamer, S. Cohen, H.C. Hess and A.T. Sevell. 1992. Variable pelagic fetilization success implications for mate choice and spatial pattens of mating. Ecdogy 73: 391-401.

Phillips B.F. 1981. Thedralation of the southestem Indian Oceen and the planktanic life of the westem rock lobster. Oceancyaphy and MarineBidoy 19: 11-39.
Phillips B. F. 1983. Migrations of preadult westem rock lobsters, Panuirusgonus in Westem Australia MarineBidogy 76: 311-318.

Pie, G.J. and A.D. Rijnsdorp. 1998. Changes in the demersd fish assemblage in the south-entem North Sea following the establishment of a protected aree ("placebox"). ICESJ amal of MarineSience 55: 420-429.

Pitcher, T. J. (ed.). 1997. The design and monitoring of marine reserves Fisheries Center, University of British Columbia, Canada Fisheries Certer Reserch Repot 5: 1
Pitcher, T.J. and P.J.B. Hart. 1982. Fisheries Eacogy. Croom Helm, London.
Pitcher, T.J. and D. Pauly. 1998. Rebuilding ecosystems, not sustainability, as the proper goal of fishery management. In: Remerting Fisheries Managemett T.J. Pitcher, P.J.B. Hat and D. Pauly (Editors). Kluwer Academic, London. Pp 311-329.

Plan Development Tem 1990. The potential of marinefishery reseves for ref fish management in the U.S. southem Atlantic NOAA Teetrical MenrandimNMFS-SEFC-261.

Polacheck, T. 1990. Yer-round dosed arees as a management tod. Natural RearceModking4: 327-354
Policansky, D. 1993. Fishing as a cause of evolution in fishes In: TheExdd dation of Evdving Rearces T.K. Stokes, J.M. McGladeand R. Laws, (Editors). Springer-Verlag, Berlin. Pp 1-18.

Policansky, D. and J.J. Magnuson. 1998. Genetics, metapopulations, and ecosystem management of fisheries Ecocical Apdications: 119-123.

Pollard, D.A. 1993. Maximising the potential for both sustainablefisheries and atemative uses of fish habitat through marine havest refugia In: Sustai nableFisheries Traigh Sutai ning Fish Habitat, Autralian Saiey for Fish Bidogy Workshan D.A. Hancodk (Editor). Austraian Govemment Publishing Sevice Canbera. Pp 156-158.

Pol unin, N.V.C. 1990. Marineregulted arees an expanded approach for the tropics
Rearce Managment and Odi mization 7: 283-299.

Pope J.G. and B.J. Knights 1982. Comparison of length distributions of combined catches of all demersal fishes in the North See and at Faroe Bank. In: Mulispeies Aprcaches to Fisheries Managmert Advice M.C. Mercer (Editor). Canadian Spedial Publications in Fisheries and Aquatic Sdiences Pp 116-118.

Porte, C. 1999. An evduation of marine protected aress in temperte waters of Austraæia waves 6, 2, p.5.

Powe, J.H. 1984. Advection, diffusion, and drift migrations of land fish. In: Memarisms of Migration in Fishes J.D. McCleave, G.P. Dodson and W.H. Neill (Editors). Plenum, New York. Pp 27-38.
Prideaux, M., J. Emmett and M. Horstmen. 1998. Sustainable use or multipleabuse Habtat Austral ia, Special Habita Supplement (April). Australian Conservation Foundation.

Prince J.D., T.L Selers, W.B. Ford and S.R. Talbot. 1988. Confirmation of a retaionship between the locdized abundance of breeding stock and reenuitment for Hal idisrubra Leed (Mollusca Gastropoda). J amal of Experimertal MarineBidogy and Ecoogy 122: 91-104.

Quinn, J.F., S.R. Wing and L.W. Botsford. 1993. Havest refugia in marine invettoratefisheries modds and applications to the Red Sep urchin, Strongloentraus franissanus American Zodajs 33: 537-550.

Rakitin, A. and D.L. Krame. 1996. Effect of a marine reserve on the distribution of cord reef fishes in Barbados, MarineEcdogy Progess Seie 131: 97-113.

Ralston, S. 1987. Mortaity rates of snappers and groupers. In: Trqical Snappers and Grapers Bidasy and Fisheries Managert. Polovina J.J. and S. Ratston (Editors). Oceen Resources MarinePolicy Series Pp. 375-404

Rice J. and H. Gisæon. 1996. Pattens of dhange in the size spectra of numbers and diversity of the North Seafish assemblage, as reflected in survess and modds. ICESJ amal of MarineSience53: 1214-1225.

Rice M.A., C. Hickox and I. Zenra 1989. Effects of intensivefishing effort on the popultion structure of quahogs, Mercearia mercenaria (Linnaaus 1758), in Narragansett Bay. J amal of Shelfish Reserch 8: 345-354.

Ricker, W.E. 1954. Stock and rearuitment. J amal of theFisheries Reserch Bcard of Canada 11:555-623.
Ricker, W.E. 1981. Changes in the averagesize and average age of Paific Salmon. Canadian J amal of Fisheries and Aquatic Síence38: 1636-1356.

Rijnsdorp, A.D. 1993. Fisheries as a large scde experiment on lifehistory evol ution: disentangling pheonotypic and genetic effects in changes in maturation and reproduction of North Seeplaice, Ple ronetes datesa L . oedoja 96: 391-401.

Rijnsolorp, A.D., N. Dem, F.A. ven Bedk, H.J.L. Heessen. 1991. Reproductive variability in North Sea plaice sole, and cod. J amal du Consil Intemational par I'Exdoration dela Me 47: 352-375.

Roberts, C., W.J. Ballantine C.D. Buxton, P. Dayton, L.B. Crowder, W. Milon, M.K. Orbach, D. Pauly and J. Trexler. 1995. Review of the use of marinefishey reserves in the U.S. Southemtem Atlantic NOAA Tetrical MenrandumN MFS-SEFSC-376. Nationa Marine Fisheries Service, Southest Fisheries Center.. 31pp.

Robets, C.M. 1995a Effects of fishing on the ecosystem structure of coral reefs. Conservation Bidagy 9: 988-995.

Robets, C.M. 1995b. Rapid build-up of fish biomess in a Caribbeen marine reserve Coneevation Bidagy 9: 815-826.
Robets, C.M. 1996. Settlement and beyond: population regulation and community structure of ref fishes In: Ref Fisheries N.V.C. Polunin and C.M. Robets (Editors). Chapman \& Hal, London.
Pp 85-112.
Robets, C.M. 1997a Connectivity and management of Caribbeen cord refs Sience278: 1454-1457.
Robets, C.M. 1997b. Ecologicd advicefor theglobal fisheries crisis Trencs in Eacosy and Evdution 12: 35-38.

Robets, C.M. 1997c. Permanent no-tzkezones a minimum standard for effective marine protected arees In: Coral Refs Chall lengs and Oppoturities for Sutai mable Managenert. M.E. Hatiolos, A.J. Hooten and M. Fodor (Editors). World Bank, Washington, D.C. Pp 96-100.

Roberts, C.M. 1998a No-tzemerine reserves unlocking the potential for fisheries In: Marine Envirometal Managenet Reiev of 1997 and FutureTrends B. Eall (Editor). Kempley, Gloucestershire Pp 127-132.
Robets, C.M. 1998b. Sources, sinks, and the design of marine reservenetworks. Fisheie 23: 16-19.
Robets, C. M. 2000. Selecting marine reserve locations optimality vs opportunism Bulifin of Marine Siance66: 581-592.

Robets, C.M. and J.P. Hawkins 1997. How small can a marine reserve beand still be effective Coral Refs 16: 150.

Robets, C.M. and J.P. Hankins 1999. Extinction risk in the Trends in Eadogy and Evdution 14: 241-246

Robets, C. M. and J.P. Hawkins 2000. Fully-protected MarineReserves A Guide WWF-US, Washington, DC and Uni versity of York.
[Available to downl oad from
http://www.pandaorg/resources/publications/wate/mpreserves/mer_index.htm]
Robets, C.M. and N.V.C. Polunin. 1991. Aremarine reserves effective in management of ref fisheries? Reiens in Fish Bidogy and Fisheries 1: 65-91.
Robets, C.M. and N.V.C. Polunin. 1992. Effects of merine reserve protection on northem Red Seffish populations. Procerings of theseenth Intenational Coral Ref Symposium Guam 2: 969-977.

Roberts, C.M. and N.V.C. Polunin. 1993. Marine reserves simplesolutions to managing complex fisheries? Antio 22: 363-368.

Robets, C.M. and N.V.C. Polunin. 1994. Hol Chan: demonstrating that marinereserves can be remarkably effective Coral Refs 13: 90.

Robertson, D.R. 1988. Abundances of surgeonfishes on patch-refs in Caribbeen Panama due to settlement, or post-settlement events? MarineBidogy 97: 495-501.

Robetson, D.R. 1996. Egg size in redtion to fetilization dynamics in freespawning tropica ref fishes oedajica 108: 95-104.

Robetson, D.R. 1998. Implications of body size for interspeafic interactions and assemblage organization among cord-ref fishes. Autralian J amal of Ecroay 23: 252-257.

Robertson, D.R., U.M. Schober and J.D. Brawn. 1993. Comparative variation in spamning output and juvenil ereauitment of someCaribbeen ref fishes MarineEcdogy Progees Series 94: 104-113.

Rochet, M.J. 1998. Short-tem effects of fishing on lifehistory traits of fishes ICESJ amal of Marine Sicence55: 371-391

Rogers, C.S. 1993. Hurricanes and cord refs the intemediate disturbancehypothesis revisted. Coral Refs 12: 127-137.

Rogers, S.I. 1997. A review of dosed ares in the United Kingdom exdusive economic zone CEFAS SienceSeries Tetrical Repot, No. 106. Centrefor Environment, Fisheries and Aquaculture Sience, Lowestoft, UK.

RogersBennett, L., Bennett, W. A., Fastenau, H. C. and C. M. Devees 1995. Spatial variation in red sea urchin reproduction and morphology: implications for havest refugia Ecdajcal Apdications 5: 1171-1180.

Rogers Bennett, L, P. Haake and K. Kapov. 2000. Selecting and evduating marine protected aress for abalone in Califomia J amal of Shal fish Research 19: 530-531.

Rosenberg, A.A., M.J . Fogaty, M.P. Sissenwine J.R. Beddi ington and J.G. Shepherd. 1993. Achieving sustainable use of renevable resources sieme262: 828-829.

Ross, R.M. 1990. Theevolution of sex dhange mechanisms in fishes Enviromertal Bidagy of Fishes 29: 81-93.

Rothschild, B.J. 1986. Dymamics of MarineFish Pqqiations Havard University Press, Cambridge Massachusetts.

Rothschild, B.J., A.F. Sharov and M. Lambet. 1997 Single-species and multispedies management. In: Nothwes Attantic crandistr pespertives on a fisheries dlapse Boremen, J., B.S. Nakashima, J.A. Wilson and R.L. Kendal (Editors). American Fisheries Sodiey, Maryland. Pp 141-152.

Roughgarden, J. and F. Smith. 1996. Why fisheries collapse and wht to do about it. Procer ing of theNational A cadery of Siences of the United States of A merica 93: 5078-5083.

Rowley, R.J. 1994. Case studies and reviews marine reserves in fisheries management. Aquatic Conservation: Marineand Fretmater Ecosstens 5: 233-254.

Rowling, K.R. 1990. Changes in thestock composition and dbundance of spamming gemfish Rexee sdandri (Cuvie), Gempylidæ, in south-etem Austrdian waters. Autralian J amal of Marineand Fretmater Resarch 41: 145-163.

Rowling, K.R. 1997. Thecollapse of theestem Austraian gemfish stock-issues for management and the role of fisheies sience In: Detqi ing and Sustai ing Warld Fisheie Rearces Thestateof Siemceand Managernt. D.A. Hancock, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSRO, Collingwood, Victoria Austraia Pp 210-214.

Roy, N. 1996. What went wrong and what can welem from it? In: Fisheies and U nertainty. A Preautionary Apprach to RearceManagenett. D.V. Gordon and G.R. Munro (Editors). University of Calgary, Calgary. Pp 15-25.

Russ, G. 1985. Effects of protective management on cord ref fishes in the centra Philippines Proced nos of theFifth I itemational Coral Reff Sympisim4: 219-224.

Russ, G.R. 1989. Distribution and abundance of cord ref fishes in the Sumilon Istand reserve, Central Philippines after nine yeers of protection from fishing. Asian MarineBidogy 6: 59-71.

Russ, G.R. 1991. Cord ref fisheries effects and yidds In: TheEdagy of Fishes an Caral Reff P.F. Sale (Editor). Academic Press, San Diego. Pp 601-635.

Russ, G.R. and A.C. Alcda 1994. Sumilon Istand reserve 20 yeers of hopes and frustration. NAGA; theICLARM Quartery 17: 8-12.

Russ, G.R. and A.C. Alcda 1989. Effects of intensefishing pressureon an assemblage of coral ref fishes MarineEdooy Progess Serie 56: 13-27.

Russ, G.R. and A.C. Alcda 1996a Marinereserves, rates and pattens of recovery and dedine of large predatory fish. Eadogical Apdications6: 947-961.

Russ, G.R. and A.C. Alcda 1996b. Do marine reseves export adult fish biomess? Evidence from Apo Istand, central Philippines, MarineEcdogy Proges Series 132: 1-9.
Russ, G.R. and A.C. Alcda 1998a Natura fishing experiments in marine reserves 1983-1993: community and trophic responses Coral Refs 17: 383-397.

Russ, G.R. and A.C. Alcda 1998b. Natural fishing experiments in marine reserves 1983-1993: roles of life history and fishing intensity in family responses Coral Refs 17: 399-416.

Russ, G.R., A.C. Alcel a and A.S. Cabanban. 1992. Marine reserves and fisheries management on cord refs with preliminary moddling of the effects on yied per rearit. In: Procee nos of theseenth International Coral Reff Symposium Guam, 1992, Vol. 2. Anon. Pp 978-985.

Russe, M. 1997. Management implications lemt from dosing and reopening a cord ref to fishing. Ref Rearch Great Barief Ref MarinePark Authrity 7 (2): 10-11

Safina C. 1995. The world's imperiled fish. SietificAmerican 273: 30-37.
Safina C. 1998. Scorched-erth fishing. Isues Si. Tech. 14: 33-36.
Saila S.B., V.Lj. Kocic and J.W. MoManus. 1993. Modelling the effects of destructivefishing pratices on tropical cord refs MarineEdagy Process Serie 94: 51-60.
Sainsbury, K. 1998. Living marine resource assessment for the 21st Century: what will be needed and how will it be provided. In: Fishery Stak Astermet Molds Heifez, J., J.N. Ianelli, J.E. Powers, J.F. Schweiget, P.J. Sullivan and C.-I. Zhang. Alåka Sea Grant College Program Report No. AK-SG-98-01, University of Alaska Fairbanks

Sala E., C.F. Boudouresque and M. Harmdin-Vivien. 1998a Fishing, trophic coscades, and the structure of algal assemblages evduation of an old but untested paradigm akos 82: 425-439.

Sada E., M. Ribes, B. Hereu, M. Zabala V. Alva R. Coma and J. Garabou. 1998b. Tempord variability in abundance of the sem urchins Paracentrcuuslividus and Arbada lixula in the Northwestem Mediteranen: a comparison between a marine reserve and an unprotected area MarineEcdagy Proges Series 168: 135-145.

Sale P.F. 1978. Coexistence of cord ref fishes-a lattery for living space Envirommtal Bidogy of Fishes 3: 85-102.
Sale, P.F. 1980a Assemblages of fish on patch refs_predidableor unpredidable? Eniromental Bidagy of Fishes 5: 243-249.

Sale P.F. 1980b. The ecol ogy of fishes on cord refs. Ocernograhty and MarineBidogy, an Amual Reiev 18: 367-421.

Sale P.F. 1990. Reauitment of marinespedes is the bandwagon rolling in the right direction? Trencts in Ecdogy and Evdution 5: 25-27.
Sale P.F. and D.J. Ferrel. 1988. Early survivorship of juvenile cord ref fishes Coral Reff 7: 117-124.
Sale P.F. and R. Dybdahl. 1975. Deemmants of community structurefor cord ref fishes in an experimental environment. Ecdogy 56: 1342-1355.

Sale P.F., P.J. Dohety, G.J . Edket, W.A. Douglos and D.J. Ferell. 1984. Largescdespatial and tempord variation in rearuitment to fish populations on cord reff, oedaja 64: 191-198.

Samoilys, M.A. 1988. Abundance and species richness of cord reef fish on the Kenyan coast: the effects of protective management and fishing. Proceeings of theSixth Intemational Coral Reff Symposium Austral ia 2: 261-266.

Samoilys, M.A. 1997. Movement in a large predatory fish: cord trout, Pleatracomes leqpardus (Pisces, Serranida), on Heron Ref, Austrdia Coral Refs 16: 151-158.

Sano, M., M. Shimizu and Y. Nose 1984. Changes in structure of cord reef fish communities by destruction of hematypic cords observational and experimental views Padific Sieme38: 51-79. Sargent, R.C., P.D. Taylor and M.R. Gross 1987. Parentd careand the evolution of egg size in fishes Arrican Naturalist 129: 32-46.

Sesd, P., E. Faliex and S. Morand. 1996. Population structure of Gdius burchidii in a Mediteraneen marine reserve and in an unprotected area J amal of Fish Bidagy 49: 352-56.

Savina G.C. and A.T. White 1986. A tale of two istands somelessons for marine resource management. Enviromental Conservation 13: 107-113.

Schmidt, K. 1997. 'No-take' zones spark fisheries debate sieme277: 489-91.
Sebens, K.P. 1994. Biodiversity of cord refs what are we losing and why? Arreican Zodogs 34: 115-134.

Sedbery, G.R., H.J. Cater and P.A. Barrick. 1999. A comparison of fish communities between protected and unprotected aress of the Bedize Ref ecosystem: implications for conservation and management. In: Proceei ngso of theFoty-Fifth Anmual Gulf and Caribben Fisheries Insitute Goodwin, M.H. and G.T. Waugh (Editors). Gulf and Caribbeen Fisheries Institute, Charleton, South Carolina Pp 95-127.

Shackell, N. and J. Lien. 1995. An under-utilized conservation option for fishery managers. marine protected aress in the northwest Atlantic In: MarinePrdetel A reas and Sutainabl eF isheries N.L. Shadkel and J.H.M. Willison (Editors). Acedia University, Wolfville, Nova Scotia Pp 21-30.

Shapiro, D.Y. 1987. Reproduction in groupers. In: Traical Snappers and Grapers bidogy and managenett J.J. Polovina and S. Raston (Editors). Wesviev, Boulder, Colorado.

Shapiro, D.Y., G. GardiaMdiner and Y. Sadowy. 1994. Sodid system of an inshorestock of thered hind groupe, Epinechtusgutatus (Pisces Serranidæ). Environtental Bidogy of Fishes 41: 415-422.

Shap, G.D. 1997. It's about time rethinking fisheries management. In: Deatqing and Sustaining World Fisheries Rearces TheStated Sienceand Managernett. D.A. Hancodk, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSRO, Collingwood, Vidtoria Austraia Pp 731-736.

Shetton, P.A. and B.P. Heley. 1999. Should depenstion bedismissed as a possible explanation for the lack of recovery of the northem cod (Gadusmainu) stock? Canadian J amal of Fisheries and Aquati CSiences 56: 1521-1524.

Shepherd, J.G. and D.H. Cushing. 1980. A mechanism for density-dependent survival of larval fish ∞ the basis of a stock-recouitment redtionship. J amel du Conseil Intemational par I'Exploration dela Mer 39: 160-167.

Shepherd, SA. 1990. Studies on southem Australian abal one (genus Hal idis). XII. Long-tem rearuitment and mortality dynamics of an unfished population. AustralianJ amal of Marineand Fresmater Reserch 41: 475-492.

Shepherd, S.A. and D. Patington. 1995. Studies on southem Austrdian abalone (genus Hal idis). XVI. Recruitment, habitt and stock retaions. Marineand Fresmater Reserch 46: 669-680.
Shepherd, S.A. and L.D. Brown. 1993. What is an abal onestock: implications for the role of refugia in conservation. Canadian J amal of Fisheries and Aquatic Siéenes 50: 2001-2009.

Shulmen, M.J. 1984. Resourcelimitation and reauitment pattems in a cord ref fish assemblage J amal of Experimertal MarineBidogy and Ecdogy 74: 85-109.

Shulman, M.J. 1995. Recruitment of cord ref fishes effects of distribution of predators and shette. Ecdagy 66: 1056-1066.
Shulmen, M.J. 1998. What can population geneicstel us about dispersad and biogeographic history of cord-ref fishes? AutralianJ amal of Ecdoos 23: 216-225.

Shulman, M.J. and J.C. Ogden. 1987. What controlstropicd reef fish populations rearuitment or benthic mortality? An example in the Caribbeen ref fish Haervion flavdinetum MarineEdagy Progess Serie 39: 233-242.
Shumway, C.A. 1999. A neglected science applying behavior to aquatic conservation.
Eniromettal Bidagy of Fishes 55: 183-201.
Sindair, A.F. and S.A. Murawski. 1997. Why havegroundfish stodks dedined? In: Nottmet Attantic Grandifst Pespoetivesma Fishey Cdlapse Boremen, J., B.S. Nakachima J.A. Wilson and R.L. Kendall (Editors). American Fisheries Sodidy, Maryland. Pp 71-93.

Sissenwine, M.P. 1984. Why do fish populations vary? In: Expditation of MarineCommenities R.M. May (Editor). Springe-Verlag, Belin. Pp 59-94.

Sissenwine, M.P. and A.A. Rosenberg. 1993. Marinefisheries at acriticd juncture Fisheie 18: 6-13.
Suka R., M. Chiappone, K.M. Sullivan and R. Wright. 1996a Habitat and Lifein theExumm Cays TheBaharms thestalus of Grapers and Coral Reff in theNothen Cays The Nature Consevancy, Cord Gables, Florida

Sluka R., M. Chiappone and K. M. Sullivan. 1996b. Habitat preferences of groupers in the Exuma Cays. Bahamasj armal of Síence4: 8-14.
Sluka R., M. Chiappone, K.M. Sullivan and R. Wright. 1997. The benefits of a marine fishery reserve for Nassau Grouper Ei meqheus striatus in the Central Bahames Proceings of theEighth I itemational Coral Ré Symposium2: 1961-1964.
Sluka R.D. and K.M. Sullivan. 1998. Theinfluence of speer fishing on spedies composition and size of groupers on patch reefs in the upper Florida Kess. Fishey Bullin 96: 388-392.
Smith, B.D. and G.S. J amieson. 1991. Possible consequences of intensivefishing for males on the mating opportunities of Dungeness Crabs Traneadions of theAmrican Fisheries Soidy 120: 650-653.

Smith, C.L. 1978. Cord ref fish communities a compromise viev. Eni ramental Bidagy of Fishes 3: 109-128.

Smith, P.J. 1994. GenticDiversty of MarineFisheies Rearces Posidel mpads of Fisting FAO Fisheries Technica Paper 344. FAO, Rome pp53.

Smith, P.J., R.I.C.C. Frands, M. McVeegh. 1991. Loss of geneic diversity due to fishing pressure Fishey Resarch 10: 309-316

Smith, T.D. 1998. "Simultaneous and complementary advances": mid-century expectations of the interaction of fisheries science and management. Reiens in Fish Bidogy and Fisheries 8: 335-348.

Sobe, J. 1993. Conserving biological diversity through marine protected areem Oeanus36: 19-26
Someton, D.A. and J. J une 1984. A cost-benefit method for detemining qptimum dosed fishing aress to reduce the trawl catch of prohi bited spedies Canadian J amal of Fisheries and Aquatic Siences 41 93-98.

Sponaugle, S. and R.K. Cowan. 1997. Early lifehistory traits and reauitment pattens of Caribbeen wrases (Ldbridæ). Ecdojcal Manoraphs67: 177-202.

Steneck, R.S. 1998. Humen influences on coastal ecosytems does overishing crette trophic cascades? Trends in Edoosy and Evdution 13: 429-430.

Stephens, P.A. and W.J. Sutherland. 1999. Consequences of the Allee effect for behaviour, ecology and consevvation. Trends in Ecdosy and Evdution 14: 401-405.

Stephenson, R.L. and I. Komfied. 1990. Rępperance of spawning Atlantic hering (Clupea harengus harengr) on Gearges Bank: population resurgence not recol onization. Canadian J amal of Fisheries and AquaticSience 47: 1060-1064

Stobutzki, I.C. and D.R. Bellwood. 1994. An andysis of the sustained swimming abilities of presettlement and post-settlement ref fishes J amal of Experimetal MarineBidogy and Ecdogy 175 : 275-286.

Stoner, A. and M. Ray. 1996. Queen Condh, Stronlusgiges in fished and unfished locations of the Bahames effects of a marinefishery reserve on adults, juveniles, and land production. Fishey Bulein 94: 551-65.

Styan, C.A. 1998. Polyspermy, egg size and thefetilization kinetics of freespamning marine invettebrates, American Naturalist 152: 290-297.

Sumaila U.R. 1998. Protected marine reserves as fisheries management tools a bioeconomic and ysis Fisheries Reserch 37: 287-296.

Suthers, I.M. 1998. Bigger? Fatte? Or isfater growth better? Considerations on condition in laval and juveni le cord-ref fish. Australian J amal of Ecdogy 23: 265-273.

Sutton, M. 1997. A new paradigm for managing marinefisheries in the next millennium In: Defqiing and Sutai ing World Fisheies Reares theStateof Saienceand Managenert. D.A. Hancock, D.C. Smith, A. Grant and J.P. Beumer (Editors). CSRO, Collingwood, Vidtoria, Australia Pp 726-730.

Swerer, S.E., J.E. Cæßlle, D.W. Lemand R.R. Wamer. 1999. Lavd retention and reauitment in an istand population of a cord-ref fish. Nature402: 799-802.

Talbot, F.H, B.C. Russed and G.R.V. Anderson. 1978. Cord ref fish communities unstable high-diversity systems? Edocical Monaraphs 49: 425-440

Tegne, M.J. 1993. Southem Califomia abdones can stocks berebuilt using marine havest refugia? Canadian J amal of Fisheries and Aquati CSiences 50: 2010-2018.

Tegne, M.J. and P.K. Dayton. 1977. See urchin rearuitment pattens and implictions of commerid fishing. Sience196: 324-326.

Tegner, M.J. and P.K. Dayton. 1999. Ecosystem effects of fishing. Trends in Ecdogy and Evdution 14 261-262.

Tegner, M.J., L.V. Bæch and Dayton P.K. 1996. Ner extinction of an exploited marine invertebrate Trends in Ecdogy and Evdution 11: 278-280.

Tegner, M.J., P.A. Breen and C.E. Lennet. 1989. Popultaion biology of red abalones (Hal idis rufeeren) in southem Califormia and management of thefishery. Fishey Bullein 87: 313-339.

Thompson, R. E. 1981. Ocemography of the British Columbia coast. Canadian Speeial Pudications in Fisheries and Aquatic Siences 56: 187-200.

Thorpe J.E., J.F. Koonce D. Borgeson, B. Henderson, A. Lamsa, P.S. Maitland, M.A. Ross R.C. Simon and C. Watters 1981. Assessing and managing man's impat on fish genetic resources Canadian J amal of Fisheries and Aquatic Siefces 38: 1899-1907.

Thresher, R.E. 1984. Reprodution in Reff Fishes TFH, Neptune City, New Jersey
Thresher, R.E. 1985. Distribution, abundance, and reproductivesuccess in the cord ref fish. Acanthatronispdyacanthus Edooy 66: 1139-1150.

Thrush, S.F., J.E. Hevitt, V.J. Cummings, P.K. Dayton, M. Cryer, S.J . Turne, G.A. Funnel, R.G. Budd, C.J . Milbum and M.R. Wilkinson.. 1998. Disturbance of the marine benthic habitat by commerial fishing: impats at thescde of thefishery. Ecoogical Apdications 8: 866-879

Tolimiei, N., P.F. Sale R.S. Nemeth and K.B. Gestring. 1998. Replenishment of populations of Caribben reef fishes arespatial pattens of recuitment consistent through time? J amal of Experimetal MarineBidogy and Ecdogy 230: 55-71.

Trippd, E.A. 1995. Ageat maturity as a stress indi cator in fishes Biosience45: 759-771.
Trippe, E.A. and J.D. Neilson. 1992. Fetility and sperm quadity of virgin and repeet-spawning Atlantic cod (Gadus moriva) and assodited hatching success Canadian J amal of Fisheries and Aquatic Siences 49: 2118-2127.

Trippd, E.A., O.S. Kjesbu and P. Solemda. 1997. Effects of adult age and size structure on reproductive output in marinefishes In: Early LifeHistary and Renitment in Fish Pquiations R.C. Chambers and E.A. Trippa (Editors). Chapman \& Hal, London. Pp 31-62.

Tuck, I.D., S.J . Hal, M.R. Robertson and D.J. Baford. 1998. Effects of physical trawling disturbance in a previously unfished shettered Scottish sealoch. MarineEdogy Progees Seies 162: 227-242.

Tupper, M. and F. Juanes 1999. Effects of a marine reserve on reanitment of grunts (Pisces Hæmulidæ) at Barbados, West Indies, Enviramertal Bidagy of Fishes 55: 53-63.

Tupper, M. and W. Hunte 1994. Recruitment dynamics of cord ref fishes in Barbados MarineEdoogy Proges Series 108: 225-235.

Turchin, P. 1995. Population regulation: old arguments and a new synthesis In: Pquilation Dymarics Nev Appraches and Syntheis N. Cappucaino and P.W. Price (Editors). Acaderic, San Diego, Califormia Pp 19-40.
Turne, S.J., S.F. Thrush, J.E. Hevitt, V.J. Curmings and G. Funnell. 1999. Fishing impats and the degradation or loss of habitta structure Fisheries Management and Ecdogy 6: 401-420.

Undewood, A.J. and P.G. Fairwether. 1989. Supply-side ecology and benthic marine assemblages Trencs in Ecdogy and Evdution 4: 16-20.

Van Dool ch, R.F., P.H. Wendt and N. Nichol son. 1987. Effeets of a reserch trawl on a hard-bottom assemblage of sponges and cords. Fisheries Reerch 5: 39-54.

Van Dooldh, R.F., P.H. Wendt and M.V. Levisen. 1991. A study of the effects of shrimp trawling on benthic cormmunities in two South Carol ina sounds. Fisheie Reerch 12: 139-156

Vanderklift, M.A., T.J. Ward and J.C. Phillips 1998. The use of assemblages derived from different taxonomic levels to salet arees for conservation of marine biodiversity. Bidaj cal Conervation 86: 307-315.
Vidar, B.C. 1983. Recruitment and population dynamics of a cord ref fish. Sience219: 419-420.
Wallace S. 1997. The rol e of marine reserves in the management of non-migratory speies in coastal British Columbia In: TheDeign and Moritoring of MarineReeves (ed. T. J. Pitcher). UBC Fisheries Center Workshop Feb. 18-20 1997. Fisheies Certer Rexarch Repot 5, 1.
Wallace S.S. 1999. Evduating the effects of threeforms of marine reseve on northem abd one popultions in British Columbia Canada Conervation Bidagy 13: 882-887.

Walis, O.L. 1971. Establishing undewater parks worldwide Transadions of theNath American Wildife and Natural Rearce Corfeence36: 97-115.

Wals, K. 1998. Leigh MarineReserve, New Zeland. Parks8: 5-10.
Walsh, SJ ., W.B. Brodie C.A. Bishop and E.F. Murphy. 1995. Fishing on juvenil egroundfish nurseries on the Grand Bank: a discussion of technicd meesures of conservation. In: MarineProteted Ares and SutainableFisheries N.L. Shackell and J.H.M. Willison (Editors). Acadia University, Wolfville, NovaScotia Pp 54-73.

Watters, C. 1998. Designing fisheries management systems that do not depend upon accuratestock assessment. In: Rementing Fisheries Managenet. T.J. Pitcher, P.J. .B. Hat and D. Pauly (Editors). Kluwer Acedemic, London. Pp 279-288.
Walters, C.J. and J. J. Maguire 1996. Lessons for stock assessment from the northem cod collapse Reiens in Fish Bidogy and Fisheries6: 125-137.

Watters, C.J., N. Hall, R. Brown and C. Chubb. 1993. Spatial modd for the population dynamics and exploitation of the Westem Austrdian rock Idbster, Panui iusggnus Canadian J amal of Fisheies and Aquatic Sieme50: 1650-1662.
Watters, C. J., D. Pauly and V. Christensen. 1998. Ecospace prediction of mesoscal espatia patterns in trophic redaionships of unexploited ecosystems, with emphasis on the impacts of marine protected arees In: ICES Annual Saience Conference, Portuga, September 1998.
http:///www.ecopath.org/publica//ecospace_iceshtm
Wantie, L., Thollot, P. and M. Kulbidki. 1997. Effects of marine reseves on cord ref fish cormmunities fromfiveistands in New Caledonia Coral Refs 16: 215-224.

Wamer, R.R. and T.P. Hughes 1988. The population dynamics of cord ref fishes Proceer ings of the Sixth Intemational Coral Ref Sympoium2: 149-155.
Wame, R.R., S.E. Sweere, and J.E. Cæelle 2000. Land acaumulation and retention: implications for the design of marine reserves and essential fish habita. Bullin of MarineSience66: 821-830.

Ward, T.J. and C.A. Jacoby. 1992. A strategy for assessment and management of marine ecosystems. bardine and monitoring studies in Jevis Bay, a temperte Australian embayment. MarinePdlution Bulein 25: 163-171.

Ward T., J. Alder, C. Margules, K. Sainsbury, D. Tate, and L. Zann. 1997. Austral ia's Ocenns Pdig, Bicoiversty Conservation, Issues Paper 7. Nov, 1997. Department of the Environment, Canberra

Watson, M., D. Righton, T. Austin and R. Ormond. 1996. The effects of fishing on cord ref fish abundance and diversity. J armal of theMarineBidag cal Assoiation of the U rited Kingdom76: 229-233.

Wason, M., R.F.G. Ormond and L. Holliday. 1997. Therole of Kenya's marine protected arees in atisinal fisheries management. Proreei nos of the8th Intemational Coral Ref Symposi um Panama 1996. Vol II. Pp 1950-1960.
White A.T. 1989. Two community-baed marine reserves lessons for coastal management. In: Costal Are Managenert in Sathest Asia: Pdidés Manageret Stratejes and CaseStudes T.-E. Chua and D. Pauly (Editors). Pp 85-96.

Williams, D.M. 1991. Pattens and processes in the distribution of cord reff fishes. In : TheEcdogs of Fishes an Coral Refs P.F. Sale (Editor). Academic Press, New York.

Williams, D.M. and G.R. Russ 1995. Reserves, reilience and rearuitment. In: Sath Paific Conmission and FoumFisheries Agency Workthp and theManagemert of Sath Padific I nthreFisheries Volume 2. South Padific Commission, Noumea New Caledonia Pp 673-676.

Williams, M.J. 1998a Fisheries and marine protected arem Parks8: 47-53.
Williams, N. 1998b Ovefishing disuptsentireecosystems sieme279: 809
Wilson, J.A., J.M. Adeson, M. Mecdfeand P. Kleban. 1994. Chaos, complexity and community management of fisheries MarinePdigy 18: 291-305.

Yameecki, A. and A. Kuwhhara 1990. Preserved areeto effect recovery of overished Zumai Crab stocks off Kyoto Prefecture Pages 575-585. In: Prozee ngs of thel Itenational Sympoi umof King and Tarme Crabs 28-30 November 1989, AnchorageAlæka Alækka Sea Grant College Program, Uni versity of Alazka

Yund, P.O. 2000. How severe is sperm limitation in naturd populations of marinefreespamers? Trends in Edocoy and Evdution 15: 10-13

Zabala, M., P. Louisy, A. GaróarRubies and V. Garcia 1997. Socio-behavioural context of reproduction in the Mediteraneen dusky grouper Epineqhustrarg natus (Lowe 1834) (Pisces, Serranidæ) in the Medes Istands MarineReserve (NW Mediteraneen, Spain). Siertia Marina 61: 79-98.

Zacharin, W. 1989. Scallop fisheries management: the Tammanian experience In: Prozeer ingof the Australas an Scall lp Workshap Dredge, M.L.C., W.F. Zacharin and L.M. J dl (Editors). Pp 1-11.

Zeler, D.C. 1997. Homerange and activity pattems of the cord trout Pletrapomes leqpardus (Serranidae). MarineEcdogy Proges Series 154: 65-77.

Zeler, D. and G. Russ 1998. Marinereserves pattens of adult movement of the Cord Trout (Pletrapomsleepardis (Serrani dæe). Canadian J armal of Fisheries and Aquatic Ciience 55: 917-24.
'A truly precautionary approach ... would make use of large protected marine reserves as a hedge against the combined effects of irreducible uncertainty, uncontrollability, and economic shortsightedness that are associated with virtually every marine fishery" (Clark 1966)
"Fishing exerts a profound effect on almost all components of associated communities and ecosystems" (Dayton et al. 1995)
-We must acknowledge realistic limitations and expectations, and not present the MPAs as a general panacea. ...It is important to step away from the euphoria or momentum verging on political correctness that this issue [MFRs enhancing fisheries] has acquired and attempt to define the real objectives of multiple-use management of MPAs" (Dayton et al. 2000)
"Marine fisheries refugia have the potential to protect coastal stocks from recruitment and ecosystem overfishing and thus enhance, restore, or stabilize fishery yields" (Dugan \& Davis 1993)
"Fishing is banned within only 36 square miles (0.2%) of all Sanctuary waters, amounting to about 0.001% ... of U.S. territorial waters" (Fujita et al. 1998b)
"Managing most marine finfisheries to achieve optimum yields is an unattainable dream. Protecting these resources from serious depletion through precautionary management seems the only practical option" Johannes 1998a)
"...even very low rates of fishing mortality are unsustainable in demersal stocks unless a sizeable fraction of their spawning adults are completely inaccessible, owing to some natural refuge ...[or] new refugesmarine reserve area ..." (Pauly et al. 1988a)
"...marine fisheries are in a global crisis, mainly due to open access polices and subsidy-driven overcapitalization" (Pauly et al. 1998a)
"Reserves can simultaneously allow the build up and maintenance of spawning stock biomass
of many commercial species, protect habitat, restore biodiversity and reduce losses of genetic diversity by fishing. They are probably the only way of maintaining some of the most valuable but vulnerable species in a fishery" (Roberts 1997b)
"... marine reserves represent a promising approach to fisheries management but, at present, many of their perceived benefits remain untested" (Roberts \& Polunin 1991)
"...the export of larvae from reserves to augment regional fisheries has great potential and appears to be logically feasible, but is almost entirely unproven." (Rowley 1994)
"Given the critical levels of over-exploitation of coral reef resources in many parts of the world, marine reserves may be the only [retained emphasis] viable option available to maintain levels of spawning stock biomass necessary to sustain reef fisheries" (Russ et al. 1992)
"Management actions that might have prevented the disastrous collapse of fisheries, but which carried a price unacceptable to industry, have been scrupulously avoided. Society has simply lacked the political will to forestall the fishing industry's tendency to use up its living capital and thereby destroy itself" (Sutton 1997)
"It is a sad comment on the state of world fisheries that we can now develop fairly elaborate taxonomies for the causes of collapse" (Walters 1998)
"Instead of treating the seas as open to fishing with small exceptions (marine refugia), we will only safely limit harvest rates if we reverse this view and treat the seas as closed to fishing with small exceptions (limited fishing areas and times)." (Walters 1998)

Around the world many fisheries have collapsed, including some in Australia. Consequently marine fisheries are under increasing pressure to adopt more precautionary management approaches. Although Australia's fisheries are generally in good shape-few are overfished-many are fully exploited.

Overseas experience tells us that even the best fisheries management systems have not always been able to protect against overfishing. This review examines the extent to which 'no-take' marine reserves can benefit fisheries and provide support for fisheries management. It aims to inform people with an interest in Australian fisheries about modern ecological experience with reserves, and the benefits that can be derived from them.

Marine fisheries sanctuaries, where exploitation is not permitted, appear to offer many benefits, including improved stability of catches, reduced cost to fisheries management, protection from overfishing and conservation of a range of non-fished species that live within the sanctuaries. Although there is a body of ecological theory and some empirical evidence that support the beneficial role of sanctuaries for fisheries management purposes, global experience with such reserves is limited, and there are few cases where sanctuaries have been clearly demonstrated as providing a benefit to fisheries. However, many fisheries appear to have benefited from de facto sanctuaries, where some of the stock is out of the reach of the fishery, such as in water too deep for fishing.

Fisheries that are over-exploited or heavily exploited stand to gain most from sanctuary implementation: sanctuaries can contribute to achieving ecologically sustainable fisheries by reducing the risk of overfishing and by providing refuges for non-fished species that might otherwise be severely affected. Fishery sanctuaries can also make an important contribution to regional biodiversity conservation goals and provide reference sites where global changes in marine ecosystems can be studied and evaluated.

Despite some costs and risks, marine sanctuaries appear to offer our fisheries an important and cost-effective option for the implementation of precautionary fisheries management, while simultaneously improving the protection of Australia's marine ecosystems.

