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a b s t r a c t

The need to understand and mitigate diffuse water pollution from agriculture (DWPA) using

a range of monitoring or modelling techniques and abatement methods has never been

greater. In response to the widely reported detrimental environmental impacts of such

pollution and the desire to safeguard water resources, a number of important legislative

drivers have been introduced, including the Water Framework Directive (WFD) for EU

member states. Efforts to commission research and introduce policy options that address

the key requirements of over-arching legislation, increasingly point to a number of common

and important issues for policy makers. Whereas our understanding of, and ability to

predict, pollutant loadings is reasonably well developed, coupling such pressures to eco-

logical impacts remains a difficult task due to the limited functionality of available toolkits.

It is important for mitigation programmes to consider multiple pollutants especially given

the risks of pollution swapping and to support the uptake of abatement options that are

economically and socially acceptable to the stakeholders involved. Appropriate spatial

targeting of mitigation methods will continue to come under scrutiny, especially in the

context of additional environmental pressures like climate change. Given its key role in

governing the transfer and fate of priority nutrients and contaminants and its well-docu-

mented negative habitat impacts, sediment must be given a higher profile in diffuse

pollution policy. The latter does, however, require further investigation of background

sediment loads necessary for healthy habitats and associated sediment standards or

thresholds, in order that catchment compliance can be more reliably assessed. Delayed

water quality response to the mitigation of DWPA must be assessed and understood, as a

means of informing stakeholders and policy options. A further challenge is posed by the

in the context of pollution from alternative sectors so that a more

understanding and managing pressures and impacts and engaging
need to place DWPA

holistic approach to
stakeholders can be encouraged.
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As a consequence of the widely reported environmental

impacts of diffuse pollution from agriculture, various national

and international obligations have been set to drive the

establishment and implementation of management strategies

to help safeguard waterbodies. Such legislation includes the
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EU Water Framework Directive (WFD) (2000/60/EC) as well as

longer-standing policy drivers represented by, amongst

others, the Nitrates (91/676/EC), Fish (78/659/EC) and Shellfish

(79/923/EC) Directives. Water policy in the EU will increasingly

be coordinated under the over-arching remit of the WFD as a
.
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means of providing an integrated management structure for

meeting key environmental objectives. In short, the WFD

seeks to; prevent further deterioration of water resources,

promote sustainable water use, and enhance protection of

aquatic environments using Programmes of Measures (PoMs).

The WFD is especially novel and demanding, because it also

comprises economic analyses and full public participation in

establishing River Basin Management Plans (RBMPs). Given the

substantial body of work being commissioned and delivered to

provide policy makers with the evidence base for addressing

diffuse pollution from agriculture, it was considered timely to

synthesise experience from across the EU in this special issue.

Three modes of monitoring are specified by the WFD to

inform management decisions; surveillance monitoring to

assess longer-term water quality; operational monitoring to

characterise waterbodies in danger of failing targets, and;

investigative monitoring to understand the primary causes of

non-compliance. A number of emerging tools are available to

underpin these requirements, including biological early warn-

ing systems and whole-organism bioassays, as well as on-line,

in situ and passive monitoring systems for chemical water

quality (Allan et al., 2006). Given the problems of reliability and

representativeness encountered with traditional monitoring

approaches and the failure to identify standardised methodol-

ogies (Dworak et al., 2005), opportunities certainly exist for

exploring the scope for the wider adoption of new monitoring

tools. Due to the lack of consistent approaches to surveillance

and the demanding timeframe of the WFD, increasing

emphasis has been directed towards using modelling and

Decision Support Tools (DSTs) to inform agricultural diffuse

pollution policy. Examples of modelling studies are provided,

including the contribution by Silgram et al. (this issue).

An important shortcoming of the WFD is its failure to take

explicit account of the risks posed by climate change (Wilby

et al., 2006). In relation to primary WFD objectives, climate

change could result in variable ‘good status’ at reference sites,

disproportionate costs and the failure, or at least reduction, in

the efficacy of PoMs (Limbrick et al., 2000; Wilby et al., 2006).

Recent climate change scenarios developed for the UK Climate

Change Impacts Programme (UKCIP02) (Hulme et al., 2002)

suggest wetter winters with increasing likelihood of heavy

storm events. Such scenarios could have important implica-

tions for diffuse pollution management strategies. Equally, it is

instructive to note that projected changes in climate are

characterised by numerous uncertainties related to climate

variability, gaseous emissions and the robustness of available

modelling frameworks. It is clearly meaningful to weight the

multiple uncertainties associated with climate change scenar-

ios (Wilby and Harris, 2006). The relationships between climate

change and diffuse pollution from agriculture are likely to be

complex. Increased flooding, for instance, could mobilise

enhanced sediment loads and associated contaminants,

potentially exacerbating impacts upon aquatic ecosystems

(Wilby et al., 1997). Alternatively, more severe droughts could

reduce pollutant dilution, thereby increasing toxicity problems

(Landrum et al., 1984).

A key emerging issue for the management of agricultural

diffuse pollution at catchment scale is the engagement of

stakeholders in decision making and mitigation strategies. It is

evident that mitigation options must be sustainable whilst
addressing the wider needs of society (Gerrits and Edelenbos,

2004). One important challenge comprises the need to improve

interaction and linkages between scientific experts and

stakeholders in order that the capacity to mitigate diffuse

pollution is maximised (Gerrits and Edelenbos, 2004; Allan

et al., 2006). A good example of such interaction is provided by

the England Catchment Sensitive Farming Delivery Initiative

(ECSFDI) which has been focusing upon farmer engagement

and the nurturing of working partnerships between farmers,

agricultural advisors, water companies, competent authorities

and conservationists in 40 priority catchments. But, the

development of the evidence base and tools to support such

interaction is dependent upon multidisciplinary scientific

collaboration (Blum and Eswaran, 2004).

RBMPs under the WFD need to be founded on appropriate

spatial targeting of control options as a means of helping to

address cost-effectiveness (Collins et al., 2007). On account of

the focus at catchment scale, it is therefore necessary to

consider a range of landscape and management factors that

potentially combine to enhance the risk of pollutant loss to

watercourses. The blanket application of control options is

neither effective in reducing loss (Granlund et al., 2005), nor

cost-effective (Schleich et al., 1996). Landscape risk is difficult to

manipulate, but land management involving factors such as

nutrient applications, cultivation or cropping methods and the

maintenance of drains can be influenced by policy drivers.

There is substantial scope for developing high-resolution GIS

toolkits to support the optimal placement of mitigation features

such as buffer strips and retention ponds in the landscape.

Increased uptake of mitigation methods does not necessarily

mean that options are being targeted most appropriately for

protecting water quality status. Catchment officers and

stakeholders would clearly benefit from understanding the

potential for further reductions in pollutant losses consequent

upon altering the siting of mitigation options. This is particu-

larly the case in the context of the placement of options

available through agri-environment schemes such as Entry

Level Environmental Stewardship in the UK.

Various measures have been developed to reduce losses of

diffuse water pollutants including nitrate, phosphate, sedi-

ment, faecal indicator organisms, etc. (e.g. Cuttle et al., 2007).

The development of options that have multiple benefits to the

farmer (e.g. measures that reduce water wastage, improve

animal health or improve crop growth as well as reducing

diffuse pollution) are particularly valuable as they can be

implemented with little or no overall cost to the farmer. These

‘‘win-wins’’ are being promoted, for example, through the

England Catchment Sensitive Farming Delivery Initiative.

Several mitigation options for reducing diffuse pollution from

agriculture are also beneficial in reducing the volume of run-

off and therefore have a bearing on reducing the risk of

flooding. This is particularly true of those options that address

soil compaction and the hydrological capacity of soil.

Pollution swapping, whereby mitigation of one pollutant

has a negative effect on another, is a particular issue when

implementing policy options for tackling diffuse pollution.

The impact of interventions on other pollutants and other

factors should be considered when instigating mitigation

strategies for individual pollutants. An example of a potential

pollution swapping effect has been demonstrated by Laws
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et al. (2007). Changing the timing of slurry application from

winter to spring to reduce the risk of nitrate leaching was

shown to potentially increase ammonia emissions on short

grass swards. There is therefore a need to take a holistic

approach to mitigation. Future modelling work needs to

predict the interaction between multiple pollutants and to

assess the best strategies for deploying policy measures for the

mitigation of diffuse water pollution from agriculture.

The emphasis of the WFD requires the integration of

modelling experience and tools in order to couple physico-

chemical variables with ecological quality (Horn et al., 2004).

Various catchment scale models have been coupled to in-

channel water quality routines, thereby linking terrestrial loads

and in-channel transport, e.g. SWAT and QUAL2E (Santhi et al.,

2001) and MIKESHE and MIKEII (Hafno et al., 1995). The greater

challenge is, however, to provide sufficient functionality for

linking water quality and ecological indicators of habitat health.

Synthesised approaches will rest upon the assumption that it is

possible to derive meaningful relationships between physico-

chemical pressures and the response of indicator species used

to reflect the status of aquatic ecosystems. For example, the

British River Invertebrate Prediction and Classification System

(RIVPACS) (Wright et al., 1984) and the Australian River

Assessment System (AUSRIVAS) (Simpson and Norris, 2000)

are based on the assumption that the physico-chemical

environment at any given site has the capacity to influence

the structure of macroinvertebrate communities (Clarke et al.,

2003; Hargett et al., 2007). Similarly, the Sediment Intrusion and

Dissolved Oxygen (SIDO) transport model (Alonso et al., 1996)

simulates the relationship between salmon survival and

spawning habitat quality in gravel-bed rivers. Diffuse pollution

pressure models need to be coupled with ecological tools like

RIVPACS and SIDO so that scope for achieving good status now

and in the future, taking into account projected land use and

climate change and uptake of mitigation options can be

explored. In doing so, careful consideration will need to be

given to the time and cost demands of the sampling protocols

underpinning ecological tools (Haase et al., 2004; Hering et al.,

2004) and the increased computational complexity. Linking the

impact of diffuse pollution control options or combined

strategies on habitat condition will help to satisfy the true

focus of the WFD and will provide a basis for target setting.

Coupled tools will therefore provide policy makers with

modelling systems that are truly fit for purpose and which

pinpoint specific ecological windows of interest (e.g. the

salmonid spawning season) as opposed to annual loadings

and their abatement. To date, many modelling studies have

simulated the impact of mitigation strategies on annual pollu-

tant loss as opposed to pressures during ecological windows.

The issue ofsediment targetscontinues toattractdebateand

Collins and Anthony (this issue) suggest that an alternative

sediment standard, other than the 25 ppm annual mean

concentration cited by the EU Freshwater Fish Directive is

required by the EU. In the USA, the environmental regulatory

framework for water quality is based on the Total Maximum

Daily Load (TMDL) programme which strives to attain ambient

water quality standards via the control of diffuse and point

sources (USEPA, 1991). Cooper et al. (2006) recently applied the

approach in the UK. But, it is important to acknowledge that the

TMDL approach focuses upon chemical rather than ecological
status and so in itself does not totally fulfil the WFD. Although

the scope for coupling numeric sediment load targets and

ecological status could be explored, a number of uncertainties

complicate the setting of critical sediment loads, including the

dependency upon catchment and reach type, sediment

character, species and critical life-stage requirements. It is

important to assess sediment accumulation on, and within, the

channel substrate as opposed to fluxes per se and to understand

the nature (coarse, fine, organic, inorganic) of that sediment

(Greig et al., 2005). A range of alternative sediment targets has

been explored, including light penetration, embeddedness,

riffle stability and the characteristics of surface or subsurface

sediment (Rowe et al., 2003). The utility of these measures is,

however, constrained by various issues. In relation to percent

embeddedness, for instance, potential problems include the

need to calibrate observations by multiple personnel and the

fact that this metric does not reflect sediment impact on the egg

pocket (Reiser, 1998). Similarly, Rosser and O’Connor (2007)

have recently argued that the use of river sediment grain size

information to set regulatory targets is hampered by the need to

adopt statistically robust sampling strategies in the face of

substantial spatial and temporal variations. In view of these

issues, the coupling of diffuse pollution pressure and impact

models appears to offer an alternative means of investigating

targets.

Kay et al. (this issue) discuss microbial pollution from

agriculture, highlighting that the evidence base on FIO’s

requires improvement with some urgency. Current priorities

include the need to obtain improved empirical datasets on

stormperiod FIO fluxes tocomplement low flow datasetsand on

the capacity to remediate FIO fluxes using a range of control

options such as stream bank fencing, wetland construction and

dirty water management (Kay et al., 2007). Equally, sediment-

associated FIO propagation and storage demands further

investigation. Sediment provides a beneficial environment for

FIO’s in terms of protection from environmental stress and a

food source, meaning that sediment delivery provides scope for

FIO retention, survival and re-growth (Gerba and Mcleod, 1976;

Kantani et al., 2003; Jamieson et al., 2004, 2005). The fact that the

propagation of FIOs is strongly influenced by catchment

sediment (suspended and bed) dynamics has important

implications for safe water policy (Droppo et al., 2006). In

addition to FIOs, further work is also needed on the role of water

in the transport of other human and animal pathogens.

Bechmann et al. (this issue), Wahlin and Grimvall (this

issue), Jackson et al. (this issue), Kronvang et al. (this issue),

Iital et al. (this issue) focus upon water quality response to

mitigation programmes, highlighting the existence of lags.

Stakeholders therefore need to be educated and informed, so

as not to be alarmed when water quality problems continue in

the face of expenditure on abatement strategies. The time lag

issue is especially evident in relation to nitrate pollution from

agriculture and projected longer-term trends, given the

complex relationship between groundwater response times

and nitrate emissions from agricultural sources. Hughes et al.

(2007) recently modelled aquifer response times for England

and Wales with the results confirming the substantial time-

scales (decades) over which nitrate pollution will continue to

reach discharge points despite reductions in contemporary

surface loadings. Similarly, in the case of phosphorus
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pollution, existing studies suggest that several years can pass

before the effects of best management practices translate into

measurable improvements in water quality. Such time lags

reflect the accumulation of high levels of P in soils and

sediment and the complexity of P redistribution through

catchments due to storage and remobilisation at intermediate

locations between primary sources and catchment outlets

(Boesch et al., 2001; Wang et al., 2002; McDowell et al., 2003).

Likewise, sediment control strategies must be underpinned by

a sound understanding of sediment sources at catchment

scale (Collins et al., 2001). Time lags in downstream sediment

water quality can be influenced by inappropriate targeting of

mitigation methods and the capacity for non-targeted sources

to become more important over time or the remobilisation of

sediment from catchment sinks (Ruhlman and Nutter, 1999;

Renwick et al., 2005). The sediment budget concept provides a

valuable framework for interpreting and predicting catchment

response to environmental change (Slaymaker, 2003; Walling

and Collins, this issue).

Whilst understanding and mitigating diffuse pollution

from agriculture continues to pose demanding challenges, it

is equally important to sustain a cross-sector perspective.

Cross-sector information helps to engage catchment stake-

holders and offers wider scope for targeting mitigation efforts.

A delicate balance is therefore needed to ensure that our

understanding of, and ability to control, diffuse pollution from

agriculture develops in an integrated manner with corre-

sponding efforts targeting alternative, e.g. urban sources.

There are clearly many challenges facing pollution scientists

and policymakers.
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