

Société Nouvelle des Phosphates du Togo

Étude de faisabilité sur la utilisation de la boue de la station de traitement des eaux usées proposée pour la Société Nouvelle des Phosphates du Togo

Projet de rapport final 31-08-11

Markus Lechner

+43(0)2856 273 39

+43(0)2856 273 62 M +43(0)664 2248821

MF +43(0)664 2274019

Elisabeth Freiberger

F

Rapport 1

Contenu

1 OBJECTIVE	5
2 PRESENTATION DES DECOUVERTES	5
2.1 QUALITE DE LA BOUE	5
2.2 NORMES INTERNATIONALES	7
2.2.1 METAUX LOURDS	7
2.2.2 RADIATION	9
2.3 OPTIONS DE TRAITEMENT DES EAUX USEES	10
2.3.1 EAUX USEES ET LES BOUES	10
2.4 UTILISATION DE LA BOUE LIQUIDE	17
2.5 UTILISATION DE LA BOUE APRES LA DESHYDRATATIO	N 17
2.5.1 AGRICULTURE	18
2.5.2 MATERIAUX DE CONSTRUCTION	21
2.6 DECHARGE	23
3 RESUME	24
4 TERMS OF REFERENCE	26
4.1 SLUDGE QUALITY - CHEMICAL ANALYSES	26
4.2 SLUDGE QUALITY - REUSE	26
4.3 REVIEW TREATMENT OPTIONS	26
4.4 UTILISATION OF LIQUID SLUDGE	27
4.5 UTILISATION OF SLUDGE AFTER DEWATERING	27
4.6 LANDFILL	27
4.7 PRESENTATION AND DISCUSSION	28
5 LITERATURE	29
6 ANNEXE	30

31/08/2011 page 2/34

Rapport	

6.1	ANALYSES CHIMIQUES DES ECHANTILLONS DE BOUE ET D'EAU	30
6.2	RAPPORT GEOTECHNIQUE DES ECHANTILLONS DE BOUE	30
6.3	OPTIONS ALTERNATIVES DECANTATION	30

31/08/2011 page 3/34

Rapport 1 Objective

Figures

31/08/2011 page 4/34

Rapport 1 Objective

1 Objective

L'objectif de cette mission est d'évaluer les options pour utiliser la boue de la station de traitement des eaux usées proposée pour la Société Nouvelle des Phosphates du Togo. On peut trouver le mandat dans la section 4.

Ce rapport est basé sur deux visites sur place en avril 2011 et juin 2011 et les discussions avec toutes les parties prenantes importantes. En juin 2011 les découvertes de ce rapport étaient présentées et discutées sur place avec un groupe de représentants de l'usine et du ministère de l'environnement.

Ougan-Bamba Tchapo-wai	SNPT				
Kombaté Komlan	SNPT				
Sonhaye Kondi Gbati	SNPT				
Souleman Abdel Ganiou	Ministere de l'environnement				
Bakatimbé tchannibi	Ministere de l'environnement				
Kissao Gnandi	Consultant				
Markus Lechner	Consultant				
Elisabeth Freiberger	Consultant				

2 Présentation des découvertes

2.1 Qualité de la boue

La composition de la roche phosphatée dépend particulièrement du type et de l'origine. La roche phosphatée sédimentaire contient une concentration haute de métaux lourds comme U, Th, Cd, As, Sb, V, Cr, Zn, Cu, Ni, etc. Comme actuellement il n'y a pas de moyens commerciaux d'éliminer ces polluants, leur concentration dans la boue est critique en ce qui concerne les possibilités de réutilisation.

Les tableaux suivants montrent les teneurs en oxyde et les concentrations de métaux lourds dans la boue à Kpémé comme présenté dans *Gnandi et al.*, 2008.

31/08/2011 page 5/34

Tableau 1: Teneur en oxyde de la boue

	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K ₂ O	P ₂ O ₅	LOI	Sum		
		[%]												
T1	21,53	0,50	12,16	6,56	0,02	0,95	21,07	3,05	0,39	15,20	18,94	100,52		
T2	26,87	0,63	13,83	6,01	0,03	0,91	20,76	1,24	0,39	14,58	12,58	97,97		
T3	25,85	0,60	13,28	5,79	0,03	0,98	20,17	2,23	0,41	14,09	14,39	97,96		
T4	24,84	0,58	12,77	5,57	0,02	0,99	20,39	2,50	0,40	14,29	15,32	97,82		
T5	26,55	0,62	13,59	6,03	0,03	0,86	21,91	0,87	0,37	15,26	11,61	97,85		
T6	25,79	0,60	13,22	5,53	0,02	1,17	17,94	3,31	0,44	12,58	17,23	97,95		
T7	26,71	0,63	13,68	6,03	0,03	0,87	21,27	0,90	0,38	14,87	11,73	97,24		
T8	21,45	0,50	12,01	6,51	0,02	1,00	21,13	3,55	0,41	15,30	12,70	94,72		
Т9	22,24	0,50	12,43	6,39	0,03	1,09	19,76	4,07	0,43	14,40	15,59	97,05		
T10	27,05	0,64	13,87	6,06	0,03	0,86	21,35	0,66	0,38	14,85	15,51	101,41		
T11	21,99	0,50	12,40	6,25	0,02	1,13	18,85	4,27	0,43	13,80	17,28	97,07		
T12	21,50	0,49	12,13	6,61	0,03	0,93	21,78	3,02	0,39	15,79	14,41	97,22		
T13	21,16	0,49	12,08	6,59	0,03	0,93	22,30	2,95	0,38	16,19	14,42	97,65		
T14	22,64	0,52	12,81	6,69	0,03	1,00	20,79	2,98	0,40	15,19	13,32	96,49		
T15	20,68	0,48	11,89	6,48	0,03	0,90	22,87	3,00	0,37	16,66	14,23	97,73		
Min	20,68	0,48	11,89	5,53	0,02	0,86	17,94	0,66	0,37	12,58	11,61	94,72		
Max	27,05	0,64	13,87	6,69	0,03	1,17	22,87	4,27	0,44	16,66	18,94	101,41		
Mean	23,79	0,55	12,81	6,21	0,03	0,97	20,82	2,57	0,40	14,87	14,62	97,78		

LOI... perte au feu

Tableau 2: Concentrations de métaux lourds dans la boue

	V	Cr	Cd	Ni	Cu	Zn	Sr	Zr	Ba	Pb	Th	U
		[mg/kg]										
T1	363	906	79	191	95	593	1144	92	319	14	19	58
T2	393	970	52	205	86	628	514	113	242	17	20	47
Т3	370	922	50	196	85	611	510	111	229	16	18	45
T4	356	880	52	190	83	607	499	107	223	15	20	45
T5	396	967	48	197	86	633	517	113	233	14	19	48
T6	339	835	45	188	81	599	546	109	235	19	20	41
T7	395	983	53	204	88	636	522	115	236	16	20	48
Т8	389	978	73	201	87	642	518	113	243	18	21	46
T9	370	935	54	187	93	586	1068	90	312	12	20	58
T10	351	861	50	192	92	574	1111	92	310	14	19	55
T11	360	889	75	201	94	587	1165	92	334	17	18	54
T12	375	943	72	189	94	601	1158	90	341	15	19	60
T13	375	931	75	189	97	595	1172	89	330	13	20	60
T14	370	907	53	193	95	594	1293	88	372	16	21	63
T15	386	949	74	200	98	610	1250	93	370	16	21	60
Min	339	835	45	187	81	574	499	88	223	12	18	41
Max	396	983	79	205	98	642	1293	115	372	19	21	63
Mean	373	924	60	195	90	606	866	100	289	15	20	53

La concentration de ces éléments hasardeux varie considérablement selon les sources de la roche phosphatée mais aussi dans le même gisement. (*Stoica et al., 1997*). Pour cette raison, il a été convenu de prendre des nouveaux échantillons de boue et d'eau pour confirmer les concentrations des paramètres suivants:

Mn, Mg, Al, Ca, K, Na, P, Fe; F, Cd, Pb, Ni, Cu, Cr, Ba, Zn.

Les résultats des analyses chimiques sont résumés ci- dessous (des détails peuvent être trouvés dans l'annexe 6.1):

31/08/2011 page 6/34

				Sample No.			
Element	Unit	1	2	3	4	5	average
Cd	mg/kg	12	15	15	19	18	15,8
Cr	mg/kg	887	953	987	856	867	910
Cu	mg/kg	28	43	38	51	56	43,2
Ni	mg/kg	127	171	165	192	222	175,4
Mn	mg/kg	142	197	192	211	245	197,4
Pb	mg/kg	12	21	28	12	18	18,2
Ва	mg/kg	324	308	284	317	295	305,6
Zn	mg/kg	500	719	634	741	847	688,2

Tableau 3: Concentrations de métaux lourds dans la boue; Échantillons 2011

Les résultats confirment que les concentrations de métaux lourds varient considérablement dans le même gisement. Comparés aux résultats d'essais de *Gnandi et al. 2008*, les résultats actuels montrent des concentrations largement inférieures de Cadmium.

2.2 Normes internationales

2.2.1 Métaux lourds

En raison de la haute concentration de phosphate- 15% (de P_2O_5) en moyenne – ainsi que des autres éléments, la réutilisation de la boue de l'eau usée dans l'agriculture est une option évidente. L'épandage des boues est donc une pratique agricole dans le monde entier depuis de nombreuses années. Bien que la boue contienne des nutriments végétaux et de la matière organique essentielle pour la croissance de

Concentration de Cadmium [mg/kg matière sèche]:
Boue Togo (Gnandi et al., 2008)60
Boues Togo (Gnandi, 2011) 16
Pays de I'UE0,8-40
US-EPA85

plantes, son utilisation régulière pendant des périodes prolongées peut avoir pour résultat l'accumulation des métaux lourds à un niveau nuisible à l'environnement. Telles teneurs en métaux lourds élevés dans les sols peuvent entraîner la croissance réduite des plantes. Les métaux peuvent entrer dans la chaîne alimentaire à travers la consommation de la nourriture et sont donc préoccupants en ce qui concerne leur impact potentiel sur la santé humaine. Donc un certain nombre de pays à travers le monde a introduit des normes relatives à la concentration maximale admissible de métaux lourds dans les boues d'épuration pour l'usage dans l'agriculture.

Le Tableau 4 suivante résume telles normes internationales.

31/08/2011 page 7/34

Tableau 4: Normes internationales pour la concentration de métaux lourds (mg/kg de matière sèche) dans la boue d'épuration pour l'usage dans l'agriculture

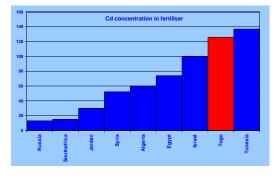

		Cd	Cr	Cu	Hg	Ni	Pb	Zn	As	Мо	Co
		-				[mg/kg					
Directive	86/278/EEC	20-40	-	1000-1750	16-25	300-400	750-1200	2500-4000	-	-	-
Austria	Lower Austria class II	2	50	300	2	25	100	1500	10		
	Upper Austria	10	500	500	10	100	400	2000			
	Burgenland	10	500	500	10	100	500	2000			
	Vorarlberg	4	300	500	4	100	150	1800			
	Styria	10	500	500	10	100	500	2000	20	20	100
	Carinthia	0,7-2,5	7-300	70-300	0,4-2	25-80	145-150	200-1800			
Belgium	(Flanders)	6	250	125	5	100	300	300	150	-	-
Belgium	(Walloon)	10	500	600	10	100	500	,	-	-	
Denmark	dry matter basis	8,0	100	1000	8,0	30	120	4000	-		
	total P basis	100			200	2500	10000	-	-		
Finland		1,5	300	600	1	100	100	1500	-	-	-
France		10	1000	1000	10	200	800	3000	-	-	-
Germany		10	900	800	8	200	900	2500	-	-	-
Greece		20-40	500	1000-1750	16-25	300-400	750-1200	2500-4000	-	-	-
reland		20	-	1000	16	300	750	2500	-	-	-
taly		20	-	1000	10	300	750	2500	-	-	-
Luxembourg		20-40	1000-1750	1000-1750	16-25	300-400	750-1200	2500-4000	-	-	-
Netherlands		1,25	75	75	0,75	30	100	300	-	-	-
Portugal		20	1000	1000	16	300	750	2500	-	-	-
Spain	soil pH < 7	20	1000	1000	16	300	750	2500	-	-	-
-	soil pH > 7	40	1750	1750	25	400	1200	4000	-	-	-
Sweden	·	2	100	600	2,5	50	100	800	-	-	-
UK		-	-	-	-	-	-	-	-	-	-
Estonia		15	1200	800	16	400	900	2900		-	-
Latvia		20	2000	1000	16	300	750	2500	-	-	-
Poland		10	500	800	5	100	500	2500	-	-	-
EU countries Minimum		0,8	50	125	0,75	25	100	300	10	20	100
EU countries Maximum		40	2000	1750	25	400	1200	4000	150	20	100
		·		• •	Sourc	e: Przewrocki, P.	et al. (2003): Risi	Analysis of Sewa	age Sludge - Pola	and and EU Comp	parative App
USA EPA Regulation 503						[mg/kg	DS]				
	JS Ceiling Concentrations	85	3000	4300	57	420	840	7500	75	-	-

Tableau 5: Normes internationales pour la charge de métaux lourds (kg/ha/an) pour l'application agricole

		Cd	Cr	Cu	Hg	Ni	Pb	Zn	As	Mo	Co
						[kg/h	a/a]	-	-	_	
Directive	86/278/EEC	0,15	-	12	0,1	3	15	30	-	-	-
USA EPA Regulation 503	Loading Rate Limit for										
	APLR Biosolids	1,9	150	75	0,85	21	15	140	2		1

De ces tableaux on peut voir que les pays européens ont des normes plus strictes que les Etats-Unis.

La concentration de Cadmium dans les engrais phosphatés est une préoccupation particulière dans le monde entier. Le phosphate brut du Togo

contient une des concentrations les plus élevées de Cadmium par rapport à d'autres sources de roche phosphatée, comme indiqué au

Tableau 6 (Bundesgütegemeinschaft Kompost, 2011).

Par conséquent, la Commission Européenne étudie la possibilité introduire un impôt sur Cadmium dans les engrais à l'échelle de l'UE. On considère un impôt entre 0,25 et 1 Euro par gramme de Cd pour les engrais QUI contiennent plus de 600mg/kg (réduit à 20mg/kg après 4 ans; Institute for

31/08/2011 page 8/34 Environmental Studies, 2000) Actuellement un tel impôt est seulement appliqué en Suède.

En résumé, la boue de Kpémé montre des concentrations 'acceptables' en ce qui concerne les lois de quelques pays européens et des États Unies, on doit mentionner que beaucoup de pays européens appliquent des limites plus strictes dans ce cas précis le Cadmium- dans le matériel utilisé dans l'agriculture. Par exemple, en Europe on ne peut pas utiliser l'engrais minéral sur les sols où on produit des aliments biologiques.

Tableau 6: Concentration de Cd dans le phosphate brut

Origine	Exportation 1.000 t p.a.	Concentration de Cd mg/kg P ₂ O ₅
Maroc	8.480	46 – 121
Russie	3.275	< 13
Syrie	1.045	52
Israël	878	100
Tunisie	641	137
Algérie	560	60
Jordanie	581	< 30
Togo	280	126
Kazakhstan	196	-
Egypte	8	74
Afrique du Sud	86	< 15

Compte tenu de toutes ces informations, l'application de la boue de l'usine dans l'agriculture n'est pas explicitement interdite par les normes européennes et américaines mais elle n'est pas recommandée.

2.2.2 Radiation

Le matériau brut de phosphate contient normalement de l'uranium et est donc une source de radiation. La concentration moyenne d'uranium dans la boue est environ 50mg/kg de matière sèche. La radiation de la boue est basse mais on doit clarifier la question de l'exposition de radiation si on

31/08/2011 page 9/34

utilise la boue dans l'agriculture ou pour produire des matériaux de construction, en particulier des briques pour des maisons. De toute façon, il faut considérer que la transmutation d'U238 diffuse principalement des particules alpha, qui ne montrent pas de mouvement loin dans l'air avant d'être absorbées. Elles ne sont pas capables de pénétrer dans la peau et sont seulement dangereuses pour l'homme si le matériel est inhalé, avalé ou absorbé à travers des blessures ouvertes.

Comme une norme le Règlement Européen 96/29/EURATOM limite la dose efficace à 1mSv par an.

La dose efficace ne peut pas être calculée des dates disponibles d'uranium et de la radioactivité. La dose efficace est une fonction de la dose absorbée qu'est l'énergie de radiation dans un objet et par conséquent dépend de l'organe ou du tissu du corps et du type de l'exposition de la radiation. Cependant assumant une concentration d'uranium de 50mg/kg de matière sèche dans les briques de construction et une masse exposée de 1kg et une exposition permanente (24 heures, 365 jours par an) la dose efficace annuelle est sous le limite du Règlement Européen susmentionné.

Pour cette raison, on recommande qu'on réalise des essais supplémentaires avant décider d'appliquer une option de réutilisation à grande échelle.

2.3 Options de traitement des eaux usées

2.3.1 Eaux usées et les boues

Actuellement environ 1,0 à 1,2 Mt de phosphates sont produites par an (capacité maximale de l'usine 3,5 Mt).

La production a diminué après que la Société Nouvelle des Phosphates du Togo 1 de 5 chaînes de production par jour:

⇒ 20.000 m³ de eaux usées
⇒ 1.600 t de boues

a repris la production d'International Fertilizer Group (IFG) surtout à cause des problèmes techniques avec l'équipement de production obsolète. Selon l'information obtenue sur place, seulement 2 à 3 chaînes de production sur 5 sont actuellement en fonction.

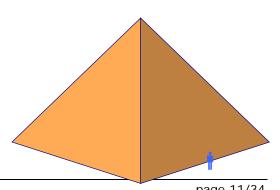
Le processus de production suit les étapes :

31/08/2011 page 10/34

- extraction du minerai brut,
- transport à l'usine par le train,
- élimination de grosses particules (>2-3mm; criblage),
- élimination de particules fines (<45µm; hydrocyclonage),
- lavage et épaississement (filtre à bande presseuse),
- calcination (four tournant),
- stockage

Pendant le processus de production décrit au-dessus des eaux usées sont produites principalement pendant l'hydrocyclonage et le lavage suivant.

Actuellement les quantités et les qualités sont indiquées comme suit (par chaîne de production):

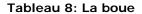

- consommation d'eau de mer par chaîne ______700m³/h
- consommation d'eau douce par chaîne ___ 1,5 m³/ t produit final
- charge de solides dans les boues ______80g/l

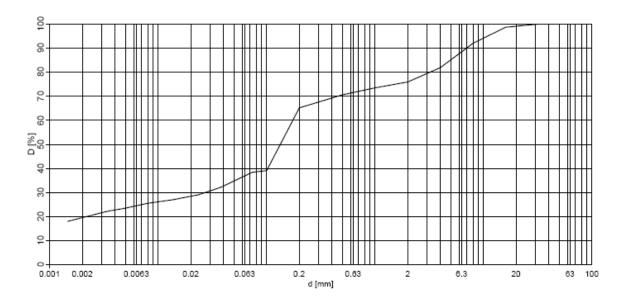
Assumant une période d'opération maximale de 24 heures par jour la quantité maximale d'eaux usées produites par chaîne de production est 20.300 m³/d avec une charge de solides de 1,600 t/d.

Opérant à la capacité maximale - dépendant de la teneur en eau - chaque chaîne de production produit les volumes de boue suivants par jour :

1.600 t/jour:

Pour la majorité d'options de réutilisation une teneur en eau d'environ 50% est suffisante. Par conséquent, sauf mention contraire, les calculs suivants sont basés sur cette teneur en eau. Cette supposition est basée sur des analyses des sols faites




pour le phosphate brut et la boue en mai 2011.

(*Institute of Geotechnical Engineering, 2011*). Les résultats sont présentés dans le Tableau 7 and Tableau 8 ci- dessous.

8 8 20 8 20<u>%</u> 5 33 2 9 0.002 0.001 0.0063 0.02 0.063 0.63 6.3 20 63 100

Tableau 7: Phosphate brut

On a estimé que la limite de plasticité se trouve à 55% de teneur en eau. 50% de teneur en eau est donc suffisant pour le transport suivant qui est une exigence pour toutes les possibilités de réutilisation. Par exemple un teneur en eau sous 50% assure que le matériau ne colle pas sur les parois des moyens de transport (camion ou train)

31/08/2011 page 12/34

⇒ La proposition originale- sédimentation et déshydratation

La Figure 1 ci-dessous montre le processus de traitement proposé qui est exigé pour obtenir le niveau désiré de la réduction de la pollution. Le traitement de la boue comme montré ci-dessous est exigé pour le transport/ l'utilisation/ la décharge suivants.

	Coût par chaîne:
Investisseme	nt2.500.000,-
Coût d'exploit	ation 24.500,-/d
Sédimentation	7,50€/m³/a
	150.000,00€/chaîne/a
Filtre- presse	15,00€/t matériau sec
	24.000,00€/chaîne/d

L'eau usée actuellement produite sera collectée

dans un réservoir de distribution pour la distribution régulière sur (1 à 5) chaînes de traitement. Ce réservoir servira également de réacteur pour ajouter des floculants pour améliorer les caractéristiques de décantation. La décantation enlève des solides et permet la réutilisation de l'eau claire. Les solides décantés seront retirés mécaniquement (teneur en eau environ 95%). Les boues seront alors déshydratées utilisant des presses et séchées si nécessaire. Le séchage pour des raisons de coûts sera seulement prévu si absolument nécessaire; on suppose que les unités appropriées de filtration de presse obtiennent le contenu de solides exigé pour traitement supplémentaire et/ ou la réutilisation.

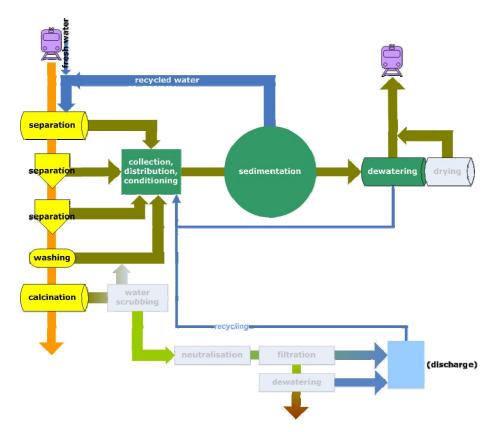


Figure 1: Processus de traitement - schéma

31/08/2011 page 13/34

Le traitement de l'eau usée du lavage du gaz d'échappement est montré au fond de l'image pour une considération dans l'avenir si c'est applicable.

Des équilibres de masse proposés sont montrés dans la Figure 2 ci- dessous:

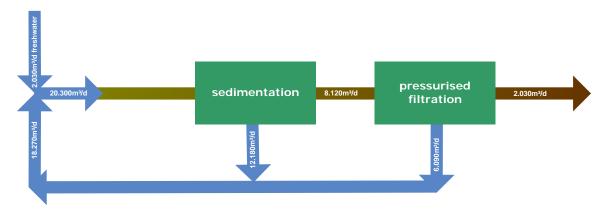


Figure 2: Équilibres de masse proposés

En principe ce processus proposé de traitement des eaux usées et de la boue peut obtenir les objectifs suivants :

- Élimination des solides décantables avant la décharge ou la réutilisation
- Déshydratation de la boue avant le transport

Pour les raisons expliquées en section 2.3.1 la réduction de la teneur en eau à 20% n'est pas nécessaire. Elle augmenterait seulement le coût d'exploitation.

Bien que le traitement ne change pas, le processus de déshydratation et son coût d'exploitation pourraient être réduits.

Coût d'exploitation¹:

Le coût d'exploitation dépend des quantités d'additifs nécessaires pour obtenir les objectifs du traitement. Afin de connaître cette demande on doit faire des essais à l'échelle semi-industrielle avant l'exécution à grande échelle. Les chiffres suivants devraient être considérés comme des estimations approximatives. Les prix à l'unité sont des prix moyens de systemes de traitement comparables :

Station de pompage & basins de sédimentation_____5,- €/m³

31/08/2011 page 14/34

¹ Estimations de coûts ne contient pas de taxes locales.

	100.000,- €/a/chaîne
Consommation d'énergie	17,5 kWh/m³/a
	52.500,- €/a/chaîne
Filtre-presse	15,- €/t de matériau sec
	24.000,- €/chaîne/jour

⇒ Proposition alternative - décantation

En raison d'objectifs réduites en ce qui concerne l'efficacité de déshydratation de la boue, un décanteur pourrait être une possibilité alternative de traitement des eaux usées.

Coût par chaîne: Investissement __ 3.100.000€ Exploitation___ 20.000€/jour

Un décanteur est utilisé pour la séparation des solides et liquides. Cette séparation passe avec une rotation très vite (jusqu'à 3000g)

Le rotor consiste en une cuvette cylindroconique et un rouleau. La mixture solide/ liquide est injectée dans le rotor du décanteur et passe jusqu'au distributeur où elle est soumis à la force centrifuge. Les solides en suspension sont collectés sur la face interne de la cuvette. Les solides centrifugés sont transportés au fin de la cuvette où ils sont déchargés par gravité. Le liquide déborde et est enlevé à l'autre côté

Le principal avantage est le montage possible en modules, permettant une extension simple si la production augmente. Une description technique peut être trouvée dans l'annexe. Les coûts estimés sont à environ 350.000,- Euros par 100m³/h (équivalent à une unité). Ce sont environ 3,1 millions d'Euros par chaîne.

Coûts d'exploitation:

Les coûts d'exploitation dépendent des quantités d'additives nécessaires pour obtenir les objectifs du traitement. Afin de connaître cette demande on doit faire des essais à l'échelle semi-industrielle avant l'exécution à grande échelle. Les chiffres suivants devraient être considérés comme des estimations approximatives :

Décanteur	2.200,- €/unité/jour
	•
	20.000,- €/chaîne/jour

31/08/2011 page 15/34

\Rightarrow	Comparaison	des coûts -	Sédimentation et	décanteur
---------------	-------------	-------------	------------------	-----------

	Investissement (par chaîne)	Opération (par chaîne et jour)
Decanteur	€ 3.100.000,-	€ 20.000,-
Proposition originale- sédimentation et déshydratation	€ 2.500.000,-	€ 24.500,-

⇒ Comparaison des coûts - Opération

Tous les estimations de coûts incluent l'énergie et le matériel supplémentaire comme les floculants, précipitants, etc., mais ne considèrent pas les impôts locaux potentiels.

L'estimation des coûts de l'opération de la sédimentation et la déshydratation (proposition originale) est basée sur :

- a) Sédimentation (étude comparative pour le traitement méchanique de l'eau résiduel des boues) 5 Euros par m³.
- b) Filtre-presse (information du fabricant basé sur les résultats de l'échantillon de la boue) 15 Euros par t de matériel sec
- c) 20.000 m³ de l'eau usée traité par jour et chaîne
- d) 1.600 t de matériel sec de la boue traité par jour et
- e) 300 jours de production par an

Par conséquent les coûts d'opération de cette option sont environ 24.500 Euros.

Assumant une concentration moyenne de P_2O_5 de 15% ce sont 102 \in par 1t de P_2O_5 ou 15,3 \in par 1t de boue (matériel sec!).

L'estimation des coûts du décanteur est basée sur les informations du fabricant (basée sur les échantillon de qualité de la boue) :

- a) 2.200,- Euros par machine par jour,
- b) 9 machines sont nécessaires par chaîne,

31/08/2011 page 16/34

Par conséquent les coûts d'opération par jour de cette option sont environ 20.000,- Euros par chaîne.

Assumant une concentration moyenne de P_2O_5 de 15% ce sont 83 \in par 1t de P_2O_5 ou 12,5 \in par 1t de boue (matériel sec!).

Les coûts d'opération indiqués plus haut sont au bas de l'échelle typique des coûts pour le traitement de l'eau usée industriel qui sont normalement entre 1 et 3€ par m³ d'eau usée. (IHK Oberfranken Beireuth 2003).

2.4 Utilisation de la boue liquide

L'utilisation directe de la boue liquide après la sédimentation est théoriquement possible dans l'agriculture. Avec une teneur en eau de >80% après la sédimentation le volume par jour est environ 8.000m³ par chaîne. Cela exige le transport de 570 camions par chaîne par jour aux clients ou agriculteurs potentiels. Ces coûts

Picture 1: Vacuum truck 14m3

élevés et les problèmes de la réutilisation dans l'agriculture (voir section 2.2) montrent que la réutilisation de la boue liquide est une option très irréaliste.

Avec ce teneur en eau haut et une concentration moyenne de P_2O_5 de 15% de matériel sec pour 1kg de P_2O_5 un volume de environ 35l doit être transporté. Les coûts pour le transport en relation avec le valeur de l'engrais semble raisonnable- 1 camion comme montré dans l'image peut transporter de l'engrais avec une valeur de environ 600 \in - il reste le problème logistique des quantités que doivent être transportés et la question comment stocker et réutiliser l'engrais sur les fermes. L'engrais artificiel peut être stocké et utilisé facilement aux fermes, l'engrais liquide comme décrit plus haut exige des investissements hauts pour le stockage et l'application.

2.5 Utilisation de la boue après la déshydratation

La boue avec une teneur en eau réduit peut en principe être réutilisée dans l'agriculture.

31/08/2011 page 17/34

2.5.1 Agriculture

⇒ Applicabilité

Le minéral phosphorite principal au Togo est un carbonate fluorapatite (Ca5 (PO4) 3F). La solubilité de phosphate d'apatite dans le sol est normalement basse. Ça limite la valeur immédiate pour l'agriculture par une application directe. Des options différentes de traitement (hormis la production industrielle d'acide phosphorique) étaient développées et évaluées à l'échelle pilote en laboratoire. Deux options sont prometteuses:

- Co-compostage avec des biosolides (des déchets organiques): Des essais ont été réalisés au Togo (K. Gnandi, données personnels) avec un mélange des boues de phosphate de 10% et des biosolides de 90% qui ont montré des résultats prometteurs. La disponibilité de phosphate pour les plantes augmente en raison de la présence d'acides organiques dans le processus du compostage. Un avantage supplémentaire du co-compostage serait une réduction potentielle de concentrations de métaux lourds par la dilution.
- Mélanger les déchets de phosphate avec de l'engrais "triple superphosphate": on suppose que le triple superphosphate réagit avec l'eau formant des acides forts, améliorant la disponibilité de phosphate pour les plantes. Des essais ont été réalisés dans l'Afrique de l'Est.

Jusqu'ici aucune option n'a été évaluée à grande échelle, les essais en Afrique de l'Est sont prometteurs mais jusqu'à ce moment ils ont produit seulement quelques kg de pellets d'engrais. De plus le triple superphosphate n'est pas disponible à Togo et devrait être importé.

⇒ La valeur économique

Comme il n'existe pas d'expériences à grande échelle pour les options de traitement présentées en ce moment, on peut seulement estimer la profitabilité de la réutilisation de phosphate dans l'agriculture.

Considérant seulement le coût du transport de l'usine au client- assumant que le coût pour le traitement des eaux usées ne va pas partiellement être récupéré en vendant la boue- le coût pour 1 kg de P_2O_5 est :

Coût de transport <200km _____ 10€/t

31/08/2011 page 18/34

Le coût de l'engrais minéral, dépendant de la composition, est environ 200- 300 €/t. La compétitivité de ce produit - considérant la solubilité basse du phosphate - est donc limitée. En plus l'investissement nécessaire pour transformer la boue en un produit utilisable n'est pas encore considéré dans ce calcul. Cela signifie que la valeur marchande possible de la boue utilisée comme engrais probablement ne va pas contribuer à l'investissement et le coût d'exploitation de la station d'épuration. Bien au contraire, on peut assumer que on ne peut même pas récupérer complètement les coûts additionnels (grincement, empaquetage) et le coût du transport.

⇒ La demande

Le Togo a une superficie de 56.785 kms². On estime qu'environ 46% de la superficie totale sont arables (2,5 millions d'ha). Actuellement moins de 50% sont utilisés pour l'agriculture.

Supposant une demande d'engrais de 50 à 100kg, la demande théorique actuelle pourrait être à 60.000 à 120.000t P_2O_5 par an.

La consommation actuelle d'engrais est de loin inférieure, environ 8.500 t par an.³

Avec une moyenne de 15% de P_2O_5 dans la boue de l'usine, la production annuelle totale serait à environ 400.000 t par an.

Cela signifie que même dans des conditions idéales- la pleine production de produits agricoles sur toute la terre arable au Togo- et ne prenant pas en compte d'autres sources d'engrais de phosphate (le fumier, biodéchets, etc.) - la production de l'usine de la boue contenant du phosphate serait

31/08/2011 page 19/34

² Teneur en eau 50%

³ Source: FAO Fertistat

considérablement plus haute que la demande entière dans le pays.

En outre environ 15% de la terre utilisée pour l'agriculture produisent des produits agricoles pour l'exportation. La question de qualité du produit par rapport aux concentrations admissibles des métaux lourds reste à être traitée.

⇒ Conformité avec les standards de pollution

Figure 3 ci-dessous est basée sur le Tableau 2 et Tableau 4 dans section 2.3.1. En conséquence la concentration de métaux lourds dans la boue est dans les limites des normes internationales pour tous les paramètres mesurés. Cependant la différence énorme entre les normes de l'Union Européenne et des États-Unis doit être prise en compte. Par exemple la concentration de Cadmium dans la boue (en moyenne 60mg/kg) est au-dessous du plafond

Concentration de Cadmium [mg/kg matériau sec]:
Boue Togo (Gnandi et al., 2008)60
Boues Togo (Gnandi, 2011)16
Pays EU 0,8-40
US-EPA85

de la limite de la concentration du US EPA Regulation 503 (85mg/kg) est est acceptable pour la directive 86/278/EEC mais elle excède t les normes des Pays Européens qui sont entre 1,0 à 10mg/kg.

Outre les concentrations, la plupart des normes limite aussi la charge annuelle (kg/ha), les concentrations permises sont seulement un résultat de ces charges annuelles et des restrictions techniques pour l'application.

La décision sur les normes qu'il faut appliquer va donc influencer la décision en ce qui concerne la réutilisation de la boue dans l'agriculture. Une réutilisation complète ne sera pas possible en raison des quantités et des coûts.

31/08/2011 page 20/34

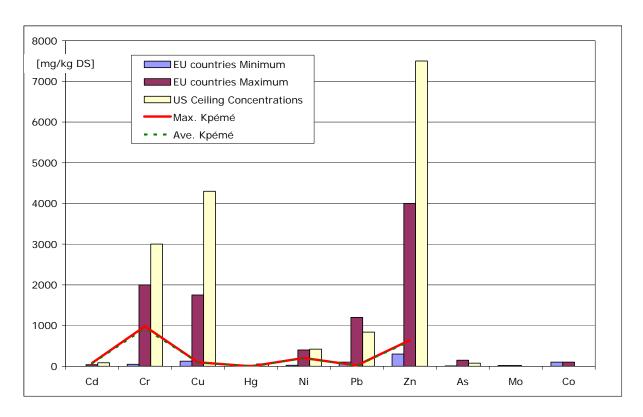


Figure 3: Comparaison de concentrations moyennes et maximales de métaux lourds dans les boues de l'usine avec les normes de l'UE et US-EPA

2.5.2 Matériaux de construction

Au long du processus de production deux fractions principales sont éliminés de la matière première:

- élimination de grosses particules (>2-3mm; criblage),
- élimination de particules fines (<45µm; hydrocyclonage).

En raison du pourcentage élevé de particules fines, la matière a une texture ressemblant à l'argile.

Par conséquent on assume que le matériau peut théoriquement être utilisé pour la fabrication de briques ou comme matériau imperméable, par exemple pour la construction de barrages.

⇒ Applicabilité

Figure 4 compare les courbes granulométriques d'un échantillon pris en avril 2011 et l'argile idéale pour les constructions (selon Aschauer et Wu, 2007).

31/08/2011 page 21/34

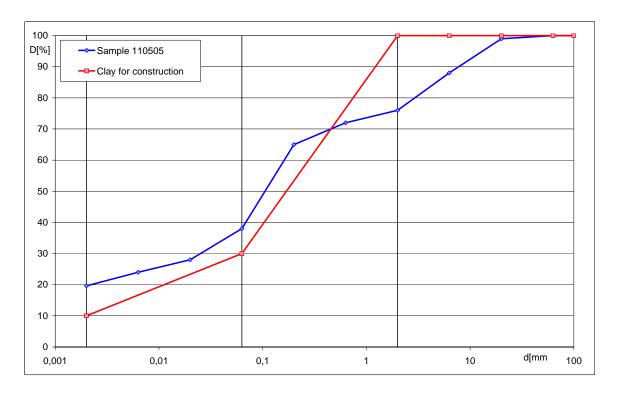


Figure 4: Courbes granulométrique d'un échantillon de boue et de l'argile pour les constructions

Tandis que la distribution des particules dessous 2mm peut être adéquate, mais 25% de particules grandes, venant du tamis, doivent être éliminées si on opte pour cette possibilité de réutilisation.

⇒ Briques

On suppose que la boue venant de la hydrocyclonage après la sédimentation et le traitement supplémentaire est acceptable pour la production de briques d'argile. Cependant cette option exige le traitement séparé de divisions de

l'eau usée, exigeant des investissements dans l'usine pour collecter et transporter divisions séparément. En tout cas des essais doivent être faits avant une décision finale. En plus la quantité énorme de matériel qui exige une facilité de production industrielle doit être prise en compte. Supposant que 75% du matériau est en fait techniquement convenable, environ 80.000 briques pourraient produites quotidiennement par chaîne. C'est à peu près la quantité de briques nécessaire pour 250 maisons privées de 100m² par jour. Le

Picture 2: Brick 20/50/23,8cm, 20kg

31/08/2011 page 22/34

coût d'investissement des unités de production nécessaires est environ 5 millions d'Euro par chaîne de production.

⇒ Construction de barrage

En principe la boue - après la déshydratation appropriée - pourrait aussi être utilisée pour la construction de barrage en raison de la conductivité hydraulique basse (résultats d'essai en attente). Cependant il reste la question comment mettre en équilibre l'approvisionnement des matériaux et de la demande pour des matériaux de construction et la question liée au stockage intermédiaire et temporaire. Autre problème sont les coûts supplémentaires de transport comme le matériel n'est pas produit dans le même endroit qu'où il est utilisé.

⇒ Radiation

Le matériau brut de phosphate contient normalement de l'uranium et est donc une source de radiation. La concentration moyenne d'uranium dans la boue est environ 50mg/kg de matière sèche. La radiation de la boue est basse mais on doit clarifier la question de l'exposition de radiation si on utilise la boue dans l'agriculture ou pour produire des matériaux de construction, en particulier des briques pour des maisons. De toute façon, il faut considérer que la transmutation d'U238 diffuse principalement des particules alpha, qui ne montrent pas de mouvement loin dans l'air avant d'être absorbées. Elles ne sont pas capables de pénétrer dans la peau et sont seulement dangereuses pour l'homme si le matériel est inhalé, avalé ou absorbé à travers des blessures ouvertes. Comme une norme le Règlement Européen 96/29/EURATOM limite la dose efficace à 1mSv par an.

La dose efficace ne peut pas être calculée des dates disponibles d'uranium et de la radioactivité. La dose efficace est une fonction de la dose absorbée qu'est l'énergie de radiation dans un objet et par conséquent dépend de l'organe ou du tissu du corps et du type de l'exposition de la radiation. Cependant assumant une concentration d'uranium de 50mg/kg de matière sèche dans les briques de construction et une masse exposée de 1kg et une exposition permanente (24 heures, 365 jours par an) la dose efficace annuelle est sous le limite du Règlement Européen susmentionné.

Pour cette raison, on recommande qu'on réalise des essais supplémentaires avant décider d'appliquer une option de réutilisation à grande échelle.

31/08/2011 page 23/34

Rapport 3 Résumé

2.6 Décharge

De toutes les options de réutilisation discutées on peut conclure qu'en raison de la quantité énorme de boue seulement un part de la boue peut être réutilisé. Le matériau restant doit être stocké temporairement ou permanemment. Assumant une teneur en eau de 60% selon la section 2.3.1 et une production sur trois chaînes

Image 3: sludge landfill

pendant 300 jours par an, le volume de boue qu'on doit décharger est 2,88 millions de m³, c'est équivalent à une pile de boue d'une hauteur de 28m et une surface de base de 530 fois 230m comme indiqué dans l'image Image 2. Tout le terrain autour de l'usine sera utilisé après un an, sans laissant d'espace pour une extension future. Pour cette raison les usines de Phosphate sont normalement situées près de la mine, qui est l'espace logique pour la décharge de la boue. Donc, comme mentionné dans *Lechner and Freiberger*, 2009 la seule solution pratique pour la boue excédante est la déshydratation et la transportation à la mine pour un stockage temporaire ou la décharge permanente.

3 Résumé

Ce rapport décrit les possibilités de la réutilisation des boues provenant de la station d'épuration proposées de la Société Nouvelle des Phosphates du Togo.

Le rapport discute trois options principales:

- ⇒ réutilisation dans l'agriculture,
- ⇒ réutilisation comme matériaux de construction et
- ⇒ décharge de la boue excédante.

31/08/2011 page 24/34

Rapport 3 Résumé

En ce qui concerne la qualité, les deux options sont en principe possibles avec les limitations suivantes :

Agriculture

A Togo il n'y a actuellement pas de normes pour les polluants, particulièrement pour les métaux lourds. Des analyses existantes et nouvelles montrent que la concentration des métaux lourds est à un niveau acceptable pour la réutilisation dans l'agriculture selon les standards européens et des Etats-Unis. Cependant la tendance dans les pays européens de baisser les concentrations acceptables, spécialement les limites pour Cadmium, doit être considérée avant d'opter pour la réutilisation dans l'agriculture.

Matériaux de construction

La qualité est en principe adéquate pour la fabrication des briques d'argile. Le radiation d'Uranium présent dans la boue est considéré suffisamment bas pour qu'il ne pose pas de risque pour la santé.

Le principal obstacle pour les options de réutilisation sont les quantités énormes. Actuellement, le secteur agricole à Togo peut seulement utiliser 2% de la boue provenant de l'eau usée. La fabrication de briques est une option possible, mais le marché pour ce produit est limité. On estime que le potentiel commercial n'est plus que 5% de la boue.

Une autre limitation est la non-existence de la chaîne de services du producteur potentiel au client potentiel, qu'on devrait établir avant ou parallèlement à l'établissement de la capacité de production.

Enfin aucune option de réutilisation ne dépend de la profitabilité. Par exemple comme indiqué dans la section 2.5.1 les coûts de l'utilisation dans l'agriculture sont déjà au même niveau ou à un niveau plus haut que les prix de produits comparables.

En résumé, cela signifie que la solution doit très probablement être une combinaison des options différentes et qu'un grand part de la boue doit quand même être déchargé pour le moment.

31/08/2011 page 25/34

Rapport 4 Terms of Reference

4 Terms of Reference

4.1 Sludge Quality - chemical analyses

Identify which of the parameters determining the concentration of heavy metals and trace elements in the waste water produced by Société Nouvelle des Phosphates du Togo have already been determined, which still need to be determined and in which laboratory this determination should take place.

Report with a comprehensive analysis of the content of As, Hg, Cd, Cr, Zn, Ni, Cu, Sr, Zr, Pb, F, V, U3O8 (and its radionuklids until RN222) as well as P2O5, SiO2 and CaO contained in the raw waste water produced by Société Nouvelle des Phosphates du Togo, estimation of the concentrations of the above elements in the sludge after sedimentation and after dewatering in a filter press.

4.2 Sludge quality - reuse

Compare the quality of the sludge of the Société Nouvelle des Phosphates du Togo with international standards for the environmentally and socially safe utilization/recycling of waste water treatment sludges, particular attention has to be paid to the heavy metal content in the sludges.

A critical assessment against international standards whether the quality of the sludges of the Société Nouvelle des phosphate allows any utilization without having any harmful effects on soil, vegetation, animals and man.

4.3 Review Treatment Options

Review low-cost, low technology measures recommended in the Second Report (Annex 2) and describe in detail quality and quantity of sludge after sedimentation and after dewatering. Describe the expected physical properties of sludge after filtration to assure that this sludge with a water content of 20% can be transported either by railway wagons or by truck without sticking to the transport unit.

Review of recommended options contained in the Report from the previous sub-contract entitled "Société Nouvelle des Phosphates du Togo Waste Water

31/08/2011 page 26/34

Rapport 4 Terms of Reference

Treatment Plan" and detailed qualitative and quantitative description of sludges after sedimentation and after dewatering

4.4 Utilisation of liquid sludge

Identify possible utilization options (ranging from income generating activities for local communities to industrial re-use/recycling), describe the processes necessary to make the sludge after sedimentation usable, estimate investment and operation costs for the proposed processes and assess the financial viability of any utilization of <u>liquid sludge</u> after sedimentation.

Possible option to utilize liquid sludge resulting from sedimentation process described, processes required to make the sludge usable described, investment and operation costs for sludge utilization described, cost benefit analysis for any proposed option of sludge utilization carried out to determine the financial viability of these options

4.5 Utilisation of sludge after dewatering

Identify possible utilization options (ranging from income generating activities for local communities to industrial re-use/recycling), describe the processes necessary to make the sludge after sedimentation and filtration usable, estimate investment and operation costs for the proposed processes and assess the financial viability of any utilization of sludge with water content of 20% after sedimentation.

Possible option to utilize sludge with water content of 20% resulting from sedimentation and filtration process described, processes required to make the sludge usable described, investment and operation costs for sludge utilization described, cost benefit analysis for any proposed option of sludge utilization carried out to determine the financial viability of these options.

4.6 Landfill

Identify suitable landfill sites in the vicinity of the Société Nouvelle des Phosphates du Togo, provide a rough estimate of investments necessary to assure environmentally safe deposition of sludge after sedimentation and filtration with a water content of 20% and estimate costs for these investments.

31/08/2011 page 27/34

Rapport 4 Terms of Reference

Potential landfill sites in vicinity of the Société Nouvelle des Phosphates du Togo identified and investment costs for environmentally safe disposal of sludge with water content of 20% estimated.

4.7 Presentation and discussion

Agree on findings with national expert, present results to stakeholder in a workshop in Togo and submit a Report to UNIDO on the financial, environmental and social feasibility to utilize the sludge of the Société Nouvelle des Phosphates du Togo.

Stakeholders in Togo are informed about the contents of the comprehensive report on the financial, environmental and social feasibility of any option to utilize the sludges form the proposed waste water treatment plant for the Société Nouvelle des Phosphates du Togo and substantive report submitted to UNIDO.

31/08/2011 page 28/34

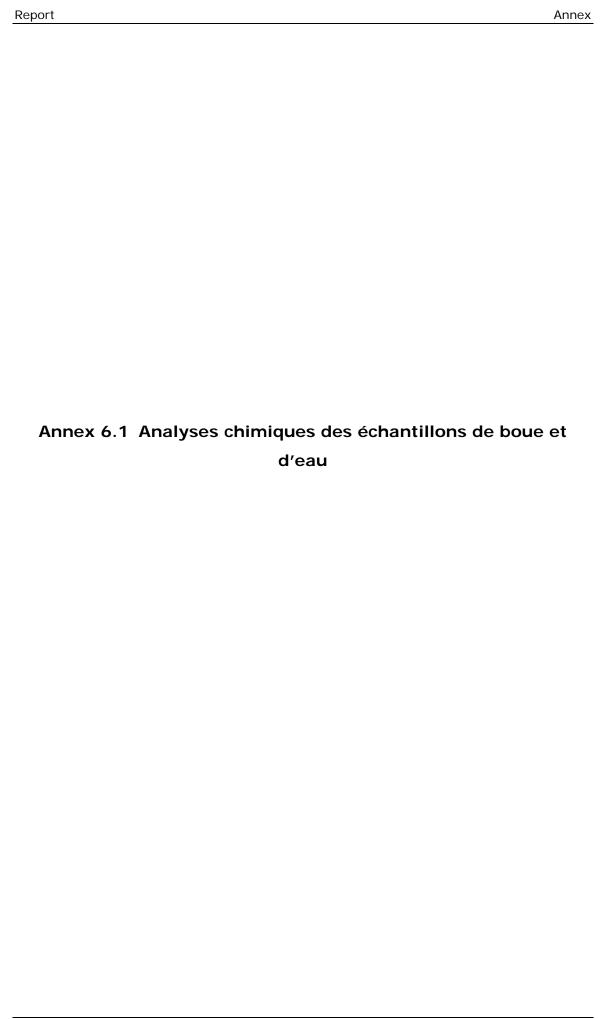
Rapport 5 Literature

5 Literature

 L. Stoica, I. L. Georgescu, D. Filip und F. Bunus (1997). Determination of valuable elements in natural phosphates. Journal of Radioanalytical and Nuclear Chemistry, Volume 216, Number 2, 161-163, DOI: 10.1007/BF02033772

- ii. K. Gnandi, M. H. Rezaie Boroon, P. Edorh (2008): The Geochemical Characterization of Mine Effluents from the Phosphorite Processing Plant of Kpe´me´ (Southern Togo). Mine Water Environ (2009) 28:65– 73, DOI 10.1007/s10230-008-0058-0
- iii. Institute for Environmental Studies (2000). A possible EU wide charge on Cadmium in phosphate fertilizers: Economic and environmental implications. Report number E-00/02 to the European Commission
- iv. Bundesgütegemeinschaft Kompost (2011). Cadmium-arme Rohphosphate begrenzt, <u>www.kompost.de</u>
- v. Lechner M., E. Freiberger (2009). Société Nouvelle des Phosphates du Togo Wastewater Treatment Plant, UNIDO Report
- vi. Institute of Geotechnical Engineering (2011). Geotechnischer Bericht.

 Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, Vienna
- vii. Kisitu, V.B. (1991). Some aspects of using rock phosphate as direct application fertilizrs. Fertilizer Research 30: 191-192, 1991. Kluwr Academic Publishers
- viii. Food and Agriculture Organisation of the United Nations (2011). Togo Country Brief, http://www.fao.org/countries/55528/en/tgo/
 - ix. Aschauer F., Wu W. (2007): Geotechnische Probleme beim Lehmbau
 In: Ernst & Sohn, 1. Departmentkongress Bautechnik & Naturgefahren,
 BOKU, 1. Departmentkongress Bautechnik & Naturgefahren,
 10.05.2007 11.05.2007, Wien
 - x. Industrie- und Handelskammer für Oberfranken Bayreuth (2003): Studie zu den Wasser und Abwasserkosten


31/08/2011 page 29/34

Rapport 6 Annexe

6 Annexe

- 6.1 Analyses chimiques des échantillons de boue et d'eau
- 6.2 Rapport géotechnique des échantillons de boue
- 6.3 Options alternatives décantation
- 6.4 Présentation 07.06.2011

31/08/2011 page 30/34

UNIVERSITE DE LOME

FACULTE DES SCIENCES

LABORATOIRE DE GÉOCHIMIE BP 1515 Lomé (TOGO) Tel : +228-225-50-94/936-69-8

UNDIO FOCAL POINT OFFICE

c/o UNDP, P.O. Box 911 40 Avenue des Nations Unies Lomé, TOGO

RESULTS GEOCHEMICAL ANALYSE OF PHOSPHATE WASTE FROM PHOSPHTE TREATMENT PLANT OF KPEME (TOGO)

TABLE 1.: CHEMICAL COMPOSITION OF PHOSPHATE SILID SLUGE

	Samples					
Elements	Units	1	2	3	4	5
Cd	mg kg ⁻¹	12	15	15	19	18
Cr	mg kg ⁻¹	887	953	987	856	867
Cu	mg kg ⁻¹	28	43	38	51	56
Ni	mg kg ⁻¹	127	171	165	192	222
Mn	mg kg ⁻¹	142	197	192	211	245
Pb	mg kg ⁻¹	12	21	28	12	18
Ba	mg kg ⁻¹	324	308	284	317	295
Zn	mg kg ⁻¹	500	719	634	741	847
F	%	2.3	1.85	2.5	2.15	1.89
SiO ₂	%	23.56	21.65	24.7	25.24	22.12
Al ₂ O ₃	%	9.71	9.23	9.5	11.06	10.18
Fe ₂ O ₃	%	4.57	4.74	5.42	6.72	6.78
CaO	%	19.45	23.15	22.35	24.5	24.22
MgO	%	1.25	1.2	0.95	0.98	1.05
Na ₂ O	%	2.56	2.75	3.2	1.89	2.9
K ₂ O	%	0.66	0.38	0.46	0.42	0.54
P_2O_5	%	17.85	16.10	18.87	18.69	19.48

UNIVERSITE DE LOME

FACULTE DES SCIENCES

LABORATOIRE DE GÉOCHIMIE BP 1515 Lomé (TOGO) Tel : +228-225-50-94/936-69-8

TABLE 2: CHEMICAL COMPOSITION OF WATER FILTRATED FROM SLUDGE

		Samples				
Parameters	Units	1	2	3	4	5
solides content	g l ⁻¹	100.1	93.33	96.1	93.4	94.66
pН		5.9	5.97	5.8	5.62	5.72
T °C		25.7	24.8	25.1	25.2	25.2
Cond Elec	ms cm ⁻¹	44,1	44.3	44.4	44.5	44.4
Cd	μg l ⁻¹	94.80	92.40	171.50	72.00	63.00
Cr	μg l ⁻¹	0.00	22.60	11.30	0.00	27.00
Cu	μg l ⁻¹	0.05	0.02	0.20	0.26	0.30
Ni	μg l ⁻¹	162.40	166.20	106.00	149.00	161.70
Mn	μg l ⁻¹	147.10	130.10	139.60	220.40	243.10
Pb	μg l ⁻¹	52.80	24.50	10.00	80.00	50.00
Ba	μg l ⁻¹	90.00	500.00	0.00	0.00	400.00
Zn	μg l ⁻¹	860.20	526.41	850.56	680.50	960.80
Fe	mg l ⁻¹	1.64	2.35	5.27	0.17	5.21
Al	mg l ⁻¹	0.85	0.10	1.05	0.76	01/01/40
F	mg l ⁻¹	1.56	2.50	2.05	1.70	1.85
P	mg l ⁻¹	0.17	0.18	0.21	0.19	0.24
Ca	mg l ⁻¹	1018.05	906.23	794.40	988.35	991.50
Mg	mg l ⁻¹	1655.77	1643.36	1743.32	1827.05	1787.50
Na	mg l ⁻¹	9493.85	9429.80	9628.00	9578.15	9296.70
K	mg l ⁻¹	371.26	334.27	286.08	324.74	363.85

0.0 = < detection limit

Head of Laboratory

Lomé, 16/06/2011

Dr K. Gnandi

Universität für Bodenkultur Wien

University of Natural Resources and Applied Life Sciences, Vienna

Department für Bautechnik und Naturgefahren

Institut für Geotechnik

Univ. Prof. Dr.-Ing. Wei Wu

BUKU

An

EcoSan Club KG Kommanditgesesellschaft

zH. DI Markus Lechner

Wiener Straße 2
A-3424 Muckendorf

17. Mai 2011

VE1961.00\B\B01/Gr

Geotechnischer Bericht

Betrifft: Korngrößenanalyse

Projekt: TOGO; Rohphosphatproben

Unserem Institut wurden am 5.05.2011 von Herrn DI Lechner (Fa. EcoSan Klub) zwei gestörte Bodenproben mit den Feldprobenbezeichnungen Rohphosphat und Schlamm übergeben. Diese Proben erhielten bei uns die internen Labornummern H065 und H066. Wir wurden beauftragt an beiden Proben eine kombinierte Korngrößenanalyse (Sieb-Schlämmanalyse) durchzuführen.

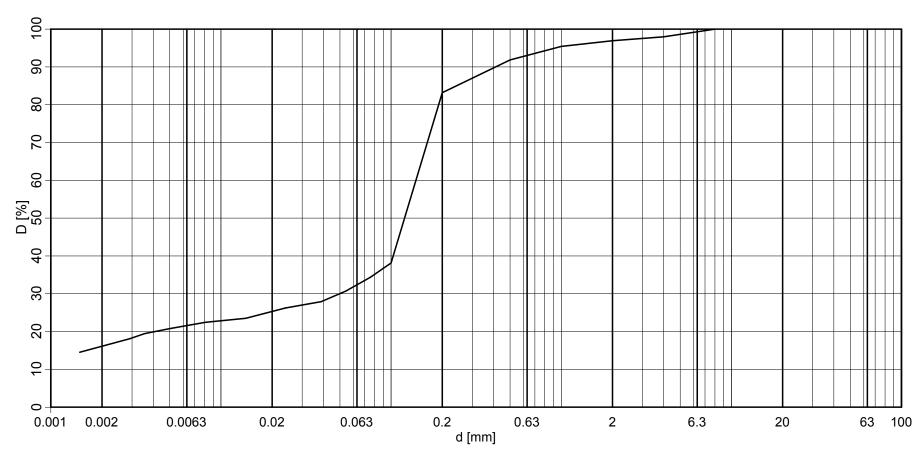
Die Ergebnisse der Korngrößenanalysen sind in Tabelle 1 zusammengefaßt.

Detailliert sind die Versuchsergebnisse in den Beilagen 1 und 2 ersichtlich.

Probenkenn-	Labor	H065	H066
zeichnung	Entnahme	Rohphosphat	Schlamm
Probengüte		gestört	gestört
Bodenbezeichnug		fmS, u, t	fmS, fmg, u,t
Korngrößenan	alyse:		
Steine [%]			
Kies [%]		3,1	24,0
Sand [%]		64,6	39,0
Schluff [%]		16,2	17,4
Ton [%]		16,1	19,6

Tabelle 1: Zusammenstellung der Versuchsergebnisse

Mit freundlichen Grüßen


INSTITUT FÜR GEÖTECHNIK .UNIV. PROF. DRC-ING. WEI WU UNIVERSITÄT-FÜR BODENKULTUR A-1180 WIEN, FEISTMANTELSTRASSE 4 Tel (1913/197-8 F4 15-59 PW. 1876/1873) PW

2 Beilagen

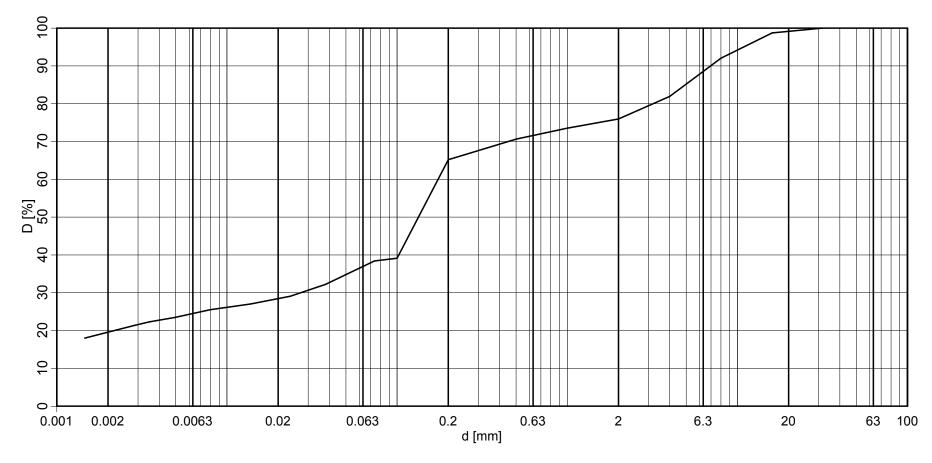
Kornverteilung Projekt VE1961.00

Datensatz H065/01

EcoSan, Rohphosphat, Togo; 5.05.2011

Steine: 0.0 % Kies: 3.1 % Sand: 64.6 % Schluff-Fraktion: 16.2 % Tonfraktion: 16.1 %

 $d_{max} = 31.5 \text{ mm}$ U = --- C = --- $d_{10} = -- d_{50} = 0.120 \text{ mm}$


Bodenbezeichnung: fmS, u, t

Kornverteilung Projekt VE1961.00

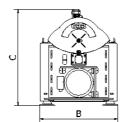
Datensatz H066/01

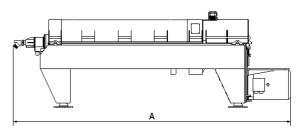
EcoSan, Schlamm, Togo; 5.05.2011

Steine: 0.0 % Kies: 24.0 % Sand: 39.0 % Schluff-Fraktion: 17.4 % Tonfraktion: 19.6 %

 $d_{max} = 31.5 \text{ mm}$ U = --- C = --- $d_{10} = -- d_{50} = 0.134 \text{ mm}$

Bodenbezeichnung: fmS, fmg, u, t


Report	Annex
Annex 6.3 Options alternatives décantation	



DECANTER 65 C

<u>Materials</u>		<u>Dimensions</u>	<u>Dimensions</u>				
base	Carbon steel	length A	5250 mm				
solid and liquid shutes	AISI 304	width B	1470 mm				
bowl	AISI 304	height C	1820 mm				
screw	AISI 304	weight	8000 kg				
screw flight wear protection	Tungsten carbide	internal bowl diameter	Ø650 mm				
solid discharge bushing	Interchangeable	length bowl	2738 mm				
wear protection	ceramic						
scraper	AISI 304	ratio D/L of smoothness	4,2				
feed tube	AISI 304						
liquid weir plates	AISI 304						
structure painting	grey ral 7012						

Technical Characteristics	
hydraulic flow-rate	$100 \text{ m}^3/\text{h}$
flow-rate	depending on the characteristics of the treated product
bowl max speed	2800 rpm
differential speed	from 1 to 40 rpm
max G power	2830
efficiency of the separation	95-98%
sound level	78 dB
bowl electric motor	90 kW 4 poli IP55
electric motor scraperr	0,75 kW 4 poli IP55
voltage frequency	400 V/ 50 Hz
manage and control differential speed	with DPC (Decanter Process Controller)
bowl drives	with electric motor
bowl motor starting	with inverter (not included in the decanter supply)

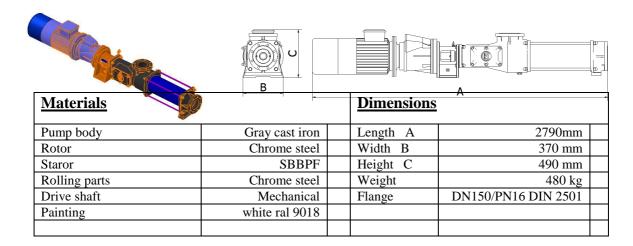


bowl transmission	V belt (V)
screw transmission	V belt (V) and Cyclo reducer
bowl/screw rotation control	with inductive sensors
scraper	on decanter (it avoids build-up of sludge on solid discharge walls)
scraper transmission	with gearbox and gear wheels
vibration-damping	on grounded supports (in order to diminish any vibration)
discharge and central covers	separately verifiable and easy to open
liquid weir plates	con 24 possibilities of output level avalaible
bearings	grease lubrication brands SKF- NSK-FAG
greasing bearings	hand lubrication
reduction gear Cyclo lubrication	Oil recycle lubrication (with pump for oil recycle)
pump reduction gear Cyclo lubrication	0,18 kw
decanter manuals	in English language; 2 paper copies 1 electronic copy
together with the decanter supply	belt pulley kit (in order to changedifferential speed) kit greasing bearings (for first greasing) electrovalve kit (for internal and external bowl washing) replacement speed sensors kit keys kit (for machine interventions)

ELECTRIC BOARD 65 C

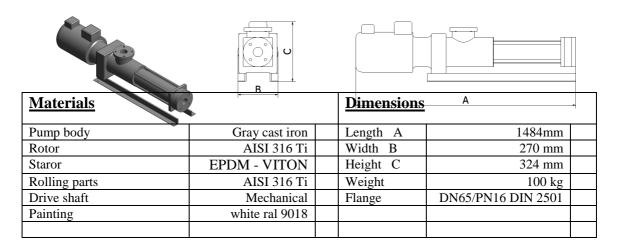
<u>Materials</u>		<u>Dimensions</u>	
Carpentry	Carbon steel	Length A	1400 mm
Painting	grey ral 7035	Width B	600 mm
		Height C	2000 mm
		Weight	430 kg

<u>Technical Characteristics</u>	
Protection	IP 55
Number of doors	due
General switch	With door block
Button for emergency stopping	Like mushroom
Voltage signal	Warning light
Starting signal	Warning light
Alarm signal	Acoustic/visual warning light and signal (clear contact) exit from terminal
Local control of start/stop cycle	With button
Alarm reset control	With button
DPC (Decanter Process Controller)	CBB Customer Card on the electrical board
touch screen	On control panel; English language
Polymer inlet signal	signal (clear contact) inlet on connecting terminal
Sludge level signal	signal (clear contact) inlet on connecting terminal



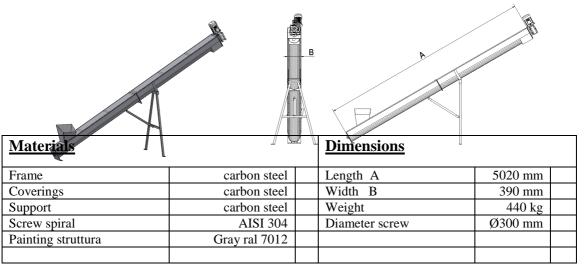
polymer meter signal	signal inlet on connecting terminal
sludge meter signal	signal inlet on connecting terminal
alimentation for sludge and polymer meter	disposable on clamp board
Bowl motor on	With inverter placed inside the electrical board lower part
Scraper motor on	With breaker
Sludge pump motor on	With breaker
Polymer pump motor on	With breaker
Sludge evacuation screw motor on	With breaker
Bowl internal washing electro valve on	Relay
Bowl external washing electro valve on	Relay
Low tension relay	Placed on the internal of the electrical board
Electromechanical elements for powered motors	Based on numbers of required breakers
Connecting terminal of power connecting cables	Placed on upper part of electrical board
Connecting terminal of signal connecting cables	Placed on upper part of electrical board
Electrical Board manuals and operating terminal	In English; 2 paper copies 1 electronic copy

Sludge pump 60 m³/h



Technical Characteristics	
Pump type	Pump monovite
Max flow rate	60 m ³ /h a 280 rpm
Work pressure	2-4 bar
Transmission	with motor reducer
Electric motor	11 kW 4 poli IP55 con servoventola 0,37 kW
Voltage frequency	400V/50Hz
Motor rpm change	with inverter supplied in the pump

Polymer pump 10 m³/h



Technical Characteristics	
Pump type	Pump monovite
Max flow rate	10 m ³ /h a 400 rpm
Work pressure	2-4 bar
Transmission	with motor reducer
Electric motor	2,2 kW 4 poli IP55 con servoventola 0,12 kW
Voltage frequency	400V/50Hz
Motor rpm change	with inverter supplied in the pump

SCREW Ø300 L5

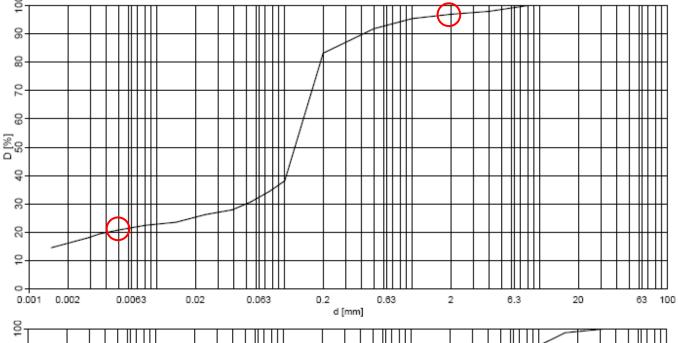
U section
can be opened for spiral inspection
with hopper, rectangular section
square section
diameter Ø100 mm, placed on the screw side (only if the screw is placed directly under the decanter)
in dotazione con la fornitura della SCREW (only if the screw is placed directly under the decanter)
manual greasing lubrication
gearbox placed in the screw discharge area
4 kW 4 poli IP 55
400 V/ 50 Hz
transmissible couple 635 Nm reduction ratio 1/30
Max Working inclination 30°
in English; 2 paper copies 1 electronic copy

Report		Annex
	Annex 6.4 Présentation 07.06.2011	

Société Nouvelle des Phosphates du Togo Traitement des eaux usées et Options de la Réutilisation des boues

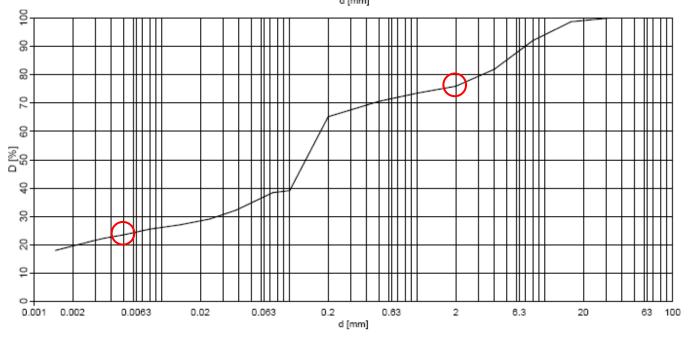
Situation actuelle

(max. 5 chaînes)

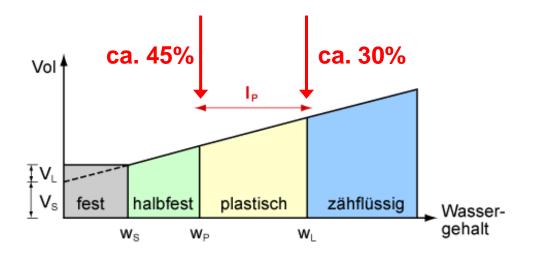

Caractérisation de la boue

	V	Cr	Cd	Ni	Cu	Zn	Sr	Zr	Ba	Pb	Th	U
	[mg/kg]											
T1	363	906	79	191	95	593	1144	92	319	14	19	58
T2	393	970	52	205	86	628	514	113	242	17	20	47
Т3	370	922	50	196	85	611	510	111	229	16	18	45
T4	356	880	52	190	83	607	499	107	223	15	20	45
T5	396	967	48	197	86	633	517	113	233	14	19	48
T6	339	835	45	188	81	599	546	109	235	19	20	41
T7	395	983	53	204	88	636	522	115	236	16	20	48
T8	389	978	73	201	87	642	518	113	243	18	21	46
Т9	370	935	54	187	93	586	1068	90	312	12	20	58
T10	351	861	50	192	92	574	1111	92	310	14	19	55
T11	360	889	75	201	94	587	1165	92	334	17	18	54
T12	375	943	72	189	94	601	1158	90	341	15	19	60
T13	375	931	75	189	97	595	1172	89	330	13	20	60
T14	370	907	53	193	95	594	1293	88	372	16	21	63
T15	386	949	74	200	98	610	1250	93	370	16	21	60
Min	339	835	45	187	81	574	499	88	223	12	18	41
Max	396	983	79	205	98	642	1293	115	372	19	21	63
Mean	373	924	60	195	90	606	866	100	289	15	20	53

Source: Gnandi, K., et al. (2009): The Geochemical Characterization of Mine Effluents from the Phosphorite Processing Plant of Kpémé (Southern Togo), Springer Verlag 2009


Caractérisation de la boue

La matière première



La boue

(après la élimination de <45µ & >2mm)

Caractérisation de la boue

W_L Limite de liquidité

W_P Limite de plasticité

I_P Indice de plasticité – idéal <13%, satisfaisant 16-30%, défavorable >30% (Wei Wu 2007)

Données du problème

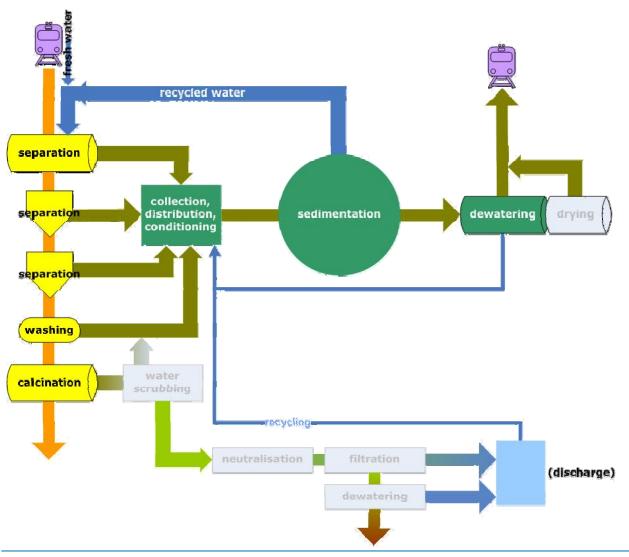
⇒`L'objective

• Élimination des solides

⇒Problème

 réutilisation, stockage (temporaire) or décharge de déchets solides

Options proposées


⇒Élimination des solides

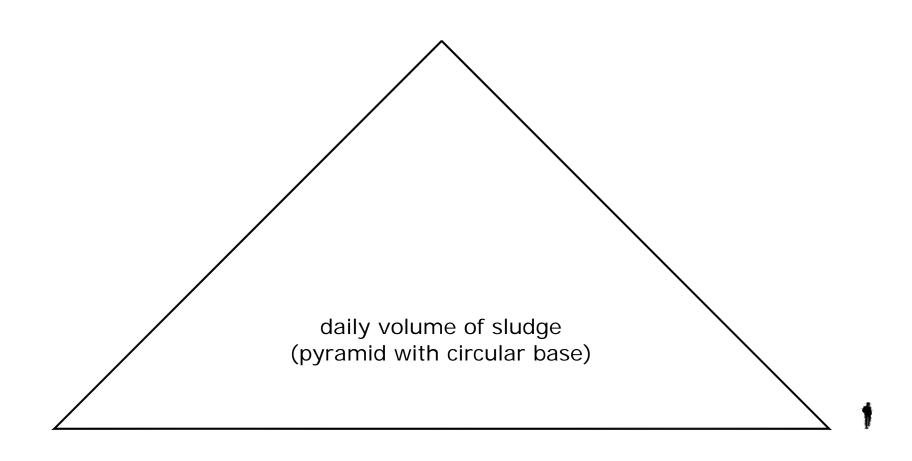
- Bassin de décantation + filtration
- Centrifugation

⇒Réutilisation, stockage (temporaire) or décharge de déchets solides

- Agriculture
- Matériaux de construction
- Décharge de déchets

Traitement proposée – Option A

- Sédimentation
- Recyclage de l'eau surnagent
- 3. Déshydratation de la boue
- 4. Stockage dans la mine

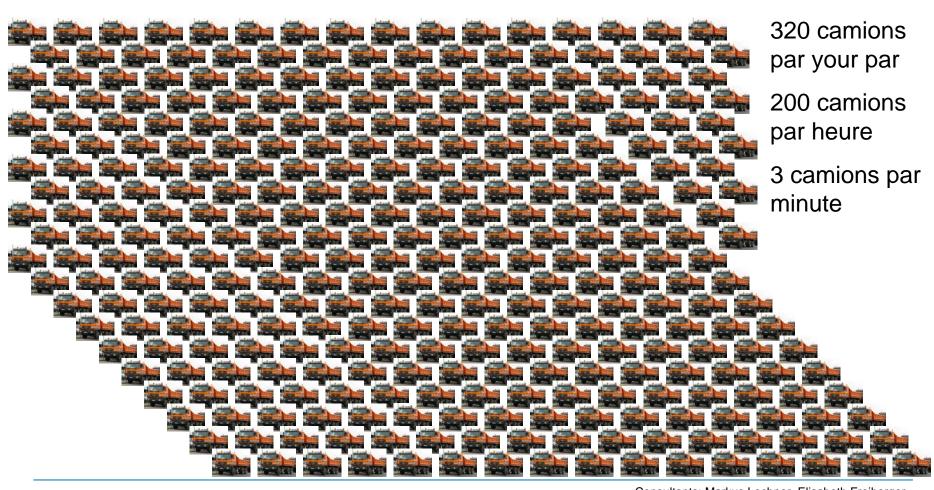

La boue - Quantités & Volume

1 Chaîne de production

1.600 t/d

- 20.000m³/d @ 92% teneur en eau liquide (peut être pompé)
 - 5.300m³/d @ 70% teneur en eau malléable
 - 3.200m³/d @ 50% teneur en eau semi solide (peut être transporté en camions)
 - 2.300m³/d @ 30% teneur en eau solide

15.000 m³ par your

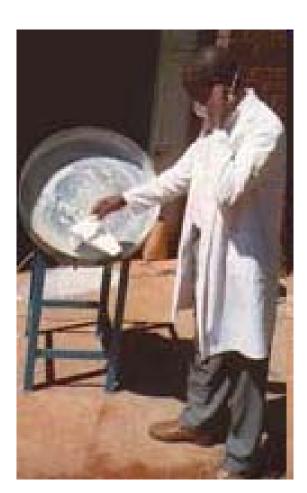

1.600 t par chaîne par your

Capacité:

18 t / 10m³

1.600 t par chaîne par your

La boue – Options de traitement et réutilisation


- ⇒Réutilisation dans l'agriculture
- ⇒Réutilisation matériaux de construction
- ⇒Décharge de déchets
- ⇒Stockage provisoire

La boue – Options de réutilisation

- ⇒ Agriculture Engrais
 - Application directe sans traitement
 - Prétraitement pour améliorer la solubilité de la phosphate
 - Prétraitement pour réduire la teneur en métaux lourds

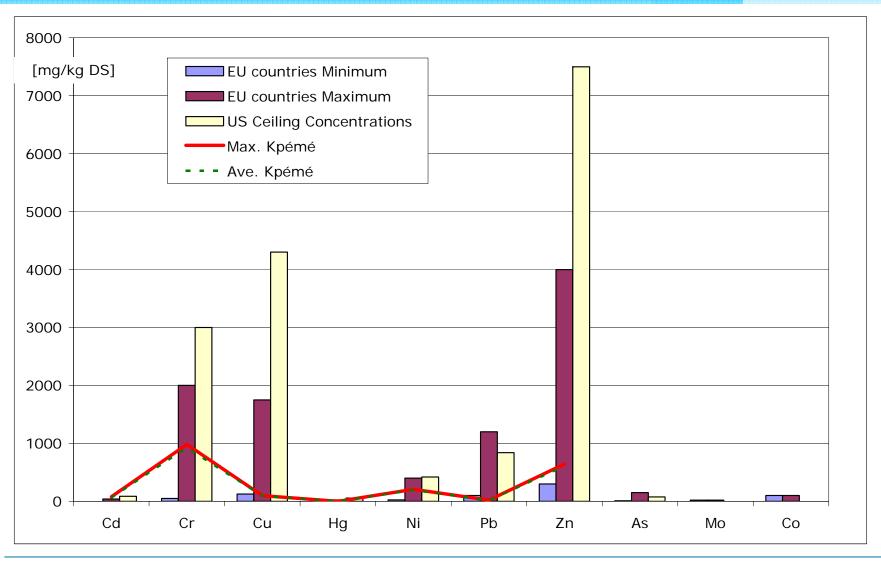
La boue – Réutilisation dans l'agriculture - Applicabilité

- La disponibilité de phosphate pour les plantes est basse sans traitement
- Destin de fluore dans les plantes est peu claire (pourrait se transformer en fluoroacétate or fluorocitrate dans les plantes, p.ex. soja)
- Les options de traitement (p.ex.
 Mélanger avec triplesuperphosphate,
 co-compostage) seulement ont été
 testées en laboratoire/ à l'échelle pilote

La boue – Réutilisation dans l'agriculture - Qualité

		Cd	Cr	Cu	Hg	Ni	Pb	Zn	As	Мо	Со
		[mg/kg DS]									
Directive	86/278/EEC	20-40	-	1000-1750	16-25	300-400	750-1200	2500-4000	-	-	-
Austria	Lower Austria class II	2	50	300	2	25	100	1500	10		
	Upper Austria	10	500	500	10	100	400	2000			
	Burgenland	10	500	500	10	100	500	2000			
	Vorarlberg	4	300	500	4	100	150	1800			
	Styria	10	500	500	10	100	500	2000	20	20	100
	Carinthia	0,7-2,5	7-300	70-300	0,4-2	25-80	145-150	200-1800			
Belgium	(Flanders)	6	250	125	5	100	300	300	150	-	-
Belgium	(Walloon)	10	500	600	10	100	500	,	-	-	
Denmark	dry matter basis	0,8	100	1000	8,0	30	120	4000	=		
	total P basis	100			200	2500	10000	-	-		
Finland		1,5	300	600	1	100	100	1500	-	-	-
France		10	1000	1000	10	200	800	3000	-	-	-
Germany		10	900	800	8	200	900	2500	-	-	-
Greece		20-40	500	1000-1750	16-25	300-400	750-1200	2500-4000	-	-	-
Ireland		20	-	1000	16	300	750	2500	-	-	-
Italy		20	-	1000	10	300	750	2500	-	-	-
Luxembourg		20-40	1000-1750	1000-1750	16-25	300-400	750-1200	2500-4000	-	-	-
Netherlands		1,25	75	75	0,75	30	100	300	-	-	-
Portugal		20	1000	1000	16	300	750	2500	-	-	-
Spain	soil pH < 7	20	1000	1000	16	300	750	2500	-	-	-
	soil pH > 7	40	1750	1750	25	400	1200	4000	-	-	-
Sweden		2	100	600	2,5	50	100	800	-	-	-
UK		-	-	-	-	-	-	-	-	-	-
Estonia		15	1200	800	16	400	900	2900	-	-	-
Latvia		20	2000	1000	16	300	750	2500	-	-	-
Poland		10	500	800	5	100	500	2500	-	-	-
EU countries Minimum	1	0,8	50	125	0,75	25	100	300	10	20	100
EU countries Maximum		40	2000	1750	25	400	1200	4000	150	20	100

Source: Przewrocki, P. et al. (2003): Risk Analysis of Sewage Sludge - Poland and EU Comparative Approach


USA EPA Regulation 503	[mg/kg DS]										
US Ceiling Concentrations	85	3000	4300	57	420	840	7500	75	-	-	

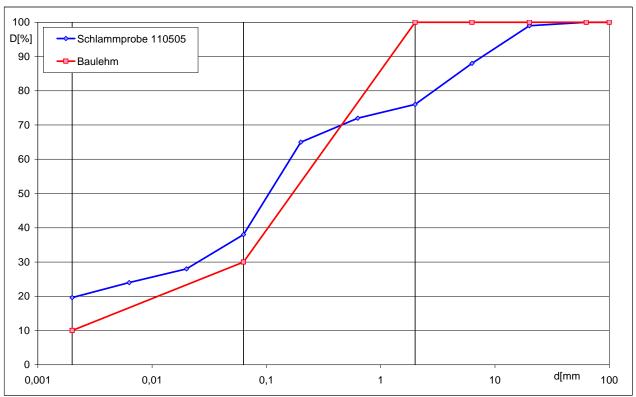
La boue - Réutilisation dans l'agriculture - Qualité

Normes internationales pour la charge de métaux lourds (kg/ha/an) pour l'application agricole

		Cd	Cr	Cu	Hg	Ni	Pb	Zn	As	Мо	Co
		[kg/ha/a]									
Directive	86/278/EEC	0,15	-	12	0,1	3	15	30	-	ı	-
USA EPA Regulation 503	Loading Rate Limit for										
	APLR Biosolids	1,9	150	75	0,85	21	15	140	2		

La boue – Réutilisation dans l'agriculture - Qualité

La boue – Réutilisation dans l'agriculture


- Superficie de Togo 56.785 km²
- Environ 46% de la superficie est arable (2,5 Mio. ha)
- Actuellement moins de 50% sont utilisés pour l'agriculture
- Supposant une demande d'engrais de 50 à 100kg, la demande théorique actuelle pourrait être à 60.000 à 120.000t P2O5 par an
- La consommation actuelle d'engrais est de loin inférieure, environ 8.500 t par an
- Avec une moyenne de 15% de P2O5 dans la boue de l'usine, la production annuelle totale serait environ 400.000 t par an.

⇒ Conclusions

- Consommation actuelle d'engrais à Togo est seulement 2% de la production
- Demande maximale theorétique est seulement 25% de la production
- Problème logistique (transport de l'usine aux agriculteurs)
- Problème de stockage intermédiaire (production constante ↔ demande dépende du cycle de production)

La boue – Réutilisation comme matériaux de construction

⇒Applicabilité du matériau:

- Essais sur la résistance des briques sont nécessaires

La boue – Réutilisation comme matériaux de construction

⇒Demand

- La production théorétique est environ 2,5 Mio. de briques (750 Mio. par an)
- Le coût d'installation d'une usine de production de briques d'occasion pour 30 Mio. de briques par an est is 2,5 Mio €
- Demande locale?

La boue – Réutilisation comme matériaux de construction

⇒Qualité

 Concentration forte d'Uranium – radiation; problème potentiel pour les immeubles