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CHAPTER 1

Introduction

1.1 RATIONALE

Groundwater is an essential part of the hydrological cycle and is a valuable natural resource 
providing the primary source of water for agriculture, domestic, and industrial uses in many 
countries. Groundwater is now a signifi cant source of water for human consumption, sup-
plying nearly half of all drinking water in the world (WWAP 2009) and around 43 percent 
of all water effectively consumed in irrigation (Siebert et al. 2010). Groundwater also is 
important for sustaining streams, lakes, wetlands, and ecosystems in many countries.

The use of groundwater has particular relevance to the availability of many  potable-
 water supplies because groundwater has a capacity to balance large swings in precipita-
tion and associated increased demands during drought and when surface water resources 
reach the limits of sustainability. During extended droughts the utilization of  groundwater 
for irrigation is expected to increase, including the intensifi ed use of  non- renewable 
groundwater resources, which may impact the sustainability of the resource. However, 
global groundwater resources may be threatened by human activities and the uncertain 
consequences of climate change.

Global change encompasses changes in the characteristics of  inter- related climate 
variables in space and time, and derived changes in terrestrial processes, including human 
activities that affect the environment. Changes in global climate are expected to affect the 
hydrological cycle, altering  surface- water levels and groundwater recharge to aquifers with 
various other associated impacts on natural ecosystems and human activities. Also ground-
water discharge, storage, saltwater intrusion, biogeochemical  reactions, and chemical fate 
and transport may be modifi ed by climate change. Although the most noticeable impacts 
of climate change could be changes in surface water levels and quality, there are  potential 
effects on the quantity and quality of groundwater. While recognizing that groundwater is 
a major source of water across much of the world, particularly in rural areas in arid and 
 semi- arid regions, the Intergovernmental Panel on Climate Change (IPCC) 3rd and 4th 
Assessment Reports state that there has been very little research on the potential effects of 
climate change (IPCC 2001, 2007; Bates 2008). In recent decades, a wide array of scien-
tifi c research has been carried out to better understand how water resources might respond 
to global change (Green et al. 2011). Recent research has been focused predominantly on 
 surface- water systems, due to their visibility, accessibility and more obvious recognition of 
surface waters being affected by global change. However, little is known about how subsur-
face waters in the vadose zone and groundwater might respond to climate change and affect 
the current availability and future sustainability of groundwater resources (UNESCO 2008). 
It is important to mention that in the past ten years the number of  peer- reviewed journal 
paper publications addressing groundwater and climate change has increased considerably 
as shown in Fig. 1.1. Also only recently, water resources managers and  politicians are pro-
gressively recognising the important role of groundwater resources in meeting the demands 
for drinking water, agricultural and  industrial activities, and  sustaining  ecosystems, as well 
as in the adaptation to and  mitigation of the impacts of climate change and coupled human 
activities (Green et al. 2011).

CH001.indd   1 11/5/2011   7:54:04 AM



2 Introduction

Besides the direct impacts of climate change on the natural processes of the global 
hydrological cycle, it is crucial to also consider the indirect impacts. These are human 
responses to the direct impacts, such as increased utilization of groundwater in times 
of drought and  non- availability of surface water and may lead to increased and unsus-
tainable abstraction and utilization of groundwater resources, including  non- renewable 
groundwater reserves. Thus, there are urgent and ongoing needs to address the expected 
coupled effects of human activities and climate change on global groundwater resources.

To address these concerns, the United Nations Educational, Scientifi c, and Cultural 
Organisation (UNESCO) International Hydrological Programme (IHP) initiated the 
GRAPHIC project (Groundwater Resources Assessment under the Pressures of Humanity 
and Climate Change) in 2004. GRAPHIC seeks to improve our understanding of how 
groundwater interacts within the global water cycle, supports ecosystems and humankind 
and, in turn, responds to complex and coupled pressures of human activities and climate 
change. To successfully achieve these objectives within a global context, GRAPHIC was 
developed to incorporate a collaborative effort and umbrella for international research and 
education. GRAPHIC outlines areas of desired international investigations covering major 
geographical regions, groundwater resource topics, and methods to help advance the com-
bined knowledge needed to address scientifi c and social aspects (UNESCO 2008).

The GRAPHIC project was designed with the understanding that groundwater 
resources can have nonlinear responses to atmospheric conditions associated with  climate 
change and/or  terrestrial- surface conditions associated with human activities. Therefore, 

Figure 1.1. Rate of peer-reviewed journal paper publications addressing groundwater and climate 
change from 1990 to 2010. A total of 198 papers addressing subsurface water and climate change 
are included. Final references were compiled in February 2011, so some papers published late in 
2010 may be missing (modifi ed from Green et al. 2011).
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Introduction 3

groundwater assessments under the coupled pressures of human activities and climate 
change and variability involve the exploration of  complex- system  interactions. GRAPHIC 
incorporates a multidisciplinary scientifi c approach as the most rigorous  platform to address 
such complexity. Furthermore, the GRAPHIC project extends investigations beyond physi-
cal, chemical, and biological interactions to include human systems of resource management 
and governmental policies. The structure of the GRAPHIC project has been divided into 
subjects, methods, and regions. The subjects encompass (i) groundwater quantity (recharge, 
discharge, and storage), (ii) quality, and (iii) management aspects. A variety of scientifi c 
methods and tools are being applied in the framework of GRAPHIC, including analysis of 
fi eld data, geophysics, geochemistry, paleohydrology, remote sensing (in particular GRACE 
satellite gravimetry), information systems, modelling, and simulation. GRAPHIC consists of 
regional components (Africa, Asia and Oceania, Europe, Latin America, and the Caribbean 
and North America) where case studies have been identifi ed and carried out.

The management of groundwater resources under the coupled pressures of climate 
change and human activities is a challenge. Sound understanding of the functioning of 
groundwater systems and their interactions with numerous and interlinked external fac-
tors is an indispensable basis for informed management. GRAPHIC strives to facilitate 
cooperation between scientists of different disciplines and from different countries. The 
basin/aquifer scale case studies presented in this book have been selected in each region 
by local scientists and experts of the respective subject.

1.2 OVERVIEW OF THE BOOK

Climate Change Effects on Groundwater – A Global Synthesis of Findings and 
Recommendations is a compilation of 20 case studies from more 30 different countries 
that have been carried out under the framework of the  UNESCO- IHP GRAPHIC project. 
The approximate location of each case study is displayed on the “Groundwater Resources 
of the World” map (WHYMAP 2008) (Fig 1.2).

The case studies presented in this volume represent aquifers from all the major 
 climate regions of the world. The studies address groundwater resources in a range 
of hydrogeological settings from mountainous to coastal aquifer systems, including 
 unconfi ned,  semi- confi ned, and confi ned aquifers in unconsolidated to  fractured- rock 
material. More details on each case study location, climate, hydrogeological setting, land 
use, groundwater use, as well as subjects addressed and methods applied are presented in 
the overview table (Table 1.1).

This volume is organized by case study according to the major climate groups of 
the Kö ppen- Geiger climate classifi cation scheme (Köppen 1936): tropical, dry (arid and 
semi-arid), temperate, continental, and polar climates. Three chapters that cover sev-
eral study areas and different climate groups are presented under “various climates” and 
are displayed in Figure 1.2 as one large circle or multiple circles indicating the regional 
scope of the respective chapter. The case study chapters (Chapters 2 to 21) each follow a 
similar organization and structure. The introduction of each chapter describes the purpose 
and scope, study area, methodology, and relevance to the GRAPHIC project. The results 
and discussion are followed by recommendations for water managers and  planners, as 
well as policy and decision makers. Finally, the continuation of research activities and 
future work are outlined.
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Figure 1.2. Approximate location of case study displayed on the “Groundwater Resources of the World” map (WHYMAP 2008). Numbers refer to 
the chapters in this volume. Case studies that cover several study areas and different climate groups are displayed as one large circle or multiple circles 
indicating the regional scope of the respective chapter.
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Table 1.1 Overview of case studies.

Location Climate Hydrogeological setting Land use Groundwater use Quantity or 
Quality

Methods

Chapter 2: The Impacts of Climate Change and Rapid Development on Weathered
Crystalline Rock Aquifer Systems in the Humid Tropics of  sub- Saharan Africa: Evidence from  South- Western Uganda

East Africa,  South-
 western Uganda, River 
Mitano Basin

Tropical (humid) Deeply weathered, 
crystalline rock aquifers

Agriculture, 
grassland, small 
areas of wetland, 
forest and 
plantations

Irrigation, livestock, 
drinking

Quantity: 
recharge, 
discharge, 
storage

Modelling

Chapter 3: Groundwater Recharge and Storage Variability in Southern Mali, Africa

Western  Sub- Saharan 
Africa, southern Mali, 
Niger river basin

Tropical (wet and dry), 
and partly dry (semiarid)

Clayey laterites overlying 
unconfi ned/ semi- confi ned 
fractured sandstone 
aquifers

Savanna, 
shrubland, 
agriculture

Drinking, agriculture, 
livestock

Quantity: 
recharge, 
storage

GRACE, 
Modelling, 
Monitoring

Chapter 4: Groundwater Discharge as Affected by Land Use Change in Small
Catchments: A Hydrologic and Economic Case Study in Central Brazil

South America, central 
Brazil, Pipiripau river 
basin

Tropical (humid) Deep, well drained soils 
(red oxisols and ultisols), 
underlain by quartzites, 
phyllites, and rhythmites

Agriculture, 
pastureland, 
natural savannah, 
woodland, 
grassland

Support aquatic 
ecosystems and 
hydrological services

Quantity: base 
fl ow discharge

Data 
correlation, 
empirical 
method

Chapter 5: Effects of Storm Surges on Groundwater Resources, North Andros Island, Bahamas

The Caribbean, The 
Bahamas, North 
Andros Island

Tropical (humid) Shallow, fresh 
groundwater lens in 
limestone and limesand 
aquifers

Forest, shrubland, 
rural communities 

Local drinking and 
domestic needs; 
primary water supply 
for New Providence 
Island

Quantity: 
recharge, storage 
Quality: 
saltwater 
intrusion, 
salinity, septic 
systems

Monitoring

(Continued)
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Chapter 6: Reducing Groundwater Vulnerability in Carbonate Island Countries in the Pacifi c

Central and southern 
Pacifi c Ocean, small 
island nations

Tropical/Sub- Tropical Shallow, fresh 
groundwater lens in 
permeable coral sand and 
karst limestone aquifers

Forest, shrubland, 
urban

Drinking, agriculture Quantity: 
recharge, 
abstraction, 
storage; 
Quality: saltwater 
intrusion

Modelling, 
Monitoring

Chapter 7: Groundwater Resources Increase in the Iullemmeden Basin, West Africa

West Africa, 
Nigeria and Niger, 
Iullemmeden Basin

Dry (semiarid) Sedimentary basin, largely 
unconfi ned. Several 
confi ned aquifers exists 
at depth. (Continental 
Terminal aquifer – 
unconfi ned)

Mainly rainfed 
agriculture, 
livestock breeding 
(in the North)

Drinking, livestock 
breeding. Use for 
irrigation very limited 
spatially

Quantity: 
groundwater 
dynamics and 
recharge

Remote 
sensing, 
subsurface 
geophysics, 
environmental 
geochemistry 
hydrodynamics, 
monitoring, 
numerical 
modeling at 
various scales

Chapter 8: Climate Change and its Impacts on Groundwater Resources in Morocco: the Case of the  Souss- Massa Basin

North Africa, 
Morocco,  
Souss- Massa basin

Dry (arid to semiarid) Shallow aquifer of the 
 Souss- Massa plain, 
coastal aquifer

Irrigated 
agriculture

Irrigation, drinking, 
industry

Quantity: 
storage, 
recharge 
Quality: 
salinization, 
nitrate

Trend analyses 
(precipitation 
and 
temperature), 
monitoring 
(gw level), 
hydrochemical 
and isotopic 
tracers
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Chapter 9: Vulnerability of Groundwater Quality to Human Activity and Climate Change and Variability, High Plains Aquifer, USA

North America, central 
United States, Great 
Plains province

Dry (semiarid) High Plains aquifer: 
primarily unconsolidated, 
unconfi ned aquifers

Irrigated 
and dryland 
agriculture, 
rangeland

Irrigation, livestock, 
drinking

Quality: nitrate, 
other chemical 
constituents 
Quantity: 
recharge, 
abstraction

Age dating, 
GIS, 
Modelling, 
Monitoring

Chapter 10: Groundwater Change in the Murray Basin from  Long- Term In-Situ

Monitoring and GRACE Estimates (Australia)

Southeastern 
Australia, Murray 
Basin

Dry (semiarid) Unconsolidated sediments 
and sedimentary rocks. 
Confi ned and unconfi ned. 
Specifi c aquifers: Murray 
Group, Pliocene Sands 
aquifer, Shepparton 
Formation 

Farming land, 
native and 
plantation 
forests, livestock 
production (cattle 
and sheep)

Irrigation, livestock, 
drinking

Quantity: 
recharge, 
discharge; 
Quality: 
salinization

GRACE, 
Monitoring

Chapter 11: Impact Assessment of Combined Climate and Management Scenarios on Groundwater Resources. The  Inca- Sa Pobla Hydrogeological Unit 
(Majorca, Spain)

Europe,  Mediterranean 
Balearic island, 
Majorca, Spain

 Mediterranean climate, 
temperate/semi-arid

Four different 
hydrostratigraphic units 
and three aquitard units, 
grouped into an upper and 
lower aquifer system 

Agriculture Irrigation, tourism, 
ecosystems

Quantity: 
recharge, 
discharge, 
exploitation

Modelling, 
simulations, 
management

(Continued )
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Chapter 12: The Effect of Climate and Sea Level Changes on Israeli Coastal Aquifers

 Mediterranean, coastal 
aquifers and Dead Sea, 
Israel

Mediterranean climate, 
dry (arid and semiarid)

Israeli coastal aquifer: 
inter- layered sandstone, 
calcareous sandstone, 
siltstone, and red loam
Dead Sea coastal aquifer:
Upper Cretaceous Judea 
Group Aquifer and the 
Quaternary alluvial 
coastal aquifer

Agriculture Irrigation, domestic Quantity: 
recharge 
Quality: 
saltwater 
intrusion, 
salinization

Modelling, 
simulations, 
monitoring

Chapter 13: Land Subsidence and Sea-Level Rise Threaten Freshwater Resources in the Coastal Groundwater System of the Rijnland Water Board, 
The Netherlands

Europe, Coastal 
groundwater system, 
Rijnland, The 
Netherlands

Temperate, Continental Quaternary deposits, 
intersected by loamy 
aquitards and overlain by 
a Holocene aquitard of 
clay and peat 

Agriculture Irrigation, domestic 
and industrial 

Quality: 
saltwater 
intrusion, 
salinization

Modelling, 
simulations

Chapter 14: Climate Change Impacts on  Valley- Bottom Aquifers in Mountain Regions: Case Studies from British Columbia, Canada

North America, 
western Canada, 
mountain regions 
British Columbia

Dry (semi-arid to arid) Okanagan Basin, Grand 
Forks:  valley- bottom 
unconsolidated aquifers

Forest, shrubland, 
urban

Drinking, agriculture, 
industry

Quantity: 
recharge

GCM 
downscaling, 
Modelling, GIS

Chapter 15: Possible Effects of Climate Change on Groundwater Resources in the Central Region of Santa Fe Province, Argentina

South America, 
Argentina, Santa Fe 
Province

Temperate (humid) Upper unconfi ned aquifer: 
aeolian sedimentary 
deposits  
Semi- unconfi ned aquifer: 
sands of fl uvial origin 

Agriculture, 
livestock, rearing

Drinking, food 
production (agriculture, 
livestock rearing), 
industry

Quantity: 
recharge, 
discharge 
Quality: 
chemical 
compound input, 
salinization

Modelling

Table 1.1 Continued
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Chapter 16: Impacts of Drought on Groundwater Depletion in the Beijing Plain, China

East Asia, China, 
Beijing Plain

Continental (dry) Sedimentary (alluvial), 
shallow aquifer mainly 
unconfi ned, deep aquifers 
confi ned

Agriculture, 
industry, drinking

Irrigation from shallow 
aquifer; drinking, 
industry mainly from 
deep aquifer)

Quantity: 
recharge, 
storage

Monitoring,  
modelling

Chapter 17: Possible Effects of Climate Change on Hydrogeological Systems: Results from Research on Esker Aquifers in Northern Finland

Europe, northern 
Finland

Continental (polar) Esker aquifers: 
unconsolidated, 
unconfi ned or confi ned

Forest, peatland Ecosystems, drinking, 
recreation

Quantity: 
recharge, 
discharge 
Quality: 
temperature, 
dissolved 
oxygen, salts

Monitoring, 
modelling

Chapter 18: Climate Change Effects on Groundwater in Permafrost Areas – Case Study from the Arctic Peninsula of Svalbard, Norway

Europe, Norway, 
Svalbard peninsula

Polar (arctic)  Sub permafrost 
groundwater

none (60% 
covered by 
glaciers, large 
part is declared 
National Park)

Drinking (very limited) Quantity: 
recharge, 
discharge 

Monitoring, 
rock cores, 
simulation and 
modelling

Chapter 19: Groundwater Management in Asian Cities under the Pressures of Human Impacts and Climate Change

Asian coastal cities: 
Tokyo, Osaka, Seoul, 
Taipei, Bangkok, 
Jakarta and Manila

Temperate, Continental 
Tropical

Coastal alluvial plain, 
urban subsurface soil

Urban Domestic use, industry Quantity: 
recharge, 
storage 
Quality: 
contamination

GRACE, 
modelling, GIS

(Continued )
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Chapter 20: Evaluation of Future Climate Change Impacts on European Groundwater Resources

Northern and southern 
Europe, centred on 
the Å (Denmark), 
Medway (UK), Seine 
(France), Guadalquivir 
(Spain) and Po (Italy) 
river basins

Temperate, Continental 
Mediterranean

River Å: glacial sands and 
gravels 
River Medway:
Cretaceous Chalk and 
Lower Cretaceous Sands 
River Seine: Cretaceous 
Chalk and Lower 
Cretaceous Sands 
River Guadalquivir: 
dolomitic limestone and 
alluvial deposits 
River Po: alluvial 
sediments

River Å: 
agriculture, 
industry 
River Medway: 
agriculture, 
pasture, urban 
River Seine: 
agriculture, urban, 
 semi- urban 
River Guadalquivir 
irrigated 
agriculture 
River Po: irrigated 
agriculture, urban, 
industry

Drinking water, 
irrigation

Quantity: 
recharge, 
water-stress

Modelling, 
simulations

Chapter 21: Sustainable Groundwater Management for Large Aquifer Systems: Tracking Depletion Rates from Space

North America, 
western US, 
California, Central 
Valley aquifer; and 
northern India

Central Valley: Temperate 
(Mediterranean 
climate); northern India: 
 Dry- Continental 

Central Valley and 
northern India: confi ning 
units and unconfi ned, 
semiconfi ned, and 
confi ned aquifers 

Agriculture Irrigated agriculture, 
drinking, and industry

Quantity: 
discharge, 
storage 

GRACE, 
monitoring, and 
modelling

Table 1.1 Continued
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Introduction 11

Tropical climate case studies (Chapters 2 to 6) include those from Africa (Uganda 
and Mali), Latin America (Brazil), the Caribbean (The Bahamas), and Pacifi c Island 
countries. Based on fi ndings from  south- western Uganda, Chapter 2 addresses whether 
intensive groundwater abstraction from weathered crystalline rock aquifers is a viable 
option to meet rapidly rising demand for domestic and agricultural water in  Sub- Saharan 
Africa. The chapter also analyses projections of climate change impacts on groundwater 
resources and discusses opportunities and risks of their application to inform  decision 
making. Chapter 3 describes the combined application of several methodologies, includ-
ing measured fi eld data, remote sensing, and modelling for estimating groundwater 
recharge and storage variability in southern Mali. The integration of these methods may 
be a promising tool for assessing groundwater resources in data scarce regions. The chap-
ter also provides a preliminary assessment of the impacts of future climate change on 
groundwater recharge. The case study from Brazil (Chapter 4) uses an empirical method 
to assess the hydrological and economical effects of  land- use change on groundwater dis-
charge in a small tropical catchment.

Groundwater is the main source of freshwater on many islands. The resource is 
particularly vulnerable to extreme climate events, sea-level rise, and  human- induced 
perturbations. Chapter 5 describes a storm surge from Hurricane Frances in 2004 that 
contaminated the groundwater supply on North Andros Island, The Bahamas. Chapter 6 
presents key climatic, hydrogeological, physiographic, and management factors that 
infl uence groundwater quantity and saline intrusion into freshwater lenses beneath small 
Pacifi c Island countries.

Dry (arid and semiarid) climate case studies (Chapters 7 to 10) focus on the effects 
of climate change and human activities on groundwater resources in Africa (Morocco, 
Niger, and Nigeria), the United States (US), and Australia. Chapter 7 describes large- scale 
land clearing in the southern part of the Iullemmeden Basin that experiences increased 
groundwater recharge and rising water levels over the past several decades. Management 
responses to outcropping water tables and salinization of soils are discussed. The 
Morocco case study (Chapter 8) analyses trends in temperature and precipitation and 
the effects of projected changes on groundwater recharge and water quality in the arid 
Souss- Massa Basin.

The quality of groundwater is often as critically important as its quantity in terms 
of groundwater sustainability. Chapter 9 presents the coupled effects of human and 
climate stresses on groundwater quality in the High Plains aquifer, which is the most 
heavily used aquifer in the US and supplies about 30% of the groundwater used for irri-
gation in the US. Focusing, in turn, mainly on groundwater quantity aspects, Chapter 10 
shows the complex and coupled effects of human activity (land clearing) on groundwa-
ter (increase of recharge and groundwater levels), and subsequent  multi- year drought 
(decrease of groundwater levels) in the Murray Basin in  south- eastern Australia. A com-
parison of borehole data with space gravimetry (GRACE) and soil moisture estimates 
from hydrological models is used to test the capability of the GRACE mission and pro-
vide regional estimates of change in groundwater storage so that it can be applied for the 
monitoring of insuffi ciently instrumented regions.

Temperate climate case studies (Chapters 11 to 15) include those from coastal 
aquifers in Spain, Israel, and The Netherlands, mountain regions of British Columbia, 
and the Santa Fe Province of Argentina. The Mediterranean region faces an increasing 
water demand for agriculture and tourism, while climate change projections forecast an 
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12 Introduction

increase of temperature, decrease of precipitation, and increased occurrence of extreme 
events. Chapter 11 analyses combinations of climate scenarios and management strate-
gies on the island of Majorca (Spain) in view of preserving groundwater resources under 
predicted climate change.

Seawater intrusion into coastal aquifers is a concern in the Mediterranean. 
Chapter 12 describes the coupled effect of climate and anthropogenic sea level changes 
on Israeli coastal aquifers of the Mediterranean Sea and the Dead Sea. Chapter 13 
presents the impacts of land subsidence and sea-level rise on freshwater resources 
in coastal groundwater systems of The Netherlands. In these systems, saline groundwater 
comes from the sea and from deep saline aquifers, and subsequently intrudes  near- surface 
coastal groundwater systems. The salinization of the subsoil is caused by  human- driven 
processes of land subsidence that have been going on for nearly a millennium.

Mountain watersheds or basins are unique  high- relief environments that are impor-
tant sources of water for local and downstream ecosystems and human population. 
Chapter 14 provides an overview of hydrogeological processes in temperate mountain 
regions as a basis for understanding how climate change may infl uence the groundwater 
systems. Case study examples of two  valley- bottom aquifer systems in southern British 
Columbia, Canada highlight the complex interactions that need to be considered for 
 climate change impact and adaptation assessment. Applying a modelling approach, the 
chapter explores recharge mechanisms and evaluates how the magnitude and timing of 
recharge may change under future climate conditions.

In the temperate central region of the Santa Fe Province in Argentina (Chapter 15) 
groundwater is the only source of water supply for all regional demands. The case 
study analyses available hydrogeological data to describe the aquifer system and quan-
tify present groundwater availability. Future recharge to the aquifer system is estimated, 
and incorporated into a numerical groundwater fl ow model to assess future groundwater 
availability for drinking and food production under different climate scenarios.

Continental climate case studies (Chapters 16 and 17) include those from China 
and Finland. Chapter 16 analyses the impacts of prolonged drought on groundwa-
ter resources in the Beijing Plain where the combined effects of decreasing natural 
recharge and increasing abstraction have caused rapid depletion of groundwater storage. 
The  chapter elaborates on direct and indirect impacts of climate change and proposes 
management responses based on simulations of groundwater depletion under various 
scenarios. Chapter 17 describes possible effects of climate change on esker aquifers in 
northern Finland. Eskers are an important source of potable groundwater in Finland and 
support many ecosystem services. However, groundwater in eskers is threatened by peat-
land drainage, agriculture, roads, and other land uses. This chapter describes the possible 
impacts of climate change and land use on esker groundwater systems with focus on the 
impact of peatland drainage in the esker discharge zone.

The polar climate case study (Chapter 18) is from Svalbard, Norway. Polar regions 
are sparsely populated, but have gained a lot of interest in the discussions about  climate 
change because  high- latitude areas are predicted to experience the most dramatic  global 
climate change in this century. Moreover, large parts of these areas are regarded as 
 pristine, with unique and highly specialized habitats for animals and plants. Groundwater 
forms part of this system that is – and will be – highly impacted by climate change. 
Chapter 18 presents a case study that examines climate change impacts on arctic  sub-
 permafrost groundwater from the Arctic Peninsula of Svalbard, Norway.
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Chapters 19 to 21 present case studies that encompass different climatic zones. 
Chapter 19 assesses the effects of climate change and human activities on urban sub-
surface environments and groundwater, which is an important but largely unexamined 
fi eld of  human- environment interactions. In this chapter, the subsurface environments 
of seven Asian coastal cities are studied with respect to water shortage, land subsid-
ence, groundwater storage and contamination, thermal anomalies, and the urban heat 
island effect.

Similar to other regions of the world, groundwater in Europe is a substantial 
 economic resource that is threatened by  over- abstraction and contamination from 
 surface- derived pollutants, which could be exacerbated by climate change. Chapter 20 
evaluates future climate change effects on European groundwater resources in fi ve study 
areas in northern and southern Europe, centred on the Å (Denmark), Medway (UK), 
Seine (France), Guadalquivir (Spain), and Po (Italy) river basins.

Chapter 21 describes the application of satellite gravimetry (GRACE) for character-
izing groundwater storage changes in large aquifer systems – a method that provides new 
opportunities for  water- resources monitoring, particularly in data sparse regions. Two 
case studies of groundwater depletion are presented, one in the relatively  data- rich Central 
Valley aquifer of California (US) and in the other in more  data- poor northern India.

The last chapter, Chapter 22, summarizes the main fi ndings of the book in terms 
of new scientifi c insight and policy recommendations. This chapter, in particular, is 
expected to be of great interest to water resource managers, planners, and decision mak-
ers entrusted with the management of a valuable resource. In the light of global change, 
and climate change in particular, groundwater will continue to be an important resource 
that supports human health and livelihoods and many natural ecosystems. A sound 
understanding of the resource and current and future pressures from climate and human 
activities are necessary to guide adaptive management towards  long- term groundwater 
sustainability.
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an informa business

Climate change is expected to modify the hydrological cycle and affect 
freshwater resources. Groundwater is a critical source of fresh drinking 
water for almost half of the world’s population and it also supplies irrigated 
agriculture. Groundwater is also important in sustaining streams, lakes, 
wetlands, and associated ecosystems. But despite this, knowledge about the 
impact of climate change on groundwater quantity and quality is limited.

Direct impacts of climate change on natural processes (groundwater 
recharge, discharge, storage, saltwater intrusion, biogeochemical reactions, 
chemical fate and transport) may be exacerbated by human activities 
(indirect impacts).  Increased groundwater abstraction, for example, may 
be needed in areas with unsustainable or contaminated surface water 
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groundwater resources are, therefore, closely linked to other global change 
drivers, including population growth, urbanization and land-use change, 
coupled with other socio-economic and political trends. Groundwater 
response to global changes is a complex function that depends on climate 
change and variability, topography, aquifer characteristics, vegetation 
dynamics, and human activities. 
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methods, and climatic settings that have been conducted globally under 
the framework of the UNESCO-IHP project Groundwater Resources 
Assessment under the Pressures of Humanity and Climate Change 
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policy makers towards adaptive management of groundwater sustainability 
under future climate change and variability.
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