

# Floods, Droughts and Risks in IWRM







#### Part 1

- 1. Extreme events: definitions
- 2. Flood and drought as hazards
- 3. Basics of risk analysis







#### "Extreme Events"



tornados



hurricanes













### "Extreme Events"



landslides





droughts



mudflows







## Flooding is a <u>natural</u>, weather induced event, BUT - impacted by human interference in:

- hydraulic characteristics of river channels
- flow regimes
- altering watershed (land and vegetation) conditions







#### Anthropogenic factors - watershed changes:

- deforestation
- overgrazing (often related)
- draining wetlands
- urbanization

Influence: likelihood, frequency, magnitude and impact of floods





#### Mudflows: worsen the damage from floods alone

- main factor is hydraulic high velocity and large mass
- more common in steep upper catchments
- made worse by deforestation, overgrazing, other land use changes, channel excavation, etc.





### **Definitions**

## Three main terms used is considering floods, droughts and other extreme events:

- 1. Risk
- 2. Hazard
- 3. Vulnerability







## Definition of Risk

"Risk is the potential that a chosen action or activity will lead to a loss."













## Definition of Risk

"Risk is the potential that a chosen action or activity will lead to a loss."















## **Definition of Risk**

"Risk is the potential that a chosen action or activity will lead to a loss."











## **Definition of Hazard**

Hazard is a measure of the potential for harm, or loss.

A flood plain is an area of <u>hazard</u>. It becomes a <u>risk</u> if

you choose to live there.....









#### .....and people <u>do</u> choose to live there.









## .....and people <u>do</u> choose to live there.









## Why do people live near rivers on flood plains?

- access to water
- good waste disposal system
- level areas for agriculture
- trees (shade, wood)
- transportation, amenity
- flood risk accepted for these benefits
- climate change now increasing flood risk







## Why do people live in drought prone areas?

- people live where they can grow food
- to some extent <u>every area</u> is drought prone
- some areas more risky than others
- area may not have been so bad when people first settled
- Land pressure moves people into higher risk areas
- climate change now increasing drought risk







## Definition of Vulnerability

<u>Vulnerability</u> is a measure of person's or a society's ability to cope with a damaging event.

#### So:

a flood plain is an area of <u>hazard</u>. It becomes a <u>risk</u> if you choose to live there. You are <u>vulnerable</u> to the flood <u>risk</u> if the <u>hazard</u> is high and your ability to cope is low.







## Definition of Vulnerability

Poor people tend to be more <u>vulnerable</u> to the impacts of flood or drought because they lack the ability to rebound from the event.

- Social vulnerability loss of life, damage to person, health impacts, reduction of social services
- Economic vulnerability loss of property, loss of income







### Risk Analysis

Risk is about the <u>probability</u> of uncertain future events

Risk analysis is a mathematical approach to understanding the risk of exposure to hazard:

Risk = p(event occurring) X (cost if the event occurs)
= Expected Damage







## **Analyzing Risk**

#### Three components:

- 1. flood magnitude how big is it?
- 2. *flood frequency* how often does a flood that big happen?
- 3. flood damage what is the amount of damage when that flood happens?







## Measuring Flood Magnitude

#### **River Flow Data – Water Levels**





Automatic and Manua









## Other Sources of Information for Determining Flood Risk

#### Magnitude Information – hydrological

- Stream gauging records
- Rainfall records
- Historic information (high water marks local knowledge)
- Marking of flood levels after an event
- Newspaper accounts, diaries
- Physical and geomorphic evidence (erosion, boulders, debris
- Regional information (evidence from similar rivers in the area







## Measuring Flood Frequency



Annual flood peak graph



#### Flood Frequency Curve







## Measuring Flood Damage



Water surface elevation (m)







## Factors in Flood Damage

- Magnitude
- Timing
- Location
- Population
- Land value









## Other Sources of Information for Determining Flood Risk

#### Risk Information – monetary

- Insurance information
- Estimation of crop value at time of flood
- Estimate of replacing houses and other property
- Cost of replacing civic infrastructure
- Estimates of lost productivity
- Cost of disaster recovery







## Other Sources of Information for Determining Flood Risk

#### Risk Information – social

- Increased poverty numbers of people or severity
- Loss of access to social services and estimated costs
- Damage due to loss of livelihood permanent or temporary
- Cost of losses due to reduced health
- Cost of health care itself





### Risk Analysis

#### Result of analysis: Expected Damage Functions

| Return  | Magnitude | Damage       |
|---------|-----------|--------------|
| Period  |           |              |
| (years) | (m³/sec)  | (\$ million) |
| 1:1     | 25        | 0            |
| 1:2     | 50        | 0.5          |
| 1:5     | 150       | 1.0          |
| 1:25    | 500       | 2.0          |
| 1:50    | 750       | 6.0          |
| 1:100   | 2000      | 12.0         |
| 1:1000  | 10000     | 25.0         |







#### **Droughts and Risk**

#### **Definitions:**

- Drought a condition of the <u>cumulative</u> impacts of several dry years on water users and on the general population.
- Dry Year dry years occur, but are not droughts. Irrigation planning is based on a 1:5 year dry period.







#### **Droughts and Risk**

• *Impacts or damage* – water availability, food security, health, livelihoods, environment.

Damage tends to be widespread, covering countries, even

continents









# TWRM ACADEMY CORDARATION FOR A SUSTAINABLES

#### **Droughts and Risk**

- **Drought magnitude** a condition which worsens with time, because of the time.
- Drought extent droughts tend to cover large areas at one time because the weather phenomena which cause them are large scale.

Drought frequency – similar to floods but the statistics are

different.

Droughts tend to occur in cycles.







#### **Risk Analysis for Droughts**

Similar to analysis for floods

Risk = p(event occurring) X (cost if the event occurs)

- More widespread
- Often more people affected
- Costs or losses tend toward social impacts







#### Part 2

- 1. Flood management: reducing risks and mitigating damage
- 2. Drought management approaches
- 3. Case studies Red River Flooding







### Managing Flood Risk

#### Structural measures:

- Dams: specific to flood peak reduction
- Dams: multiobjective
- Flood embankments
- Channel 'improvements'
- Flood plain inundation







## Managing Flood Risk

#### Structural measures:













#### Managing Flood Risk

#### Non-structural measures:

- Flood mapping and zoning
- Flood zones and regulation
- Flood forecasting
- Early warning







#### **Integrated Flood Management:**

Part of a <u>national</u> approach to flood management

<u>Aim:</u> to improve the function of the river basin as a whole, recognizing that losses may occur due to interactions between the water and land environments and people.

Objective: to reduce losses from floods while optimizing the efficient use of flood plains.







Integrated Flood Management is forward planning

- doing what is possible before it happens

Reducing risk and vulnerability:

- Maintaining safety in a flood plain
- Flood zoning must be area specific
- Community based and participatory







Integrated Flood Management is forward planning

- doing what is possible before it happens

Reducing risk and vulnerability:

- Early warning
- Disaster preparedness plans in place must be area specific
- Community based and participatory







Integrated Flood Management is forward planning

- doing what is possible before it happens

#### Reducing flood magnitude:

- land use planning and regulations
- includes river channel
- structures in place







Integrated Flood Management is forward planning

#### During the event:

- Ensuring flood warning is received and understood
- Enacting the disaster preparedness plan
- Maintaining communications







Integrated Flood Management is forward planning

After the event: part of the disaster preparedness plan

- Emergency services health and welfare (rapid)
- Restoration of services: water, communications, transport (relative short term)
- Rehabilitation of affected area (may be years)







### Flood Management

| Strategy                           | Options                           |  |
|------------------------------------|-----------------------------------|--|
| Reducing Flooding                  | Dams and reservoirs               |  |
|                                    | Dikes, flood embankments          |  |
|                                    | High flow diversions              |  |
|                                    | Catchment management              |  |
|                                    | Channel improvements              |  |
| Reducing Susceptibility to Damage  | Flood plain regulation            |  |
|                                    | Development policies              |  |
|                                    | Design and location of facilities |  |
|                                    | Housing and building codes        |  |
|                                    | Flood-proofing                    |  |
|                                    | Flood forecasting and warning     |  |
| Mitigating the Impacts of Flooding | Information and education         |  |
|                                    | Disaster preparedness             |  |
|                                    | Post flood recovery               |  |
|                                    | Flood insurance                   |  |
| Preserving Natural Resources       | Flood plain zoning and regulation |  |







#### Integrated flood management:

- Combining structural and non-structural
- Requires good management, good institutions
- Community participation (flood zone mapping, early warning, disaster preparedness plan)







#### **Governance and Institutions:**

- Capacity of government institutions (including local)
- Flood management plans in place for mitigation, damage reduction, rescue, rehabilitation, etc.
- Laws and regulations, especially zoning







#### Managing droughts - different from floods in:

- More widespread
- Often many people affected, nowhere for them to go
- Most affected people are poor
- Primary losses are social life, livelihood, health

#### Also:

Warning time is much longer







Measures for drought management:

Before the event occurs:

Early warning:

- some expectation due to knowledge of cycles and drought prone areas
- drought preparedness plans mostly social and emergency







Measures for drought management:

Through the event (long warning time):

- Initial stage concern but not yet damaging reduce water use
- Medium stage damaging but not yet disaster water transfers (unlikely)
- Long term disaster procedures for saving lives food and water aid







Measures for drought management:

After the event:

- Restoration livelihoods
- Restoring land

















#### **Historical Red River Floods**

| Year | flow<br>(m³/sec) | T <sub>r</sub> | Year          | flow<br>(m³/sec) | T <sub>r</sub> |
|------|------------------|----------------|---------------|------------------|----------------|
| 1826 | 6371             | 667            | 1966          | 2497             | 14             |
| 1852 | 4672             | 150            | 1969          | 2143             | 8              |
| 1861 | 3540             | 45             | 1970          | 2251             | 10             |
| 1882 | 2421             | 13             | 1974          | 2718             | 19             |
| 1892 | 1974             | 7              | 19 <b>7</b> 9 | 3030             | 27             |
| 1897 | 1954             | 7              | 1987          | 2350             | 12             |
| 1904 | 2209             | 9              | 1996          | 3058             | 25             |
| 1916 | 2427             | 13             | 1997          | 4615             | 110            |
| 1948 | 2124             | 8              | 1999          | 2183             | 9              |
| 1950 | 3060             | 28             | 2006          | 2802             | 16             |
| 1956 | 1974             | 7              | 2009          | 3622             | 48             |
| 1960 | 1965             | 7              | 2010          | 3962             | 75             |
|      |                  |                | 2011          | 4223             | 120            |







| Major Floods                       |    |  |  |  |
|------------------------------------|----|--|--|--|
| Since the first flood record: 1826 | 25 |  |  |  |
| In 20th century                    | 19 |  |  |  |
| In last half century               | 13 |  |  |  |
| In last 25 years                   | 8  |  |  |  |
| This century so far                | 4  |  |  |  |

Flood Magnitude: 4 of top 10 floods in this century







Why do people stay?





**Rich farmland** 































- Transboundary river
- Spring floods
- Flows south to north









### Ice Jamming

- Increases flood crest
- Increases risks
- Increases damage













#### Flood forecasting and early warning:

- Cooperative across the border
- Forecasting starts in late autumn for spring floods
- Revisions through the winter
- Intensity and frequency of forecasts increases as flood period approaches.
- Daily and hourly if a flood is expected TV, radio, internet







# Flood preparedness: before





**Design Flood 1:250 years** 







Flood preparedness - before:













#### Flood preparedness: during

**Volunteers** assist









#### Transboundary flood forecasting:

**US National Weather Service** 

http://www.crh.noaa.gov/fgf/

Manitoba government flood service

http://www.gov.mb.ca/mit/floodinfo/



