Volta Annex A Incremental Cost

Broad Development Goal

A1. The six riparian countries of the Volta River Basin, face serious environmental degradation, much of it Transboundary in nature. These countries of the Volta River Basin recognise the need to come together to protect the basin environment and have signed a declaration to join their efforts for integrated management of the ground and water resources.

The initiatives undertaken by these countries emphasise priority issues identified as:

- 1. Land degradation (soil degradation, intense erosion and desertification process)
- 2. Water scarcity
- 3. Loss of biodiversity
- 4. Flooding
- 5. Water-borne diseases
- 6. Growth of aquatic weeds
- 7. Coastal erosion
- 8. Water quality degradation

This project focuses on the identified transboundary priority concern water scarcity.

A2. The broad development goal of this project is to enhance the ability of the countries to plan and manage the Volta catchment areas within their territories and aquatic resources and ecosystems on a sustainable basis.

Baseline

- A3. The Volta Basin is an important resource. Its freshwater and coastal ecosystems provide living resources and habitat for a number of globally threatened species. Human forces have modified the critical ecosystems over a long period of time and this is attributed to the growing population, as well as increasing pressure from agriculture and overexploitation of natural resources including water resources. The result is the continuing biodiversity loss and wetlands with diminished biodiversity and productivity.
- A4. The six riparian countries are signatories to many, but not all, international environmental conventions and agreements, as indicated in the TDA (Biological Diversity, Ramsar, Climate Change, Montreal Protocol, CITES, World Heritage, and Desertification). Unfortunately, neither the capacity nor the information base is available in most of the countries to properly carry out the required activities to implement the conventions in the Volta Basin.
- A5. Regional collaboration and monitoring in the area of Transboundary issues is weak. No framework exists to manage the Volta Basin on a regional level. National legal and regulatory efforts to manage the basin resources are fragmented and often ineffective. What is required is a mechanism to provide this collaboration in the form of a project coordination unit, a regional framework for water management and regionally agreed environmental monitoring protocols amongst others. The unit will also link up with other river basin projects in the sub-region to cooperate and to share experiences.
- A6. A substantial proportion of the assured co-financing by governments is derived from the existing staff and recurrent budgets of the involved ministries and government departments. It is anticipated that project activities will strengthen the influence of these ministries at a national level and hence encourage substantial increases in the recurrent budgets of the departments concerned in the future. The countries already contribute financially to regionally coordinated actions, which are anticipated to increase as a consequence of this project.

Global Environmental Objectives

- A7. The global environmental objective of this project is to enhance the capacity of the countries to plan and manage the Volta catchment areas within their territories and aquatic resources and ecosystem in a sustainable basis.
- A8. The preliminary TDA presents information indicating that the globally significant biodiversity of the basin includes several endangered mammals, reptiles and birds. To restore and conserve this biodiversity in the basin there must be rehabilitation and management of the degraded environment. Also National Action Plans and a Regional Protocol on water and land-based sources must be agreed upon and implemented.
- A9. By providing a framework for effective management of the Basin's water resources, the project will benefit the global environment in terms of the globally significant biodiversity conserved and habitat restored.
- A10. This project will create the necessary conditions and framework for concerted actions to protect globally important environmental resources. The present project is consistent with the GEF's strategic emphasis on International Waters (GEF Operational Programme #9) and Biodiversity.

GEF Project Activities

- A11. Under the alternative GEF scenario, the development processes and forces are reshaped in order to safeguard the globally important environment. This would be accomplished by GEF provision of catalytic support for incremental costs associated with the revision of the preliminary Transboundary Diagnostic Analysis (TDA) and Strategic Action Programme (SAP) for the Volta River Basin. The SAP consists of a set of legal, policy and institutional reforms and investment, together with capacity building and institutional strengthening, to address the priority transboundary concern of water and land based sources as identified in the preliminary TDA.
- A12. In particular, the project will provide technical assistance to develop both national and regional capacities for to prepare the final SAP. The final SAP, when prepared by the project, will rely on the cost-effectiveness of joint efforts made by the participating countries. In addition, cooperative programmes in data sharing and legislative reforms will be conducted to enhance regional collaboration to further develop the SAP and the TDA in the project.
- A13. The GEF alternative extends the baseline activities in ways that directly enhance the management and conservation of the coastal and freshwater resources of the Volta River Basin. It would greatly facilitate the abilities of cooperating countries to address transboundary environmental issues and common natural resources management concerns at a regional level. The GEF alternative would allow for the realisation of a dynamic action-oriented work programme for further development of the SAP, to be undertaken on an accelerated basis with support from a variety of sources. These goals would be applied through support for the following specific project components:
- 1. Build capacity and create a regional institutional framework for the effective management of the Volta Basin;
- 2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas;
- 3. Initiate national and regional measures to combat transboundary environmental degradation in the Volta Basin.

A14. This project has leveraged approximately **US\$ 10,374,040** (7,729,040 from countries incl. PDF-B phase, plus 85,000 from UNEP incl. PDF-B phase , plus 1,500,000 from EU, plus 1,000,000 from CIDA, plus 60,000 from Hungary and the Czech Republic) from governments to finance the activities of the project including logistical support and personnel, set-up institutional arrangements, provide sourcing of information, and support consultations, meetings and missions. The participating states have provided and confirmed estimates of their co-financing to the project as follows:

Total	US\$	10,374,040
The Czech Republic	US\$	50,000
Hungary	US\$	10,000
CIDA-indicative	US\$	1,000,000
EU - indicative	US\$	1,500,000
UNEP	US\$	85,000
Countries during PDF-B phase	US\$	90,000
Togo	US\$	777,460
		541,452
Mali	US\$	* *
Ghana	US\$	3,888,270
Côte d'Ivoire	US\$	550,000
Burkina Faso	US\$	1,463,658
Benin	US\$	418,200

- A15. In addition to this baseline and co-financing, ongoing activities by UNEP in the region will contribute to the Volta Basin programme.
- A16. Figures on co-financing of from EU, CIDA, Hungary and the Czech Republic are indicative and will be confirmed during Appraisal phase based on final agreements with donors/partners. More details are given in the Project Brief (para 57).

INCREMENTAL COST MATRIX

Component	Activity	Cost Category	Cost US\$	Domestic Benefits	Global Environmental Benefits
1. Build capacity and create a regional institutional framework for the effective management of the Volta Basin	1.1. Establish the Project Management and coordination mechanism.	Baseline	99,857	Each country has its own system of management and link to the project	Regional benefits cannot be accrued when there is no coordination
		Alternative	2,508,201	The establishment of a common project management and coordination mechanism will ensure efficiency in project management.	Regional management and coordination mechanism will ensure joint actions for achieving common goals
		Increment GOV Co-finance GEF Co-finance	1,113,444 1,294,900		
1. Build capacity and create a regional institutional framework for the effective management of the Volta Basin	1.2. Determine and satisfy training needs in the region (focusing on water scarcity)	Baseline	2,493,051	The training and educational programmes in each country are based on national priorities and subject to the dictates of national budget	No systematic and coordinated training and education on land and water issues exists at the moment
		Alternative	3,362,616	The project would develop national capacity for integrated land and water resource management with a focus on water scarcity	Training and education will enhance the capacities of participating countries and equip them with the requisite knowledge in addressing issues relating to land and water
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	286,145 283,420 300,000		
Build capacity and create a regional institutional framework for the effective management of the Volta Basin	1.3. Identify, strengthen and involve stakeholders	Baseline	793,344	Most of the countries have some level of stakeholder participation in water and land management issues	Weak stakeholder participation in decisions relating to land and water issues results in disparate public interest for action
		Alternative	1,979,302	High level of stakeholder participation will strengthen ownership of environmental decisions and ensure transparency in the planning and execution of project activities for long- term sustainability	High level of stakeholder participation enhances social, environmental, and financial sustainability and global benefits of new legislation on land and

Component	Activity	Cost Category	Cost US\$	Domestic Benefits	Global Environmental Benefits
					water projects
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	267,398 618,560 300,000		
1 Build capacity and create a regional institutional framework for the effective management of the Volta Basin	1.4. Establish a river basin management framework	Baseline	20,897	Not part of baseline programme	Not part of baseline programme
		Alternative	271,505	Countries will benefit by having their own river basin management framework	Regional river basin management framework will be achieved by developing a regional institution that would regulate human activities in the Volta Basin
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	92,928 57,680 100,000		
Build capacity and create a regional institutional framework for the effective management of the Volta Basin	1.5 Develop databases and environmental monitoring systems	Baseline	2,370,660	Each country has its own database and environmental monitoring system	Some data are available for global assessment, though they are only weakly comparable
		Alternative	3,144,137	Countries will have in place a common database to serve as easy reference point and for easy comparability as well as common system of environmental monitoring for easy networking	Global benefit will accrue from building a comprehensive regional database and establishing efficient environmental monitoring systems based on a common methodology
		Increment GOV Co-finance GEF Co-finance	374,747 398,730		
Build capacity and create a regional institutional framework for the effective management of the Volta Basin	1.6. Establish regional networks and information exchange mechanisms	Baseline	9,396,776	Not part of baseline activities	Not part of baseline activities
		Alternative	10,473,449	Countries will be able to exchange	Regional networks and

Component	Activity	Cost Category	Cost US\$	Domestic Benefits	Global Environmental Benefits
				environmental data and information at national levels through newsletters, web-site informational package, etc.	information exchange would be enhanced through newsletters, web-site informational package, etc.
		Increment GOV Co-finance GEF Co-finance UNEP Co-finance CIDA, EU Co-finance	790,773 125,900 60,000 100,000		
2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	2.1 Finalize and agree on geographically specific, quantitative TDA	Baseline	908,807	No baseline data is available	No baseline data is available
		Alternative	1,602,464	An adequate understanding of present ecological situation in each country will guide management options	Regional benefits will accrue by agreeing on a common regulatory framework as a basis for action
		Increment GOV Co-finance GEF Co-finance	300,357 393,300		
2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	2.2. Assist countries in developing National Action Plans (NAP) for Volta River to formulate national priorities	Baseline	3,830,050	Only a few of the riparian countries have National Action Plans, due to lack of funding	Regional Assessment will be difficult since most of the countries have no effective national action plans
		Alternative	4,538,078	A National Plan of Action will serve as the guide for the countries to manage the river basin in a more sustainable manner	A Regional Plan of Action would enhance each country's commitment to controlling land-based activities that contribute to transboundary water degradation
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	247,548 60,480 400,000		
2. Develop regional policy,	2.3. Develop	Baseline	75,274,905	Most countries at present have their	Regional benefit cannot

Component	Activity	Cost Category	Cost US\$	Domestic Benefits	Global Environmental Benefits
legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	management plans and strategies for addressing priority transboundary concerns			own management plans and strategies	accrue where management plans are not harmonised
		Alternative	75,781,375	A standardised plan and strategy for restoring ecological integrity of the Volta Basin would enhance better coordination and law enforcement	Regional actions will benefit through standardised plan and strategy for restoring ecological integrity of the Volta Basin
		Increment			
		GOV Co-finance	275,010		
		GEF Co-finance	131,460		
2.5. 1. 1. 1.	2.4.4	CIDA, EU Co-finance	100,000		
2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	2.4. Agree regionally on the appropriate mechanism for the extraction of river water and the control of river flow	Baseline	45,270	Agreements on water extraction at the national levels are limited and yet to be developed	No agreement on water extraction at the regional level has yet been developed
		Alternative	278,694	National agreements on water extraction would benefit countries ensuring judicious usage for and avoiding unnecessary wastage	Regional agreements for water extraction will enhance even distribution and ensure sustainable use of water
		Increment			
		GOV Co-finance	85,004		
		GEF Co-finance	48,420		
2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	2.5. Conduct legal and institutional review of water and land tenure laws	CIDA, EU Co-finance Baseline	100,000 6,662,145	Not part of baseline programme	Not part of baseline programme
as a motional constant areas		Alternative	7,048,712	Identifying gaps in laws and regulations through reviews would assist countries in harmonising and strengthening these laws	Regional benefits will accrue by strengthening and harmonizing existing laws
		Increment GOV Co-finance	205,227		

Component	Activity	Cost Category	Cost US\$	Domestic Benefits	Global Environmental Benefits
		GEF Co-finance	181,340		
2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	2.6. Develop and ratify a convention/protocol for basin management	Baseline	62,950	Not a part of the baseline programme	Not a part of the baseline programme
		Alternative	295,374	Countries would appreciate the benefit of participating in a regional convention, and assisting in developing legal basis for the establishment of a basin-wide framework	Global benefits will arise from subscription of the riparian countries to a regional convention
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	64,604 67,820 100,000		
2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	2.7 Enhance and develop legal basis and policy framework to sustain ably manage the land resources of the Volta Basin	Baseline	4,626,410	Not a part of the baseline programme	Not a part of the baseline programme
		Alternative	6,747,507	Countries will benefit by operating within a regulatory framework for sustainable management of the Volta basin	Regional benefits would accrue from enforcing the sustainable management of the Volta basin through legal and policy framework since the ecological integrity of the basin would be maintained
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	1,954,477 66,620 100,000		
3. Initiate national and regional measures to combat transboundary environmental degradation in the Volta Basin	3.1 Development of guidelines for the management of land and water resources based on effective regional EIA processes	Baseline	537,462	Not a part of the base line programme	Not a part of the baseline programme
		Alternative	1,337,112	A regional EIA process will enable countries to better express their	Broad input to major developments having

Component	Activity	Cost Category	Cost US\$	Domestic Benefits	Global Environmental Benefits
				opinions and concerns on development projects that may have impacts of transboundary nature on their countries	strong Transboundary impacts would be assured by the regional EIA process
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	443,590 156,060 200,000		
3. Initiate national and regional measures to combat transboundary environmental degradation in the Volta Basin	3.2. Develop and implement 3 replicable demonstration projects	Baseline	1,330,772	Not many National activities of this nature take place in baseline conditions	Not many Regional activities of this nature take place in baseline conditions
		Alternative	2,607,948	Experience from demonstration projects in the region would be shared and made widely available at the national level to help in making investment decisions for addressing priority transboundary concerns under the Plans of Action	Regional Plan of Action will benefit from having standardised and demonstrated methods for addressing priority transboundary concerns
		Increment GOV Co-finance GEF Co-finance Hung. Co-finance Czech Co-finance CIDA, EU Co-finance	382,156 535,020 10,000 50,000 300,000		
3. Initiate national and regional measures to combat transboundary environmental degradation in the Volta Basin	3.3. Agree on performance indicators through a broad stakeholder process and a process to monitor those indicators	Baseline	637,680	Countries have their own programs for water quality assessment and monitoring and no performance indicators exist for the project	Regional activities are hindered because of inconsistencies in national approaches to water quality assessment and monitoring
		Alternative	1, 655,436	Countries will benefit from monitoring undertaken as a part of the evaluation process for the project	Regional activities will benefit from uniform basin wide approaches assessing the effectiveness of the project using performance indicators
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	557,456 360,300 100,000		
3. Initiate national and	3.4. Coordinate and	Baseline	2,230,170	Countries not sufficiently collaborating	Regional activities risk

Component	Activity	Cost Category	Cost US\$	Domestic Benefits	Global Environmental Benefits
regional measures to combat transboundary environmental degradation in the Volta Basin	collaborate with other Sahel basin projects, with the GCLME and with other complementary projects in the region.			with other projects	duplication if collaboration does not take place
		Alternative	2,945,886	Countries will benefit from knowledge and experienced gained from collaborating with other projects	Maximum environmental benefit will be gained from the projects in the region and duplication will be minimized
		Increment GOV Co-finance GEF Co-finance CIDA, EU Co-finance	198,176 217,540 300,000		

BASELINE AND INCREMENTAL COSTS AND DOMESTIC ENVIRONMENTAL BENEFITS (SUMMARY)

Component	ACTIVITY	Baseline (B)	Alternativ e (A)	Inc	crement(A-	B)
				Gov'ts	Other	GEF
1: Build capacity and		99,857	, ,	1,113,444		1,294,900
create a regional	1.2 Determine and satisfy training needs in the region	2,493,051			300,000	283,420
institutional	1.3 Identify, strengthen and involve stakeholders	793,344	1,979,302	267,398	300,000	618,560
framework for the	1.4 Establish a river basin management framework	20,897		92,928	100,000	57,680
effective	1.5 Develop databases and environmental monitoring systems	2,370,660	3,144,137	374,747		398,730
management of the	1.6 Establish regional networks and information exchange mechanisms	9,396,776	10,473,449	790,773	160,000	125,900
Volta Basin	TOTAL					
		15,174,585	21,739,210	2,925,435	860,000	2,779,190
	Total Benin	209,600		186,300		
	Total Burkina Faso	1453,566		691,534		
	Total Cote d'Ivoire	175,000		180,000		
	Total Ghana	11,449,800		874,350		
	Total Mali	153,809		277,691		
	Total Togo	1,732,810		715,560		
	Total Objective	15,174,585	21,739,210	2,925,435	860,000	2.779.190

Component	ACTIVITY	Baseline (B)	Alternativ e (A)	Inc	rement(A-I	3)
				Gov'ts	Other	GEF
1 6	2.1 Finalize and agree on geographically-specific quantitative TDA	908,807	1,602,464	300,357		393,300
	2.2 Assist countries in developing National Action Plans (NAP) for				400,000	
regulatory	Volta River	3,830,050	4,538,078	247,548		60,480
frameworks for	2.3 Develop management plans/strategies for addressing priority				100,000	
addressing transboundary	transboundary concerns	75,274,905	75,781,375	275,010	100.000	131,460
	2.4. Develop basin wide agreement for sharing of water and control of	45.070	270 (0.4	0.5.00.4	100,000	40.400
concerns in the Volta Basin and its	river flow regimes	45,270	278,694	85,004		48,420
downstream coastal	2.5. Conduct legal and institutional review of water and land tenure					
areas.	laws	6,662,145	7,048,712	205,227		181,340
	2.6 Develop and ratify a convention/protocol for basin management	62,950		64,604	100,000	67,820
	2.7. Enhance/develop regional regulations and policies to sustainably	4,626,410	6,747,507		100,000	66,620
	TOTAL		96,292,204		800,000	949,440
	Total Benin	224,000		101,900		
	Total Burkina Faso	22,197,967		444,249		
	Total Cote d'Ivoire	130,000		170,000		
	Total Ghana	64,616,000		2,238,900		
	Total Mali	75,870		136,978		
	Total Togo	4,166,700		40,200		
	Total Objective	91,410,537	96,292,204	3,132,227	800,000	949,440

Component	ACTIVITY		Alternativ e (A)	Inc	crement(A-	B)
		(B)	` `	Gov'ts	Other	GEF
3: Initiate national	3.1 Develop guidelines for the management of land/water based on effe				200,000	
and regional	regional EIA	537,462	1,337,112	443,590		156,060
and regional	3.2 Develop and implement 3 replicable demonstration projects	1,330,772	2,607,948	382,156	360,000	535,020
measures to combat	3.3 Agree on performance indicators through a broad stakeholder				100,000	
transboundary	process		1, 655,436	557,456		360,300
	3.4 Coordinate and collaborate with other Sahel basin projects and with				300,000	
environmental	the GCLME	2,230,170	2,945,886	198,176		217,540
degradation in the	TOTAL	4,736,084	8,546,382	1,581,378	960,000	1,268,920
Volta Basin.						
	Total Benin	152000		130,000		
	Total Burkina Faso	118,000		327,875		
	Total Cote d'Ivoire	60,000		200,000		
	Total Ghana	2,469,160		775,020		
	Total Mali	70,224		126,783		
	Total Togo	1,866,700		21,700		
	Total Objective	4,736,084	8,546,382	1,581,378	960,000	1,268,920
						118\$ 25 000

PDF-A: US\$ 25,000 PDF-B: US\$ 347,500 Project Execution Costs: US \$ 349,830 Total Project Costs: US\$ 5,719,880

Intervention Logic	Objectively Verifiable Indicators	Sources of Verification	Assumptions and Risks
Long-term Objectives Enhance the ability of the riparian countries to plan and manage the Volta catchment areas within their territories and aquatic resources and ecosystems on a sustainable basis, by achieving sustainable capacity and regional institutional frameworks for effective management; developing national and regional priorities; and effective regulatory, legal and policy frameworks as a basis for action as well as initiating national and regional measures to achieve sustainable ecosystem management	 Regional Coordination Unit set-up by end of year 1; National and regional frameworks in place Improved national and regional capacities for effective environmental management of land and water degradation 	 RCU and other project documents Steering Committee (SC) annual reports RCU documents and technical reports. Working group reports. 	Project capacity to adequately develop and implement the needed national and regional coordination and communication frameworks Political will of riparian countries to continue to give priority to sustainable development and wise environmental management. Changes in economic, political and social conditions that may derail national commitments Extreme climatic events reducing or greatly increasing the availability of water
Project purpose Formulation of a Transboundary Diagnostic Analysis (TDA) and assist countries sharing the Volta basin to develop a regionally agreed Strategic Action Programme (SAP) for the integrated management of the Volta River Basin addressing the transboundary priorities with policy/legal/institutional reforms and investments	 TDA available and accepted Revised SAP available and endorsed at Ministerial level Agreed set of environmental indicators (process, stress reduction, and environmental status) for monitoring National Plans of Action for countries 	 TDA published and broadly disseminated SAP endorsed by countries with national and donor commitment to funding SAP and Workplan elements RCU and technical documents National Action Plans, RCU and technical reports. 	Riparian countries failing to participate fully and actively to ensure project success. GEF funds not adequately complemented by other donors and/or by country commitments The monitoring and evaluation program will provide technical information to assess the impact of to fine-tune future actions.

Component 1: Build capacity and create a regional institutional framework for the effective management of the Volta Basin	Objectively Verifiable Indicators	Sources of Verification	Assumptions and Risks
Sustainable framework for long-term management of the Volta Basin developed including TDA updated	 Updated TDA Country based and regional workshops RCU. SC. NFP and NIC created and project staff employed Effective project coordination and information exchange at all levels 	 TDA published and broadly disseminated Executing Agency Records National Focal Points and National Implementation Committee reports 	Riparian countries failing to participate fully and actively to ensure project success. GEF funds not adequately complemented by other donors and by country commitments Clear line of responsibility will ensure project implementation Willingness to commit physical space and other resources by host nation for RCU Willingness of national governments to provide space for NIC activities
Convention/protocol for basin management developed	Signed protocol for basin management	Policy and legislation documents and endorsed documents	Political interference in the approved project will hamper success

Component 1: Build capacity and create a regional institutional framework for the effective management of the Volta Basin	Objectively Indica		Sources of Verification	Assumptions and Risks
Enhanced capacity for sustainable environmental management including education, training, institutions and monitoring developed	national beneen enhanced trainmanagement Development modules and materials relet training of keen training	regional level acity to create fits through asboundary strategies of replicable other training vant to the y stakeholders ampaigns reganised and the project owledge and local of land and	National Focal Points and National Implementation Committee reports Course module documents, training materials and public awareness campaign reports Approved work plan and training schedule for each country Trained stakeholders	Countries see long term benefit to land/water degradation mitigation efforts Countries and key stakeholders not willing to participate fully in training and awareness campaigns Project capacity to adequately develop and implement the needed national and regional coordination and communication frameworks
Stakeholders fully involved and regional networks and data exchange mechanisms developed	workshops • Increased par involvement stakeholders water degrad:	of land and ation issues areness among lers on the alologies and gate land &	stakeholder groups	Willingness of key stakeholders to participate in project activities Project capacity to adequately support the needed national and regional coordination and communication frameworks

Component 2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	Objectively Verifiable Indicators	Sources of Verification	Assumptions and Risks
OUTPUTS • Ratified convention/protocol on the Volta basin	 Country based and regional workshops Signed convention/protocol on the Volta Basin 	 Workshop reports at RCU Signed document RCU and project documents 	Political will of riparian countries to continue to give priority to sustainable development and wise environmental management.
			Participating countries will appreciate the advantages of reviewing existing policies and legislation to address land water degradation issues
Management plans to restore and maintain the ecological integrity of sensitive habitats such as wetlands and strategies for basin-wide protected area network developed and finalized and endorsed SAP with concrete investments identified to address priority transboundary problems	 Country based and regional workshops Management plans prepared SAP endorsed by countries Identified sources of additional funding 	 Management plans PCU and other project documents SAP endorsed by countries National and donor commitment to funding SAP and Workplan elements 	Countries will have the ability to implement management plans and realise strategies Adequate funding for plans and strategies
Basin-wide agreement to develop an appropriate mechanism for the extraction of river water and control of river flow	 Country-based and regional workshops Signed agreement on the a mechanism to control the flow of water and the extraction of river water in Volta Basin 	 Workshop proceedings Signed document available at RCU and in countries 	Riparian countries willingness discuss river water extraction and control of fiver flows Extreme climatic events reducing or greatly increasing the availability of water

Component 3: Initiate national and regional measures to combat transboundary environmental degradation in the Volta Basin		Objectively Verifiable Indicators		Sources of Verification	Assumptions and Risks
OUTPUTS		mucators			KISKS
Three Demonstration projects successfully implemented	•	Utilisation of improved methods of land and water management at demonstration sites	•	Site visits and project documents at RCU, including EA contractual materials	Demonstration projects sites selected through criteria that maximises clear understanding of land water degradation
	•	Improved productivity and efficiency at demonstration sites	•	Site visits and project documents at RCU, including EA contractual materials	problems Willingness of key stakeholders to participate in demonstration projects
Regionally accepted performance indicators and process to monitor those indicators to assess progress towards EQOs in place	•	Guidelines on environmental standards defined	•	Guideline documents with EQSs	Participating countries and stakeholders will appreciate the benefits
	•	Existence of monitoring	•	Monitoring programmes and	of EQSs and EQOs
	•	plans based on EQSs Improved availability of data at the national and		installed laboratory equipment	Political will of riparian countries to
		basin level for environmental management	•	Field data reports	continue to enforce EQOs
	•	planning Increased capacity at the national and regional level to conduct continuous monitoring of land and	•	Database existing at RCU and available elsewhere over the www. Rehabilitation and mitigation	
	•	water degradation Country based and regional workshops		documents	

Component 3: Initiate national and regional measures to combat transboundary environmental degradation in the Volta Basin	Objectively Verifiable Indicators	Sources of Verification	Assumptions and Risks
Coordination mechanism between IAs and EAs of the Sahel basin projects and other complementary projects functioning and sustainable collaboration set up	 Needs analysis done Coordination strategy developed Involved parties held regular and ad-hoc dialogues IWLEARN discussion foras held Relevant workshops conducted 	 Needs analysis document Strategic document Inter-agency plan of complementarity IWLEARN website Workshop proceedings 	IAs will further strengthen the Strategic Partnership; willingness of EAs to collaborate; willingness of countries to strengthen targeted regional cooperation; GEF effort continues to enhance multiple benefits in the region.

Annex C STAP Roster Technical Review

Jaroslav Balek Ph.D.

ENEX

e-mail: jerrybalek@volny.cz

Environmental Engineering
Odolenova 4, 390 01 Tábor
Czech Republic
Tel./fax: ++420 381 25 46 55

STAP REVIEW FOR UNEP-GEF FULL PROJECT IN VOLTA RIVER BASIN.

Reviewed document:

Project Brief (PB)

Supporting documents

Preliminary Transboundary Diagnostic Analysis Final Report Preliminary Strategic Action Programme Final Report

Interim documents of UNEP-GEF "Terms of Reference for Technical Review of Project Proposal" and "Specific Annotations to the GTOR of the STAP Roster Review" were used as a guidance for the preparation of this Review.

Key issues.

Introduction.

The Project is concerned with the remedial of major environmental transboundary problems of the Volta River Basin, which originate from uncontrolled human activities. UNEP, as an international environmental organisation, has already developed similar projects for other African international basins. Based on the previous experience, all effort has been made to prepare a project which can be considered as scientifically, technically and environmentally sound. As it has been experienced in other international basins, several problems has been identified, solution of which requires specific approach at different stages of the Project preparation and implementation.

Scientific and technical soundness of the Project.

A number of scientific and technical problems have been identified throughout the text. Following are those which require a sensitive and complex approach:

Similarly like in other parts of the humid tropics, fauna and flora play an important role in the integrated water management and development of the basin. Next to the biodiversity and protection of existing ecosystems, an effective weed control is considered as a significant interdisciplinary problem. Slow but steady invasion of the aquatic weeds has been already observed in the Volta basin .So far, weed control techniques, applied elsewhere, have never been fully effective, and other preventive measures need to be sought. First of all, a complex weed control is important factor in effective water management. This is because in the Volta basin the water loss through the evaporation from free water surface can be assessed between 1400 - 2000 mm per year. Howeve, the evapotranspiration from water series, infested by water hyacinth, papyrus, and other weeds, can exceed 4000 mm per year and four times higher evapotranspiration from waters infested by water hyacinth has been reported in exceptional cases. This is because extensive leaf area of water plants is exposed to the sun radiation more extensively than the free water surface. Thus, an accumulated deficit from a large number of reservoirs infested by water weeds is in excess of any other loss, such as developed by leaking pipelines and canals, uncontrolled storm runoff, or ineffective irrigation.

Instead of expensive chemical control, rather natural practices seem to be more feasible, such as a possibility to introduce weeds consuming fish or other fauna. However, certain precaution is necessary when introducing exogenous species, otherwise uncontrolled spread of fauna may cause irreversible impacts. No doubt that in this matter a close co-operation of water engineers with biologists and environmentalists will be necessary.

Owing to a steady rise of climatic and hydrologic variability in the humid tropics, at present it is difficult to assess some future components of the hydrological cycle, considered as indices for the Project evaluation. As an example is given the target from PB, defined as "the restoration of natural surface water flow by 2012". That target belongs under the Environmental Quality Objectives, namely Balanced Aquatic Ecosystem. Owing to the ongoing increased climatic variability, future values of the natural surface flow may be different - probably lower - than the present ones. Such changes of the hydrological regime have been already reported (Balek, 1994) and one example is documented in a wider regional context as a decrease of the Niger river discharge at Kanji (Oyebande and Balogun, 1992) (Fig.1):

Inflow to Kan "ireservoir

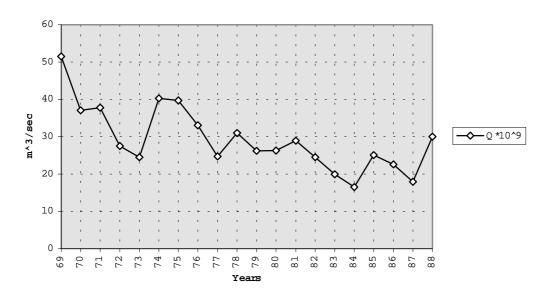


Fig.1. The fluctuation of inflow into the Kanji reservoir.

The graph indicates, among other, that solid hydrologic data for the Volta basin will be much in demand for a scientific evaluation of forthcoming or already existing changes and perhaps justification for the adjustment of original targets. For such purpose, a development of reliable hydrologic network, as well as of the data acquisition system, together with scientific analysis of data, should be available well in advance. A co-operation with specialised international organisations and projects, concerned with hydrologic networking and analysis, such as the World's Bank project WHYCOS, is strongly recommended.

Coastal environmental problems have been tackled in relation to the performance of the Akosombo Dam, particularly to the dam's impact on high coastal erosion "... as reported by some coastal countries" (SAP, p.15).

Actually, the processes of coastal erosion are very complex and cannot be explained exclusively by an impact of single dam, which controls only minor part of a long coast under consideration. It is known that in the coastal watercourses the flows and water levels depend not only on the river stages at the apex but also on the water levels and their variations at sea. However, the sea levels along the coast are also affected by prevailing winds. Particularly, landward winds blowing over coastal waters, produce a rise of the sea level. In Ghana, anomalies in the sea surface temperature, location and

direction of the ITCZ, and north-east and south-east trades, have been reported (Opoku-Ankomah, Cordery, J., 1994). Obviously, several factors may contribute to the formation of the boundary conditions in the coastal flow systems and influence the coastal erosion processes. An identification of the Akosombo dam as an isolated player in the coastal erosion is an oversimplified approach and a professional look into that matter is recommended in course of the Project implementation.

Identification of the global environmental benefits.

Environmental effects of numerous dams and reservoirs in the basin, considered usually as rather negative ones, have been also reported under the umbrella of the Project. Therefore, it is recommended to focus some of the planned demonstration projects toward environmentally oriented search for alternative environmentally sound solutions, leading to the replacement of small dams for agricultural and stock production in the rural areas of the Volta basin. Also the conservation of storm flood waters in small dams should be reviewed. Referring to recent global discussions about the benefits and/or negative impacts of dams on the environment (under the project "Dams and Development"), any convincing results of such research, whether positive or negative, can contribute to globally valuable information.

Another globally applicable experience can be obtained through one or another type of the demonstration project, concerned with effective sewage water treatment in the areas with scattered communities, small industry and agriculture. It is well known that standard sewage disposal methods and plants are expensive, if not unaffordable. A special reference is made to the performance of artificially established wetlands, recommended by some water quality experts as more or less natural water purification facilities.

Project within the context of the goals of GEF

The Project is essentially regional and transboundary, and as such it meets the outlines of the Operational Programme Guidance, submitted by the GEF Council.

It should be also emphasised that the Project is closely related to the GEF-Medium Sized Project for the development and protection of the Coastal and Marine Environment in Sub-Saharan Africa. Another linkage can be identified with the Global Programme of Action for the Protection of the Marine and Coastal Environment from Land Based Activities for the WACAF. A joint co-operation with these projects would be useful for the protection of coastal areas.

Regional context.

Two-way exchange of data and information can be found as beneficial in a regional scale. For instance, climatic, hydrological and environmental phenomena need to be verified in a wider regional context and if some data are not locally available, direct or analogous information from neighbouring regions can be used as an initial approximation. An example of such regional exchange of information is demonstrated in Fig.1. Actually, a co-operation with the Niger Basin Authority has been already mentioned in PB.

Replicability of the Project.

Several water resources oriented programmes for large international basins have been already accomplished by UNEP. Based, inter alia, on trial and error approach, methodology of the integrated management for African international basins has been steadily developed and replicated. Similar approach, based on the results of the Volta Basin Project, can be expected and recommended for other international basins, not only in Africa.

Sustainability of the Project.

A great number of stakeholders will be involved in the Project implementation. No doubt, that the realisation of major goals, specified by the Project, will depend on the willingness and ability of governmental authorities, Academia, NGOs and particularly the public sector, to co-operate with the convenors. Particularly the population should be adequately informed about major benefits of the Project, such as the water quality improvement, sufficient water provision and socio-economic benefits. Only when fully convinced about their own profits, farmers, small industry entrepreneurs, local chiefs, fishermen and herdsmen, will contribute to the Project sustainability...

In the urbanised areas the population should be informed about the advantages of water supply and water pollution control for hygiene and public health. First of all, women need to be addressed and benefits of the Project on the health status of their children emphasised.

Demand by countries on the water consumption should be reviewed in course of the implementation. For instance, in PB, there is given demand development relevant to the domestic and industrial water, water for the irrigation and water for the livestock. Obviously, the demand projections for the years up to 2025 seem to be unreasonably high when compared with present consumption. It is felt that requests for an increased water supply should be justified by agricultural and water engineers, land use experts and demographers. Perhaps alternative irrigation technologies, effective stock farming and last but not least population control may lead to a sustainable development.

Secondary issues.

Linkages to other focal areas.

In a regional scale, countries incorporated in the Volta basin programme can benefit from the participation in the Project when introducing the management and development programme principles in other national basins, which do not belong under the Volta river system.

Other beneficial or damaging environmental effects.

A series of environmental and legal problems exist in relation to the protection of groundwater resources. Next to the whims of nature, inadequate protection of groundwater recharge areas and over-depletion of the wells are responsible for continuing qualitative and quantitative deterioration of groundwater resources. Socio-economic problems, such as uncontrolled rise of the population and excessive stock farming, play another negative role in that matter. If some of the demonstration projects can be focused on the groundwater protection, then a complex of environmental problems will be tackled at once. First of all, policy leading to the effective zoning of protected recharge areas around wells, boreholes and springs, should be prepared in co-operation with ecologists, NGOs and lawmakers. All concerned parties should also participate in the dissemination of public awareness on groundwater protection (Y Xu, and E. Braune, 1995). Socio-economic benefits of the groundwater protection for the population need to be emphasised.

Degree of involvement of stakeholder in the project.

The stakeholder involvement is covered in PB. A great number of ministries and official organisations concerned with water, may create some obstacles in course of the project implementation. An intersectoral co-ordination of responsibility and jurisdiction among the differently oriented governmental stakeholders will require a great effort and will be time consuming.

An invasion of external experts and technicians together with the development of tourist facilities may produce undesirable impacts on the everyday life of the communities. Proper measures should be taken leading to the protection of religious feelings and traditional habits of the communities.

Uncontrolled rise of the population (as mentioned in PB), may also threaten the Project sustainability. Particularly food and water shortages, developed owing to various circumstances, can play a negative role. Therefore an introduction of policies leading to the population control in respect to limited availability of water and food, will contribute to the sustainability.

Perhaps no need to say that sudden civil strives may seriously affect the terms and targets of the Project implementation and sustainability.

Capacity building aspects.

In this respect, activities listed in PB, and concerned with the preparation of guidelines and strengthening of legal basis, are considered as important components.

Training in all major fields of the programme is also essential. Particularly a practically oriented field training is emphasised. Separate courses for French and English speaking population need to be organised (Balek, 1994).

Based on author's previous experience from the region, it should be reminded that the language problem has always been a major obstacle for intensive transboundary co-operation in the field of water resources. Therefore a special training for bilingual translators, specialised in the water management and environmental terminology, will be much useful.

Innovativeness of the Project.

The Project can be considered as innovative in the regional scale. This is because so far a complex approach toward the management and development of water resources has not yet been implemented in that part of West Africa.

Conclusion.

The Project is well prepared and contains all components necessary for the fulfilment of planned objectives. No doubt, that a great effort will be necessary in order to develop regulatory legal policies, prepare regional institutional framework and sustainable ecosystem management and achieve sustainable capacity in this very complex basin. As it is the experience from another international basins in course of the project implementation, the convenors should be prepared to overcome additional problems and obstacles, which can not be fully anticipated during the preparatory stage. Because of that, the project can be considered as a challenge to all participating parties and individuals.

References

- Balek, J., 1994. Hydrological research and water resources management strategies in Cote d'Ivoire, Ghana, Guinea and Nigeria. Interim Report to UNESCO.
- Oyebande, L., Balogun I., 1992. Need for environmentally sound and integrated management. Cairo, Nile 2000 Symp.
- Opoku-Ankomah, Cordery J.,1994. Atlantic sea surface temperature and rainfall variability in Ghana. Journal of Climate 4.
- Y Xu, E.Braune., 1995. A Guideline for groundwater protection for the community water supply programme. Dept. of Water Affairs and Forestry, Pretoria.

Jaroslav Balek,

Consultant

Tabor, February 25, 2003

ANNEX C1 RESPONSE TO STAP/COUNCIL/IA COMMENTS

UNEP response to the STAP review

The STAP review provided a positive response to the proposal. In addition, following key concerns were raised by the reviewer:

1) The need to use biological control for water weeds.

Given the success of the FAO projects in Ghana, Benin and Cote d'Ivorie for the control of water weeds, it is strongly anticipated the project would use biocontrol agents.

2) The need for hydrological networks for adequate data.

The co-operation with international organisations and projects concerned with hydrologic networking and analysis is essential. Such co-operation is already being nurtured with GLOWA. The proposed project has also some component of water resources assessment in the detailed list of activities for evaluating changes in the hydrological regimes. In addition, the World Bank supported the Sub-Saharan Africa Hydrological Assessment that provided the basis for WHYCOS in West Africa, this project will provide valuable regional level information as required to the update of the TDA.

3) Coastal erosion.

The project title "Addressing Transboundary Concerns in the Volta River Basin and its Downstream Coastal Area" reflects the need of erosion control and mitigation of the downstream coastal impacts. The construction of various large and small-scale dams has caused significant changes to the environment and consequently to the economic situation both upstream and downstream of the dams. The coastlines of some of the riparian countries have experienced coastal erosion as the possible consequence of reduction in sediment flux caused by the dams impeding.

Remark: The current rate of sea-level rise is 2.0 mm/yr (Ibe and Quelennec, 1989). Climate change may also cause increase in littoral transport capacity arising from increases in the intensity and duration of storms.

4) Demonstration Projects.

The project proposes 3 replicable demonstration projects on themes formulated on the basis of national reports and needs assessed in the preliminary TDA. Specific criteria and guidelines for the selection of demonstration projects will be developed early during the project execution phase. The projects will address priority sectors: water efficiency/conservation, improved flow releases from dams, sewage treatment where pollution feeds aquatic weeds and securing wetlands for biodiversity values.

5) The reviewer stressed the need to inform stake-holders especially women as well as to educate on ground water and socio-economic implications of water management.

This has been taken up by the public involvement plan (Annex F) and is addressed in preliminary TDA as well

6) On the water demand, the projections appeared to be "unreasonably" high when compared to the

This is due to the fact that the current consumptive water use rate is very low especially in the lower catchment of the basin. The consumptive water use to availability ratio in Ghana is, for example, 2 - 10% (EPA2, 2000).

7) The language training.

This is a good point by the reviewer. Given the number of regional workshops that will be organised, this training will come automatically, as would be the upgrading of language skills of the stakeholders on the project. In addition, the language problem in the basin should be noted for the development of educational programs.

VOLTA PROJECT BRIEF ANNEX D DETAILED LIST OF ACTIVITIES

Component	Activity	Detailed Activities
1. Build capacity and create a	1.1. Establish the Project Management	Establish and empower the Project Steering Committee, including nomination/installation
regional institutional framework for the effective	and coordination mechanism.	of the National Focal Points
management of the Volta		
Basin		
		Establish the Inter-ministerial Coordination Committee in each country
	1.2. Determine and satisfy training needs in the region (for integrated land and water resources management)	Conduct survey on training needs and educational programs in region for management of the Volta Basin Environment
		Develop training courses for three priority training needs, in local languages
		Conduct one training session in each of the countries on each of the three priority training areas, using a train-the-trainers approach.
	1.3. Identify, strengthen and involve stakeholders	Prepare and implement a public participation and awareness plan for the project
		Involve stakeholders, including NGOs and natural resource users, by communicating the
		results of monitoring and alternative strategies for resource use through a regional information centre, newsletters, web-based informational packages, etc.
		Integrate private sector into activities of this project, as appropriate, as sub-contractor,
		consultant, or co-sponsor of specific activities
	1.4. Establish a river basin management framework	Prepare a draft framework document for the Volta Basin Commission/Authority
		Obtain national endorsements for the Commission/Authority and generate national (baseline) budgets for the Commission/Authority
	1.5 Develop databases and	Establish and develop and national/regional land-based activities data and information
	environmental monitoring systems	management system (including GIS) as a tool for contaminant assessment and management
	1.6. Establish regional networks and information exchange mechanisms	Develop a regional clearing house mechanism for the exchange of environmental data and information and lessons learnt from all relevant projects in the region at national, sub
		regional and regional levels through web-base informational packages, IWLEARN database, newsletters, etc,

VOLTA PROJECT BRIEF: Annex D

Detailed List of Activities

Component	Activity	Detailed Activities
2. Develop regional policy, legal and regulatory frameworks for addressing transboundary concerns in the Volta Basin and its downstream coastal areas	2.1 Develop quantitative understanding of present ecological situation and develop/agree on regional basis for actions (TDA)	Fill gaps in knowledge of priority transboundary concerns, including geographically specific data and hotspots
		Complete regional assessment of priority land-based activities, sources of contaminants, and pollutant levels in water and sediments
		Finalize the TDA
	2.2. Assist countries in developing National Action Plans (NAP) that address priority transboundary concerns	Prepare a regional biodiversity strategy document, including a gap analysis, and obtain endorsement by riparian states
		Prepare and approve six National Action Plans
	2.3. Create management plans for addressing priority transboundary concerns in identified hotspots and finalize and endorse SAP	Develop regional basin water management plan of action to be coordinated by the proposed Volta Basin Authority/Commission
		Identify hotspots using the African Process
		Develop management plans for addressing priority transboundary concerns with a focus on water scarcity and coastal erosion
		Update and obtain country endorsements of the SAP
		Identify concrete investments
	2.4. Develop basin-wide agreements for sharing water resources and for control of river flow regimes.	Review and strengthen existing river system agreements existing within the region; recommend changes where appropriate
		Agree regionally on appropriate mechanisms for the extraction of river water and control of river flow regimes
	2.5. Legal and institutional review of and harmonization of national water conservation and management and land tenure laws	Identify gaps in legal regimes and strengthen legal basis for protection of the coastline
		Identify gaps in legal regimes and strengthen legal basis for water conservation
		Perform investigation of the policy, legal, and cultural basis for land tenure policies in the Volta River Basin and recommend environmentally sustainable land tenure systems in the region
		Review, harmonize, and strengthen relevant local, national, regional, and international

Component	Activity	Detailed Activities
		legislation and conventions relevant to the conservation and management of wetlands,
		through support of regional institutions such as the Centre for African Wetlands
	2.6 Develop and ratify a	Develop and ratify convention/protocol for the rational management of the Volta basin by
	convention/protocol for the rational	the proposed Volta Basin Commission/Authority
	management of the Volta Basin by the	
	proposed Volta Basin	
	Commission/Authority	
	2.7 Enhance and develop legal basis and	Review of policy, legal, and regulatory frameworks, and institutional structure for
	policy framework to sustainably manage	addressing land-based activities
	the Volta Basin	

Component	Activity	Detailed Activities
3. Initiate national and	3.1 Develop guidelines for the	Draft Regional EIA process review
regional measures to combat	management of land and water based on	
transboundary	an effective regional EIA	
environmental degradation in		
the Volta Basin		
		Adopt regional EIA
	3.2. Develop and implement 3 replicable demonstration projects	During a regional workshop, develop criteria and guidelines so as to identify priority demonstration projects (three) for addressing land and water degradation
		Select three replicable demonstration projects addressing water conservation, sewage
		treatment, coastal erosion or wetlands protection. Hotspots and sensitive areas should be
		identified through the African Process.
		Integrate the private sector into activities of this project, as appropriate, as sub-contractor,
		consultant, or co-sponsor of specific activities
		Implement, monitor and report on demonstration projects
	3.3. Agree on performance indicators	Conduct a workshop to agree on performance indicators
	for the Volta Basin management project	
	through a broad stakeholder process and a process to monitor those indicators	
		Use the performance indicators to assess the effectiveness of the Project in achieving EQOs
	3.4. Coordinate and collaborate with	Develop and establish a mechanism to cooperate with other IAs and EAs of the Sahel basin
	other Sahel basin projects, with the	projects, the GCLME and complementary projects to enhance links, complementarities and
	GCLME and with other complementary projects in the region.	vital cooperation with all relevant GEF projects in the region and jointly cooperate to strengthen participation in IWLEARN.
		Cooperate with the other GEF IAs to organize one regional meeting to further coordination
		and information exchange between and among the other GEF projects in the region

Volta River Basin

A Programme of the Governments of the Volta River Basin Countries, with the assistance of the Global Environment Facility (the United Nations Environment Programme)

Volta River Basin

Preliminary Strategic Action Programme

Final Report

December 2002

Global Environment Facility-United Nations Environment Programme Project Development Facility (PDF-B)

Table of Contents

PREF	ACE	III
1.0 BA	ACKGROUND AND RATIONALE	1
1.1 1.2	GLOBAL AND REGIONAL SIGNIFICANCE OF THE VOLTA RIVER BASIN	
2.0 (ENVII	CAUSES OF DEGRADATION AND THREATS TO THE AQUATI RONMENT AND RESOURCES OF THE VOLTA RIVER BASIN	iC 8
2.1 2.2	CAUSES OF ENVIRONMENTAL DEGRADATION	
	STABLISHMENT OF ENVIRONMENTAL QUALITY OBJECTIVES FOR TH	
3.1 3.2 3.3	GENERAL OBJECTIVES, RATIONALE, AND PRIORITIES FOR THE SAP ENVIRONMENTAL QUALITY OBJECTIVES, TARGETS, AND PRIORITY ACTIONS	19
4.0 PR	RIORITY ACTIONS AND INTERVENTIONS	23
5.0 CC	OST BENEFIT ANALYSIS OF PROGRAMME ACTIONS	42
5.1 5.2 5.3	VALUATION CONSIDERATIONS	42
OF EN	RIORITY REGIONAL AND NATIONAL ACTIONS TO ADDRESS THE CAUSE NVIRONMENTAL DEGRADATION AND THREATS TO THE ENVIRONMEN HE VOLTA RIVER BASIN	T
6.1		

Appendix A List of Abbreviations

List of Figures

_	Volta River Basin Area	
C	List of Tables	
Table 1.	Human Development Statistics	5
Table 2.	*	
Table 3.	Root Causes and Major Perceived Problems and Issues	20
Table 4.	Environmental Quality Objectives, Targets, and Interventions	
Table 5.		

Preface

The Volta River Basin is a globally significant environment that is marked by poverty, high population growth rates, land and water use conflicts, and low industrialization levels. The fledgling democracies of the six riparian countries of the basin (Mali, Burkina Faso, Benin, Togo, Côte d'Ivoire, and Ghana) face social problems with respect to inequitable access to resources, including inadequate healthcare and low literacy rates. These social problems are compounded by the harsh climate of droughts and periodic flooding, which are conditions that breed tropical diseases and inhibit sustainable livelihoods from the land.

The Volta River Basin is a critical resource for the riparian countries, both economically and ecologically. Although the riparian countries have different economic bases, the areas of the countries located within the Volta River Basin depend almost entirely upon land and water resources through agriculture, animal husbandry, and forestry. Thus, the approximately 20 million people currently inhabiting the 400,000 km² basin area are heavily dependent on the health of the basin's soil and water resources. Additionally, much of the energy that fuels the restricted economic development occurring in the region comes from hydroelectric dams in the basin. As a result, the national economies of Ghana, Burkina, Faso, Togo, and Benin are strongly linked to the adequacy of water supplies reaching the downstream dams. These resources, however, are now facing transboundary threats, which include land degradation, water quality degradation, water scarcity, biodiversity loss, and flooding.

The six countries of the Volta River Basin recognize the need to come together to protect the valuable basin environment and at a workshop in 1999 signed a declaration to combine their efforts for integrated management of the ground and water resources. The countries of the region sought the assistance of UNEP and the Global Environment Facility (GEF) in preparing a Transboundary Diagnostic Analysis (TDA) of the major perceived issues and problems and their root causes. This process, begun in 2001 and undertaken in accordance with the GEF Operational Strategy, has served as the basis for this Draft Preliminary Strategic Action Programme. National TDA reports were completed by country experts, regional meetings were held to synthesize the information, and a draft preliminary TDA was produced. In May 2002, consultants undertook the revision of the earlier TDA and the resulting final draft was issued on 4 November 2002. In undertaking this process, the region both benefited from and complemented the African Process MSP and the New Partnership for Africa's Development (NEPAD). In addition, the project will form a substantial basis for the implementation of NEPAD's environmental component. Further, the project adheres to the World Summit on Sustainable Development Plan of Implementation.

The present Draft Preliminary Strategic Action Programme is based on the findings of the draft preliminary TDA that represents a regional synthesis of major issues identified from the national reports and regional meetings. The draft preliminary TDA identifies the priorities among land and water-related problems and concerns, their socio-economic root causes, the sectoral implications of actions needed to mitigate them, and the extent to which the problems are transboundary in either origin or effect.

A key element of the Volta River Basin project must be actions that will lead to the further elaboration and development of the present Draft Preliminary Strategic Action Programme. It is the intention of participating governments that this process of development will take place during the full GEF project arising from these activities.

The methodology applied in this SAP has been to develop priorities based on information (sparse in some areas though it may be) developed in the draft preliminary TDA. In the TDA, major perceived problems and issues were identified, as were the socio-economic root causes. In order to frame interventions for each of these MPPIs with its appropriate root causes, this SAP made use of Environmental Quality Objectives (EQOs). EQOs are commonly used in Europe, for instance, to achieve a consensus position on vision for the environment. The EQOs envision encapsulating not only the major areas of the environment where value is placed by the populace. but also on the uses to be made of that aspect of the environment (e.g., clean air, provision of sustainable resources, recreational use). This approach is a powerful one in that it states quite simple objectives that the Region agrees to, as a basis for defining actions. The next step is to identify quantitative targets for each EQO. Those targets are precise, succinct, have an associated timeline (next five to ten years), and have indicators associated with them. targets are generally not the only ones needed to achieve the EQO, but rather represent a step towards satisfying the EQO. Once the targets are agreed, then specific actions or interventions leading to achievement of the targets within the stated time period are identified. These targets, likewise, must be precise, and achievable. How they are to be achieved, and by whom, must be negotiated amongst the stakeholders. The GEF has a role to play in those interventions that address transboundary aspects, and that therefore are incremental.

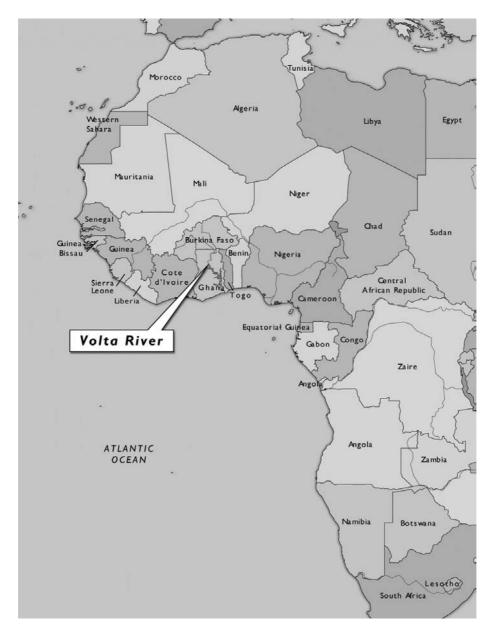
The actions proposed in the Draft Preliminary Strategic Action Programme are wide-ranging in class of intervention. Some of the interventions proposed are policy/legal interventions. Some are demonstration projects. Some are capacity building. Some represent institutional strengthening. Some represent scientific studies or data management. Overall, the diversity of interventions is required to provide a sustainable SAP, and sustainable long-term efforts at environmental protection. Successful implementation of the SAP will require active participation by a variety of stakeholders at all levels and of all types: regional/national/local governmental levels, international partners, private sector, non-governmental organizations, both international and bilateral, and others. UNEP's mandate is to facilitate this process, and to help assure synergies between participating partners and projects are maximized, to the benefit of the environment.

1.0 Background and Rationale

The Volta River Basin Region comprises four coastal states (Côte d'Ivoire, Ghana, Togo, and Benin) and two land-locked countries (Burkina Faso and Mali). Although the six Volta River Basin nations overall are at varying stages of political and economic development, the economy of the Volta River Basin watershed is fairly homogeneous throughout the region as it is based on agriculture and animal husbandry. Nonetheless, the region is one of the poorest in the world.

The countries are linked by a common need for the valuable land and water resources of the Volta River Basin. While there is no single regional convention that addresses management of the Volta environmental resources, the countries are involved in a number of bi-lateral and multi-lateral regional cooperation initiatives. One such initiative is the African Process that is being implemented by UNEP through a GEF Medium Sized Project and is serving as the environmental component of the New Partnership for Africa's Development (NEPAD).

Understanding that a regional approach is urgently needed to halt degradation of the environment of the Volta River Basin, the countries of the region sought the assistance of UNEP and the GEF in preparing a TDA and SAP. The draft preliminary TDA identified the priorities among land and water-related problems and concerns, their socio-economic root causes, the sectoral implications of actions needed to mitigate them, and the extent to which the problems are transboundary in either origin or effect. This draft SAP draws upon the draft preliminary TDA to develop and prioritize interventions for addressing the major problems and issues. At the end of this series of SAP interventions, the countries should be closer to addressing their national land and water environmental issues, so as to be more effective in the achievement of regional solutions to transboundary problems.


This draft SAP is organized in the following manner. Section 1 provides the background and rationale for the SAP, and includes a discussion of the process by which the SAP was put together.

Section 2 provides a brief review of the major perceived problems and issues identified by the TDA, and the root causes of degradation and threats to the environment. This section briefly summarizes some of the major findings of the draft preliminary TDA. It sets the stage for the development of the SAP, by indicating the major problems, root causes, and threats, which the SAP is designed to address.

Section 3 discusses how the major interventions are derived through the use of overarching policy-level Environmental Quality Objectives (EQOs) and associated targets. The EQO is the bridging mechanism to move from the understanding of the primary problem areas, root causes, and threats (analysis phase of the TDA/SAP process) into the Action Phase of the SAP, where specific national and transboundary actions and interventions must be identified and agreed. This bridging mechanism links the actions/interventions to specific OUTCOMES that are agreed regionally: the EQOs. Each EQO, while overarching, has specific targets assigned to it to meet the needs of the timeframe of the SAP (5-10 years). Each target has an associated environmental indicator, which is the metric that will be used to determine whether that target has been

achieved or not. The environmental indicator might be one of three kinds: Process Indicator, Stress Reduction Indicator, or Environmental Status Indicator.

Figure 1. Volta River Basin Area

Section 4 then discusses the Priority Actions and Interventions that will lead to achievement of the various targets, and step towards satisfaction of the EQOs (on a longer-term basis). The priority actions and interventions are presented in two ways. First, they are listed according to EQO and the specific target that they support. Second, each action/intervention is categorized into the appropriate type of intervention (policy, legal/regulatory, institutional strengthening, capacity building, investment, scientific investigation, data management process), and listed

according to category. This second presentation makes much clearer the close parallelism in approach towards satisfying the three different EQOs for the Volta River Basin, demonstrating that each has policy, legal, capacity building, etc., interventions and actions.

Section 5 is an outline of a cost-benefit analysis to support the actions/interventions of the SAP. Lacking adequate information from the draft Framework, the cost-benefit analysis cannot be completed at this stage. It will be completed during the full GEF project as the list of actions/interventions are refined, and as the methodology for evaluating resource valuations is agreed within the region.

Section 6 is a brief listing of the top areas of priority regional (Transboundary) and national actions, culled from the tables of Section 4.

ICARM

The priority actions are consistent with the Integrated Coastal Area and River Basin Management (ICARM) approach. ICARM requires the adoption of goals, objectives and policies and the establishment of governance mechanisms which recognise the interrelationships between the two systems with a view to environmental protection and socio-economic development. The *goals* of integrated coastal area and river basin management fall within the framework of sustainable development according to which environmental conservation is of equal importance to economic efficiency and social equity, all sought in a long-term perspective on the basis of intergenerational equity. In this context planning acquires a special role in establishing a process of governance and a strategic framework of goals, policies and actions.

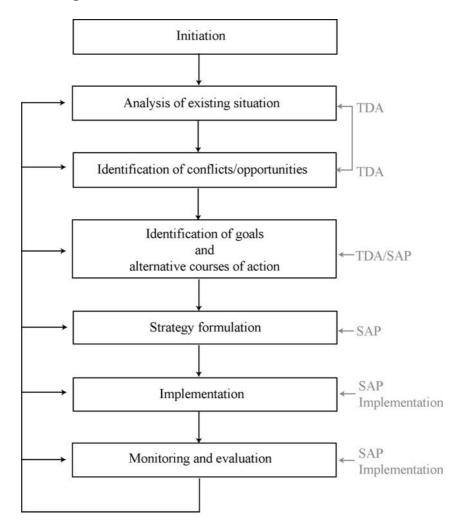
Phases of the Process

Planning is a cyclical process following a sequence of basic steps from analysis to synthesis and action which for the purposes of these guidelines can be distinguished as follows (see Figure 2):

- Initiation
 - This is the basic inception task, which involves organisation and mobilisation for planning.
- Analysis of the existing situation
 - This step involves essentially a reconnaissance survey of basic characteristics in terms of the structure and dynamics of natural and human ecosystems. Therefore, it deals with the critical processes and factors, their extent and spatial distribution, etc.
- Identification of conflict and opportunities
 - This step deals with the interaction between natural and human ecosystems today and in the future. It includes the analysis of needs of and the pressures on the basic stakeholders; these influence decision making in development and environmental management.
- Identification of goals and alternative courses of action
 This step involves an analysis of critical factors and pro-
 - This step involves an analysis of critical factors and processes, conflicts and opportunities in order to identify basic management goals and objectives. These should be formulated with a long-term perspective in the context of sustainable development principles. Alternative courses of action can be then identified reflecting the different priorities which may be placed on goals and objectives.

• Development of a strategy

A selection is made, in the context of public policy making, from among the alternative strategies identified above in order to translate the goals and objectives into targets and policy measures, with the aim of developing a guidance system for environmental management. The institutional setting influences such decisions as it identifies stakeholder responsibilities and legal/administrative procedures. This step involves commitment to mobilise resources and priorities in the form of a programme of action.


• Implementation

This phase involves the actual implementation of the programme of action and is strongly linked to the next step.

• *Monitoring and evaluation*

This provides for administrative procedures and mechanisms to review periodically progress towards the achievement of goals and objectives, through assessment, of the state of the environment and policy implementation.

Figure 2. Planning Process of ICARM

1.1 Global and Regional Significance of the Volta River Basin

The Volta River Basin is rich in natural resources and has significant potential for development, but is held back, in part, by low human capacity that stems from high population growth rates, low literacy levels, malnutrition, and the prevalence of water-borne diseases. The riparian states are among the poorest countries in the world, and although there are disparities in GDP among them, they do not indicate significant variation in levels of development. Only Ghana is ranked among the states with Medium Human Development, whereas the remainder of the basin countries are classified as having Low Human Development.

Table 1. Human Development Statistics

Country	Human Development Index Ranking 2001	GNP/Capita (\$) (1999)
Benin	147	380
Burkina Faso	159	240
Côte d' Ivoire	144	710
Ghana	119	390
Mali	153	190
Togo	128	320

Sources: UNDP Human Development Report 2001 (HDI), World Development Report 2000/2001 (GNP)

The land and water resources of the Volta Basin supply the basin states with much-needed food, minerals, and energy. The Volta River Basin with its vast agricultural lands, pasturelands, and forests, provides much of the food and timber products for the areas of the riparian states outside the basin. Additionally, the waters of the Volta River and its tributaries provide the vast majority of the electricity through hydropower dams that fuel economic development in much of the rest of the basin states.

As the table below indicates, however, the region has extremely high population growth rates that threaten future use of the basin's natural resources. The basin population is expected to increase by as much as 80%, to 34,000,000 people, by the year 2025. Some regions are not currently meeting water and land resource demand; this problem will only be exacerbated as population pressure continues to grow. For comparison, the population growth rate of the more developed countries is less than 1%.

Table 2. Growth Rate Statistics

Country	2000	Projected in	Growth Rate (%)	P/km ² Density		
Country	2000	2025	2000	2000	% %	
Benin	476,775	820,000	2.27	43.4	36	64
Burkina Faso	8,874,148	15,997,351	2.38	41.53	22.6	77.4
Côte d'Ivoire	397,853	717,672	2.53	8 - 22	23	77
Ghana	6,674,376	11,696,054	2.5	26 - 104	16	84

Country	2000	Projected in	Growth Rate (%)	P/km ² Density		
Country	2000	2025	2000	2000	Urban %	Rural %
Mali	625,000	1,260,000	2.78	45 - 75	12.2	87.8
Togo	1,594,446	3,385,266	2.80	66	30	70
Total	18,642,598	33,876,343				
Average			2.54	48.5	23.3	76.7

The expanding population is already putting pressure on available natural resources. Currently, farmers in many areas are no longer able to set aside land to lie fallow for a sufficient period of time to allow the soil to regain valuable nutrients, thus quickening the pace of land degradation. Populations in some areas are being forced to grow crops on marginal lands that quickly experience erosion or degradation. Expanding animal husbandry also affects the land as forested areas are cut to provide fodder for the cattle and uncontrolled bushfires are spread across borders. This sometimes unsustainable use of the land reduces future availability of natural resources.

The region's water resources are also being used at an increasing rate at the same time that sources are diminishing due to changes in the hydrological balance and detrimental land-use patterns. Water resources are provided by rivers and groundwater. Most rivers flow only 3-4 months of the year, encouraging construction of unauthorized dams, often inappropriately designed, to create more permanent surface water sources. Due to the combination of geology and low rainfall, groundwater sources are not abundant, and are frequently deeper than rural wells can be drilled without improved technology. Seasonal water scarcity is a regional problem. In recent years, a shortage in the amount of water reaching the Akosombo Dam created a scarcity of electricity that had far-reaching economic implications. As Burkina Faso and Ghana build additional hydroelectric dams and further increase dependence on hydropower, adequate water resources could potentially become a source of conflict in the region.

This extensive land and water resource use takes a toll on the biodiversity of the basin. Within the basin there are a number of national parks and protected areas that serve as habitat for globally significant species, including endangered and threatened species. Many of these areas are being encroached upon, however, and poaching and habitat destruction threaten to wipe out some species. The Volta River and some of its tributaries contain important fisheries resources. Water quality degradation, overfishing, damming of the rivers, and aquatic weeds threaten these limited resources.

Finally, the health of the Volta River, as it flows into the Gulf of Guinea, significantly affects the rich coastal biodiversity. The Volta River carried sediments necessary to keep the river delta intact, but this supply was halted when the Akosombo Dam was constructed nearly four decades ago. As a result, significant coastal erosion has occurred and nesting sites for endangered sea turtles have been destroyed. This also affects Ghana's most species-diverse mangrove forest, which is located at the mouth of the river and serves as a nursery site for commercial marine fishes and shrimps. The Volta River, including its delta, is a globally significant habitat for migrating birds. Altered water and sediment discharges threaten the vitality of this habitat.

Thus, protection of the Volta River Basin environment has not only global significance due to the richness of the basin and coastal biodiversity, but it is also essential for the livelihood of the basin countries which depend on these resources for future economic development and for survival.

1.2 Basis for Preparation of the Strategic Action Programme

The draft preliminary TDA for the Volta River Basin is primarily based on national TDA reports prepared in 2001-2002 by Benin, Burkina Faso, Côte d'Ivoire, Ghana, Mali, and Togo. During the course of preparing these reports, National Coordinators from each of the six countries met twice to prioritize the many issues and concerns relating to the Volta River Basin environment. A Steering Committee meeting, during which the issues raised at the National Coordinators' meetings were endorsed, followed each of these regional meetings. Following these meetings, the Regional Coordinator drafted an initial version of the TDA, upon which the current draft preliminary TDA draws heavily. Also consulted during the drafting of the draft preliminary TDA were a number of reports prepared for the African Process implemented through the GEF MSP project "Development and Protection of marine and coastal environment of the Sub-Saharan Africa." The draft preliminary TDA provides an assessment of the regional and wider significance of these issues; an analysis of the socio-economic causes of environmental degradation; an evaluation of the sectoral implications of actions needed to mitigate them; and an analysis of priorities from the national and regional perspectives.

The Draft Preliminary Strategic Action Programme (this document) is based on the preliminary findings of the regional Draft Preliminary Transboundary Diagnostic Analysis.

The Preliminary TDA benefited from interaction with numerous groups and projects in the region, including:

- West Africa Technical Committee of Global Water Partnership (WATAC/GWP)
- GLOWA Volta Project on Integrated Assessment of Feedback Mechanism Between Climate, Land Use, and Hydrology
- Green Cross International/Burkina Faso
- World Bank
- Agence Française de Développement
- West and Central Africa Action Plan for Abidjan Convention (WACAF)
- Land-Ocean Interactions in the Coastal Zones (LOICZ Afribasins project)
- Center for Africa Wetlands (CAW)

Also, as stated in Section 1, this SAP development is fully consistent with UNEP's ICARM approach.

2.0 Causes of Degradation and Threats to the Aquatic Environment and Resources of the Volta River Basin

2.1 Causes of Environmental Degradation

The draft preliminary TDA identified the following list of major perceived problems and issues. It includes eight existing perceived problems/issues and two emerging problems/issues:

- 1. Land degradation
- 2. Water scarcity
- 3. Loss of biodiversity
- 4. Flooding
- 5. Water-borne diseases
- 6. Growth of aquatic weeds
- 7. Coastal erosion
- 8. Water quality degradation
- 9. Urbanization
- 10. Increase in Industrial and Mining Activities

The TDA identified **land degradation** as one of the priority issues in the Volta River Basin. The problem of land degradation in the basin encompasses soil degradation, intense erosion, and desertification. As discussed above, the basin's population is heavily dependent upon the land resources of the region for subsistence agriculture and livestock breeding. The increasing demographic pressures have resulted in the overuse and misuse of land resources.

The major transboundary patterns of land degradation can be illustrated as follows:

- Transhumance
- Bushfires
- Deforestation and devegetation
- Population pressure and migration across borders

Major environmental impacts of land degradation include:

- High concentration of suspended solids
- Siltation of waterways and reservoirs
- Increased stormwater runoff
- Reduced water infiltration into soil and aquifers
- Degradation of water quality from increased use and runoff of fertilizers
- Loss of habitats and biodiversity
- Desertification
- Reduction of soil productivity, reduced animal and crop production

The major socio-economic impacts are:

- Reduction in water for irrigation and human needs
- Reduction in productivity of agricultural lands
- Reduction in productivity of pasture lands
- Decreased availability of agricultural and pasture lands
- Decreased forestry resources
- Loss of medicinal plants
- Increased competition over land resources
- Migration of populations to find fertile lands
- Decreased food security and ensuing effects on human health
- Reduction in hydroelectric power capabilities
- Increased poverty and disease

The root causes of land degradation include:

- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Poverty
- Insufficient knowledge/understanding
- Inadequate institutions
- Population pressure
- Inadequate legal/regulatory basis
- Inadequate technical infrastructure
- Insufficient demonstration projects
- Inadequate intersectoral cooperation
- Insufficient economic incentives
- Inadequate political will
- Inadequate water basin management
- Insufficient government power

Another critical area identified in the TDA is **water scarcity**. The water resources in the basin do not currently meet the needs of the population. As the basin population may increase by as much as 80% over the next 25 years, demand for water resources will also increase, resulting in even greater scarcity. This scarcity is likely to be even further exacerbated by decreased availability of water resources due to climatic and anthropogenic factors.

The major transboundary elements of the problem can be summarized as follows:

The drying up of streams in the upper sub-catchment of the basin can induce drying up or reduction of flows in the downstream rivers in other countries. Streams upstream can dry up as a result of human induced actions such as deforestation of the headwaters and the forest gallery along the river channels. Rampant expansion in the number of dams and reservoirs is another

example. Thus, altering land surfaces and stream flows in such a way that results in the drying up of streams is a transboundary issue.

Changes of land cover and poor precipitation reduce recharge of groundwater aquifer systems. In the basin, some of the scarce aquifers are shared among the riparian countries and human activities in the recharge zone can be a transboundary problem. Also, over-exploitation of groundwater resources through poor water resource development and planning can also create transboundary causes to water scarcity. This factor is particularly pertinent since the aquifers are limited in capacity, on average, throughout the basins.

Impoundments and reservoirs lose water through evaporation; the larger the surface area of the reservoir, the greater the evaporation. Reservoir systems constructed with large surface areas and shallow depths because of lack of suitable topography can potentially lose large amount of water and create water deficit downstream (such as Volta Lake in Ghana).

The effects of water scarcity can also be of a transboundary nature. When there is inadequate water for hydroelectric generation, electricity cannot be exported to those countries in need in the basin, resulting in economic loss. Inadequate water supplies for people and livestock have induced significant migration (transhumance) across boundaries in search of water resources.

Major environmental impacts of water scarcity include:

- Loss of biodiversity, including modification or destruction of habitats
- Loss of productivity of soils
- Reduction of fisheries and animal stocks
- Reduction in groundwater

Major socio-economic impacts are:

- Reduction in agricultural production
- Shortage of drinking water
- Increased cost of alternative water supplies
- Decline in drinking water quality
- Decrease in forestry resources
- Decrease in animal husbandry
- Reduction in hydroelectric generation
- Increased costs of electricity
- Migration/transhumance
- Increased poverty and disease

The root causes of water scarcity include:

- Inadequate technology
- Drought
- Low government priority on environment

- Abuse of power
- Poverty
- Insufficient demonstration projects
- Inadequate legal/regulatory basis
- Insufficient economic incentives
- Inadequate intersectoral coordination
- Insufficient regional agreements
- Insufficient knowledge/understanding
- Inadequate institutions

Another critical area identified in the TDA is **loss of biodiversity**. The Volta River Basin has a globally significant biodiversity and diverse habitats that are threatened by anthropogenic sources. Perhaps the greatest threat comes from the clearing of land for farming and animal husbandry, and from forestry practices. Some farmers use bushfires for land preparation, regrowth of vegetation for cattle grazing and hunting, etc., at the expense of the environment. This practice enhances the destruction of habitats, loss of biodiversity, as well as overall deterioration of biotic resources.

The major transboundary patterns of loss of biodiversity can be illustrated as follows:

- Destruction of habitats through bushfires and deforestation occur across borders
- Some forest reserves and protected areas are located at country borders and are vulnerable to poaching and other cross border activities
- Damming of rivers upstream affects the freshwater quality and resources downstream
- Damming of rivers upstream affects the floodplain downstream
- Damming of rivers alters the sediment balance
- Damage to transboundary ecosystems

Major environmental impacts of loss of biodiversity and destruction of habitats include:

- Loss of natural productivity
- Reduction of fish stocks and threat to other species
- Loss of globally significant biodiversity
- Degradation of forest ecosystems
- Degradation of river ecosystems
- Changes to the hydrological regimes
- Increased delta and coastal erosion

Major socio-economic impacts of loss of biodiversity include:

- Reduction in income from fisheries and hunting
- Changes in employment
- Loss of aesthetic value
- Loss of income from tourism industry
- Loss of cultural heritage

• Loss of use of medicinal plants

The root causes of loss of biodiversity and destruction of habitats include:

- Inadequate national and regional legal/regulatory basis
- Poverty
- Inadequate technical infrastructure
- Inadequate political will
- Inadequate human capacity
- Inadequate institutions
- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Insufficient economic incentives
- Insufficient government power

Another perceived problem identified in the TDA is **flooding**. Extremely seasonably variable rainfall rates and the creation of unauthorized dams and barrages without appropriate management practices are normally blamed for the flooding. Land-use conversions can also exacerbate the problem. Soils with significantly reduced vegetation cover that are exposed to the atmosphere elements have little infiltration capacities to reduce storm water runoff. These floods affect the environment of the basin, but also cause significant loss of human life and economic loss.

The major transboundary patterns of flooding can be illustrated as follows:

Flooding has a transboundary cause in the basin as a result of uncontrolled dam releases from the upper part of the basin, e.g., from Burkina Faso to Ghana on the White Volta, and also from Burkina Faso to Mali on the Sorou River as the backwater effect from the management of the Léry dam.

Flooding also causes transboundary migration of people escaping rising waters.

Major environmental impacts of flooding include:

- Inundation of lands
- Erosion
- Loss of habitat
- Degradation of water quality

Major socio-economic impacts are:

- Loss of human life
- Loss of infrastructure
- Water-borne diseases

- Effects on human health
- Loss of agricultural productivity
- Migration
- Disruption of transportation infrastructure
- Increased poverty

The root causes of flooding include:

- Insufficient regional agreements on water
- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Poverty
- Insufficient economic incentives
- Inadequate technical infrastructure
- Insufficient knowledge/understanding
- Inadequate legal/regulatory basis
- Inadequate political will
- Inadequate institutions
- Insufficient government power
- Insufficient demonstration projects
- Insufficient knowledge/understanding
- Population pressure

The fifth major perceived problem is **water-borne diseases**. Water-borne diseases have arisen in the basin largely as a result of the creation of dams and ponds, and of flooding. The natural (pre-impoundment) flow rates of the streams and rivers have been altered (slowed) to suit the breeding of the disease vectors at the banks of the rivers. Additionally, the proliferation of aquatic weeds exacerbates the problem of water-borne diseases as the weeds serve as hosts for disease-causing parasites.

The major transboundary patterns of water-borne diseases can be illustrated as follows:

Water-borne diseases can be transboundary because of the movement and spread of disease vectors in the basin. Diseases have been eradicated in one part of the basin, only to be reinfected from another area of the basin. Additionally, water-borne diseases have been exacerbated by transboundary activities such as the damming of rivers, altering the timing, strength (flooding), and duration of the water flows.

Major environmental impacts of water-borne diseases are:

- Possible damage to fish resources
- Possible decline in biodiversity

The major socio-economic impacts are:

- Loss of human life
- Effects on human health
- Migration of populations to escape water-borne diseases
- Economic loss due to illness in workforce
- Increased poverty and disease

The root causes of water-borne diseases are:

- Insufficient regional agreements
- Inadequate legal/regulatory basis
- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Poverty
- Inadequate economic incentives
- Inadequate technical infrastructure
- Inadequate political will
- Insufficient demonstration projects
- Inadequate intersectoral cooperation
- Insufficient knowledge/understanding
- Poor alternative technology
- Inadequate training
- Inadequate technology

A sixth problem identified in the TDA is the **growth of aquatic weeds**. This has been of particular concern on some of the tributaries, especially on the Oti River, and on a tributary of the Black Volta. The weeds were probably inadvertently introduced into the basin as ornamental plants or were transferred accidentally with fishing gear. The growth of the weeds has been exacerbated by the contamination of the waterways with fertilizers and other pollutants.

The major transboundary patterns of the growth of aquatic weeds can be illustrated as follows:

The causes of aquatic weeds include introduction of alien weeds into the basin, and transfer of watercrafts and fishing gear as a result of trans-migration. Additionally, the runoff of fertilizers and nutrients from farmlands exacerbates the growth of the weeds. In the Oti Basin, aquatic weeds are located in both Togo and Ghana and this could be a transboundary issue.

Major environmental impacts of the growth of aquatic weeds include:

- Reduction in biodiversity
- Degradation of water quality
- Reduction of fisheries
- Increase in water lost through evapotranspiration

Major socio-economic impacts are:

- Reduction in transport along the waterways
- Reduction in power-generating capabilities of hydroelectric plants
- Exacerbation of water-borne diseases
- Increased poverty through loss of income to fishermen

The root causes of the growth of aquatic weeds are:

- Insufficient knowledge/understanding
- Inadequate legal/regulatory basis
- Insufficient government power
- Inadequate institutions
- Insufficient regional agreements
- Abuse of power
- Poverty
- Insufficient economic incentives
- Inadequate technological infrastructure
- Inadequate political will

A seventh problem identified in the TDA is **coastal erosion**. Some coastal countries observed high coastal erosion as a probable result of creation of the Akosombo Dam with the attendant deficit of sediments reaching the coast.

The major transboundary patterns of coastal erosion can be illustrated as follows:

- Upstream dams are affecting the downstream coastline
- Several countries use the electricity generated from the Akosombo Dam, the prime contributor to coastal erosion
- Migratory species' habitat is being degraded

The major environmental impacts of coastal erosion are:

- Degradation of coastal habitats, including migratory bird habitats
- Destruction of sandy beaches used as nesting sites by endangered marine turtles
- Change in coastal waters
- Loss of productivity of waterways
- Reduction in biodiversity
- Degradation of water quality

Major socio-economic impacts include:

- Loss of fish landing sites
- Loss of aesthetic value and tourism

- Loss of coastal resources
- Increased storm damage
- Loss or damage to human life or infrastructure

The root causes of coastal erosion are:

- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Insufficient demonstration projects
- Poverty
- Inadequate political will

The final problem identified in the TDA is **water quality degradation**. The major transboundary patterns of water quality degradation can be illustrated as follows:

Surface water resources are shared throughout the basin, making the degradation of water quality a strongly transboundary problem.

- Pollution is distributed throughout the waterways
- Land clearing in upstream countries have downstream effects

Major environmental impacts of water quality degradation include:

- Loss of biodiversity
- Loss of fisheries
- Harmful effects on coastal waters
- Occasional harmful algal blooms

Major socio-economic impacts are:

- Scarcity of potable drinking water
- Scarcity of non-polluted water for agriculture and animal husbandry
- Effects on human health
- Increase in water-borne diseases
- Loss of fisheries

The root causes of water quality degradation are:

- Insufficient regional agreements
- Inadequate legal/regulatory basis
- Insufficient knowledge/understanding
- Insufficient government power
- Inadequate institutions
- Abuse of power

- Poverty
- Inadequate national legal/regulatory basis
- Inadequate technology
- Inadequate training
- Population pressure
- Insufficient demonstration projects
- Inadequate intersectoral coordination
- Insufficient economic incentives
- Inadequate political will

The Transboundary Diagnostic Analysis provides more detailed information on the root causes and sources of the problems identified.

2.2 Emerging Problems for the Volta River Basin

Two emerging problems have been identified that may affect the environment of the Volta River Basin in the future

2.2.1 Urbanization

Urbanization is occurring, albeit slowly, in the basin and it already has been noted as a problem in Ghana. Problems associated with urbanization relate to increasing populations, including overall national population growth and migration into urban areas. These changes will have significant consequences for waste management and the threat of degradation and scarcity of water supplies.

2.2.2 Increase in Industrial and Mining Activities

While industrial development has been slow in the Volta River Basin, it will continue to increase, particularly as the population expands. This industrial growth can be expected to produce potential new point sources of pollution that will have impacts on land and water resources in the basin. Mining activities in the basin, although currently relatively small in scale, could expand and pose an even greater threat to the environment than they currently do.

The rising population growth and increasing industrial development raise the demand for hydroelectric power. The general tendency in the region will be to continue impounding river basins for electricity generation. This threatens future availability of water resources, as well as the coastline of Ghana.

3.0 Establishment of Environmental Quality Objectives for the Volta River Basin

3.1 General

The national reports and the Draft Preliminary Transboundary Diagnostic Analysis identified the major perceived problems of the Volta River Basin as being land degradation, water scarcity, loss of biodiversity, flooding, water-borne diseases, growth of aquatic weeds, coastal erosion and water quality degradation. Emerging problems were identified as urbanization and increasing industrial activities and mining.

For a number of these issues and problems, quantitative indicators of loss or degradation are not available. In other cases, the data and information are not uniform throughout the region. Thus, further in-depth studies are required in order to establish definitive EQOs for protection and management of the environment and its resources. Nevertheless, recognizing the urgency of the issues and problems, the preliminary EQOs and targets have been established for the key issues identified for priority action in the immediate future.

Underlying the process of degradation of the various resources described in the TDA is the lack of an effective institutional framework at national and regional levels for collective management of the environment and resources. This problem is addressed among the priority actions outlined in this Draft Preliminary Strategic Action Programme.

This section (3) is organized first by providing the objectives of the SAP, then by introducing the concept of Environmental Quality Objectives, and next listing those EQOs for the Volta River Basin land and water focal area. This section ends with a list of the specific targets identified in the 5-to-10 year time frame to move towards achievement of those EQOs.

Section 4 then takes the EQOs and targets, and lists the specific activities that are proposed to achieve those targets in the 5-to-10 year time frame. The activities are not costed yet, but will be costed as this Programme is updated and revised during the full GEF Project. Each activity is classified according to category of intervention (policy, legal/regulatory, institutional strengthening, capacity building, investments, scientific investigation, and data management). An additional table (Table 6) depicts the activities/interventions according to category of intervention, to show the broad-ranging activities within each category.

Section 5 outlines a cost-benefit analysis to support the actions/interventions of the SAP. Lacking adequate information from the draft Framework TDA, the cost-benefit analysis cannot be completed at this stage. It will be completed during the full GEF project as the list of actions/interventions is refined, and as the methodology for evaluating resource valuations is agreed within the region.

Section 6 then identifies the priority Actions and Interventions that are proposed in the immediate term. These Actions and Interventions cover a broad range of needs, but are the priority areas where stakeholder focus must reside in the near term.

3.2 Objectives, Rationale, and Priorities for the SAP

The ultimate goal of the Strategic Action Programme is to halt or slow the current rate of environmental degradation. It contains priority actions that need to be undertaken at both national and regional levels by a variety of stakeholders. It is designed to assist participating states in taking actions individually or jointly within their respective policies, priorities and resources, which will lead to the prevention, reduction, control and/or elimination of the causes of degradation of the freshwater and coastal environment. Achievement of the aims of the SAP will contribute to the protection of human health; promote the conservation and sustainable use of resources; and contribute to the maintenance of globally significant biological diversity.

The general objectives of the SAP are:

- Formulation of principles, approaches, measures, timetables and priorities for action; Preparation of a priority list for intervention and investments;
- Detailed analysis of expected baseline and additional actions needed to resolve each transboundary priority problem;
- Identification of the elements and preparation of guidelines for the formulation of national action plans for the protection of the marine environment and rational use of marine and coastal resources consistent with the regional SAP;
- Foster the involvement of regional and, where appropriate, national Non-Governmental Organizations and the private sector in the implementation of the SAP; and
- Foster collaboration and co-operation between all regional entities having interests in the environment of the Volta River Basin in an attempt to reduce or eliminate duplication of effort and waste of scarce human and financial resources.

The countries of the Volta River Basin have the basic infrastructure necessary for the protection of the environment and for the sustainable use of land and water resources, including competent institutions with authority for protection of the environment, and adopted legislation and regulations. However, the governments of the region have recognised that past actions at national and regional levels have not been adequate to halt the rate of degradation and that a more strategic approach is required. Consequently, regional environmental objectives and targets to achieve these objectives have been defined. These objectives, EQOs, and targets address the major areas of concern identified in the draft preliminary TDA, which are prioritised below:

High Priority

- Land degradation
- Water scarcity

Medium Priority

- Loss of biodiversity
- Water quality degradation

Low Priority

- Water-borne diseases
- Flooding
- Growth of aquatic weeds
- Coastal erosion

3.3 Environmental Quality Objectives, Targets, and Priority Actions

In order to categorize and prioritize interventions for each major perceived problem and issue, the MPPIs were recast into overall Environmental Quality Objectives.

The environmental impacts, socio-economic impacts, and root causes of the various MPPIs overlap to a great extent. Common are their causes: for instance, land-based activities affect water quality and quantity, loss of biodiversity, flooding and growth of aquatic weeds (see Table 3). Therefore, recognizing these overlaps and the priorities that arose from the TDA process, the EQOs were limited to three overarching objectives:

Table 3. Root Causes and Major Perceived Problems and Issues

Root Causes				Perceived	Problems			
	MPPI 1	MPPI 2	MPPI 3	MPPI 4	MPPI 5	MPPI 6	MPPI 7	MPPI 8
	Land Degrad- ation	Water Scarcity	Loss of Biodiver- sity	Flooding	Water- Borne Diseases	Growth of Aquatic Weeds	Coastal Erosion	Water Quality Degrad- ation
Insufficient scientific capacity	1		√	٧	√		√	
Low government priority on environment	٧	1	√	V	√		√	
Abuse of power	√,	√,	√	√,	√.		√	√,
Poverty	√	√	√	√	√	√	√	1
Insufficient knowledge / understanding	٧	√		√	√	√		√
Population pressure	√			√				√
Inadequate legal / regulatory basis	√	√	√	√	1	√		√
Inadequate technical infrastructure	4		√	V	√	7		
Insufficient demonstration projects	4	V		1	√		4	V
Inadequate intersectoral coordination	٧	٧			√			1
Insufficient economic incentives	٧	٧	V	4	√	1		٧
Inadequate political will	٧		1	1	1	√	1	1
Inadequate water basin management	1							

Root Causes				Perceived	Problems			
	MPPI 1	MPPI 2	MPPI 3	MPPI 4	MPPI 5	MPPI 6	MPPI 7	MPPI 8
	Land Degrad- ation	Water Scarcity	Loss of Biodiver- sity	Flooding	Water- Borne Diseases	Growth of Aquatic Weeds	Coastal Erosion	Water Quality Degrad- ation
Insufficient regional agreements		√		٧		٧		4
Drought		√ √						
Inadequate human capacity			√					
Inadequate institutions	√	√	√	√		√		٧
Inadequate technology		√	√		1			
Insufficient government power	√	1	√	٧	1	1		4
Inadequate training					1			1

1. Balanced aquatic ecosystem

Addresses the following MPPIs:

- Loss of biodiversity
- Flooding
- Water-borne diseases
- Growth of aquatic weeds
- Coastal erosion
- Water quality degradation

2. Stabilized high-quality freshwater supplies

Addresses the following MPPIs:

- Water scarcity
- Water quality degradation
- Water-borne diseases

3. Sustainable land use

Addresses the following MPPIs:

- Land degradation
- Water scarcity
- Destruction of habitats, loss of biodiversity
- Flooding
- Aquatic weeds
- Water quality degradation

Each of these EQOs had specific targets associated with them, with the environmental indicators shown below. Environmental Indicators are a tool used to assure precise evaluation of achievement or satisfaction of the target, demonstrating which metric will be used in the evaluation. Environmental indicators may be of three types, according to GEF terminology: Process Indicator, Stress Reduction Indicator, or Environmental Status Indicator. The timeframe for the targets is a five-to-ten year period.

Balanced aquatic ecosystem

- Achieve adequate surface water quality by 2012 (Indicator: water quality monitoring shows stable water quality by 2012)
- Restore natural surface water flow by 2012 (Indicator: regional water agreements in place for all major rivers in the area by 2012)
- Achieve sustainable fisheries development by 2012 (Indicator: national report on fisheries indicate stabilized fisheries resources by 2012)
- Arrest wetland loss by 2012 (Indicator: wetlands surveys show stability in amount of wetlands by 2012)
- Begin implementation of riverine biodiversity conservation strategy by 2008 (Indicator: biodiversity conservation strategy has been developed and national reports indicate that implementation has begun by 2008)

Stabilized high-quality freshwater supplies

- Achieve adequate freshwater quantity by 2012 (Indicator: regional water agreements in place for all major rivers in the area by 2012)
- Achieve adequate groundwater quality and quantity by 2012 (Indicator: groundwater surveys show stable levels of contaminants of concern and stable water tables by 2012)

Sustainable land use

- Reduce rate of land degradation by 20% by 2012 (Indicator: aerial surveys combined with ground-truthing indicates that the rate of land lost to erosion, desertification and deforestation is reduced by 20% by 2012)
- Reduce coastal erosion rates by 25% by 2012 (Indicator: aerial surveys combined with ground-truthing indicates that the human-induced component of the rate of coastal erosion is reduced by 25% by 2012)

4.0 Priority Actions and Interventions

Following the identification of environmental quality objectives and their associated targets above, specific interventions/actions were identified to achieve first the targets, and ultimately, the EQOs. These priority actions and interventions can be categorized within one or more of the following major groupings:

- Policy actions
- Legislative/regulatory reform
- Institutional strengthening
- Capacity building
- Investment
- Scientific investigation
- Data management

For economy of space, each activity and intervention is listed under only a single EQO and target. In fact, many activities and interventions may address multiple EQOs and targets. The listing of activities and interventions according to category helps to clarify this multiplicity.

This SAP lists and prioritizes these different categories of actions and interventions. Table 3 summarizes the priority interventions within each EQO and target. These actions/interventions will be reviewed and costed during the full GEF project. Each activity is characterized by the root causes that it addresses. Each intervention is categorized by type of intervention.

Table 4 lists the priority actions/interventions according to category of intervention. For instance, all policy actions are listed together; all legal/regulatory actions are listed together, and so on. This table depicts the broad diversity of interventions within each category of intervention across all major EQOs and targets. This table demonstrates that comparable multi-sectoral approaches are being taken to address each of the EQOs and targets.

 Table 4.
 Environmental Quality Objectives, Targets, and Interventions

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
Balanced Aquatic Ecosystem	Achieve adequate surface water quality by 2012	Establish common methods for assessing water and sediment quality, including bioassays of coastal biota	Develop guidelines for methods of water, sediment, and biota monitoring and assessment (including sampling, analysis, risk assessment)	Legislative/ Regulatory	Insufficient scientific capacity
			Implement a first periodic assessment (3-year interval) of the river quality and trends	Investment	
			Develop and establish national/regional land-based activities data and information management system as a tool for contaminant assessment and management	Data Management	
		Fill gaps in knowledge of priority pollutants (contaminant levels) and major sources of pollutants (contaminant inputs)	Conduct regional assessment of priority land-based activities, sources of contaminants, and pollutant levels in water and sediments	Scientific Investigation	Insufficient scientific capacity
			Conduct routine targeted monitoring of riverine sediments and biota for purposes of identifying major hot spots of pollution and land-based activities	Investment	
		Exchange environmental data and information	Develop agreements and technology basis for the free and regular exchange of environmental data and information within the region	Data Management	Insufficient scientific capacity; Inadequate technical infrastructure
		Reduce impacts of urban areas on water quality	Construct or extend sewage collection systems in all major cities in the basin and route discharges to treatment plant	Investment	
			Upgrade/renovate existing treatment plants for mechanical and biological treatment	Investment	
			Expand solid waste collection in all major cities and improve disposal methods so waste does not run-off or leach into waterways	Investment	
		Reduce impacts of industry and mining on water quality	Develop and enforce regulations on the disposal of industrial and mining effluents	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Inadequate

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
					institutions; Insufficient demonstration projects; Inadequate of technology
			Strengthen the capacity of institutions to enforce mining and industry regulations	Institutional Strengthening	
			Implement demonstration projects to bring best technology and practice to industrial discharges (e.g., pre-treatment, source control, process control)	Investment	
			Identify major pollutants affecting water quality, and regulatory levels for those pollutants	Scientific Investigation	
		Halt the spread of aquatic weeds by 2010	Improve knowledge of distribution of aquatic weeds using regional working groups	Scientific Investigation	Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Inadequate river basin management
			Develop national and regional aquatic weed management strategies/plans/frameworks combined with monitoring and GIS capabilities	Policy	
			Establish and implement a control system for the import and export of exotic species into and from the Volta River Basin	Legislative/ Regulatory	
	Restore natural surface water flow by 2012	Improve water basin management	Agree regionally on extraction of river water and control of river flow regimes	Legislative/ Regulatory	Inadequate water basin management; Insufficient regional agreements; Inadequate intersectoral coordination
			Conduct baseline investigation to establish the minimum threshold required for ecosystem function.	Scientific Investiation	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Manage water release from hydro-electric dams in accordance with natural requirements	Legislative/ Regulatory	
			Manage water usage for agriculture and other uses in order to maintain more natural river water level and prevent detrimental impact on the ecosystem	Legislative/ Regulatory	
			Develop a regional commission with appropriate policy/legal basis to monitor regional water quantity and quality	Policy	
			Implement regional EIA for water management projects, perhaps through the ESPOO Convention, to enhance broad stakeholder involvement in major water projects	Legislative/ Regulatory	
			Develop regional basin water management plan of action	Policy	
			Strengthen the capacity of institutions to implement regional basin water management plan of action.	Institutional Strengthening	
	Achieve sustainable fisheries development by 2012	Strengthen legal basis	Assure that legislation regulating fishing gear, quotas, size limits, seasons and allowed fishing areas are in place	Legislative/ Regulatory	Inadequate legal/regulatory basis; Insufficient scientific capacity; Insufficient regional agreements; Inadequate institutions
			Strengthen enforcement of quotas, size limits, seasons, etc., relying on community-based fishery management activities	Policy	
			Help harmonize fishing regulations amongst Volta River Basin countries	Policy	
			Strengthen capacity of institutions to enforce fisheries regulations	Institutional Strengthening	
			Establish "no take zones" either geographically or seasonally	Legislative/ Regulatory	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Establish criteria for "healthy" fisheries situation	Scientific Investigation	
		Develop site-specific or species-specific management plans that promote sustainable utilization and protect nursery or reproduction areas	Develop management plans, and implement and monitor them with local communities and user groups	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient economic incentives; Inadequate institutions
			Strengthen capacity of local communities to implement and monitor management plans	Institutional Strengthening	
		Provide alternative technologies	Develop and demonstrate mechanisms to reduce by- catch	Policy	Inadequate technology
	Arrest wetland loss by 2012	Fill gaps in knowledge of priorities in protecting wetlands	Undertake inventory of selected wetlands sites in the basin to establish extent and condition of habitat and management challenges	Scientific Investigation	Insufficient scientific capacity; Insufficient knowledge/ understanding
		Strengthen regional legal basis for protection of wetlands	Review, harmonize, and strengthen relevant local, national, regional, and international legislation and conventions relevant to the conservation and management of wetlands	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient regional agreements
		Develop management plans for selected wetlands sites of global and ecological importance by 2007	Develop national wetlands management strategies/ plans/ frameworks (including community participation and empowerment)	Policy	Inadequate legal/ regulatory basis; Inadequate human capacity; Inadequate institutions
			Strengthen the capacity of local conservation groups to conserve wetlands	Institutional Strengthening	

Environmental					
Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
	Begin implementation of riverine biodiversity conservation strategy by 2008	Develop and implement regional biodiversity strategy	Prepare a regional biodiversity strategy document, including a gap analysis, and obtain endorsement by riparian states	Policy	Insufficient regional agreements; Inadequate water basin management; Insufficient knowledge/ understanding
			Implement biodiversity strategy, including species specific action plans	Scientific Investigation/ Investment	
		Prevention of adverse human activity on sensitive areas	Evaluate sensitivity of areas and habitats in the Volta River Basin and evaluate levels of human impacts on them	Scientific Investigation	Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis
			If necessary, develop legislation for the protection of areas not currently covered or included in protected zones	Legislative/ Regulatory	
			Develop and implement action plans for those sensitive areas where human impact is adverse	Investment	
		Reduce impacts of agriculture, land grazing, and hunting on loss of biodiversity	Implement alternatives to agricultural expansion, unchecked grazing, and poor hunting practices, including bushfires and poaching, to conserve biodiversity	Investment	Insufficient economic incentives
Stabilized high- quality freshwater supplies	Achieve adequate freshwater by 2012	Rationing of water use through international agreements on shared water basins	Review and strengthen existing regional river system agreements; develop new agreements	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient knowledge/ understanding; Insufficient economic incentives; Inadequate water basin management

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Harmonize environmental and economic policy regarding water use	Policy	
			Monitor supply and quality of water in major rivers Prepare environmental impact assessments (EIAs) for major investments that may affect water quantity or quality	Investment Investment	
			Support freshwater resource tenure and valuation	Investment	
	Achieve adequate groundwater quality and quantity by 2012	Fill gaps in knowledge	Develop common guidelines for periodic assessment of groundwater quality and quantity trends	Scientific Investigations	Insufficient scientific capacity; Insufficient knowledge/ understanding
			Develop and implement a groundwater quality trend monitoring programme	Investment	
			Conduct the first periodic assessment of groundwater quality and its trends	Investment	
			Evaluate sustainable groundwater use rates, and appropriate monitoring systems	Scientific Investigations	
		Improve efficiency and availability of high-quality well water	Based on the sustainable groundwater use rates, improve water extraction and transport systems to rural and urban areas	Investment	Inadequate technical infrastructure; Insufficient economic incentives; Insufficient demonstration projects
			Institute a water use fee structure for all water users	Investment	
		Reduce evaporative losses in drainage basin	Rationalize the use of small dams and barrages for local communities	Policy	Inadequate technical infrastructure
			Revegetate (reforest, replant) the drainage basin to increase natural evapotranspiration processes	Investment	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Caus	se
Sustainable land use	Reduce rate of land degradation by 20% by 2012	Strengthen regional legal basis for preventing land degradation	National review of policy, legal, and regulatory frameworks, and institutional structure for addressing land-based activities (including international conventions such as climate change)	Legislative/ Regulatory		legal/ basis; Low on
			Draft Regional EIA process review in a regional workshop; adopt regional EIA	Legislative/ Regulatory		
			Develop realistic National Plans of Action for land- based sources and activities	Capacity Building		
			Develop common regional guidelines containing appropriate recommendations for decision makers for management of land-based point and non-point pollutant sources	Scientific Investigation		
			Strengthen capacity of institutions to implement National Plans of Action and EIA process review	Institutional Strengthening		
		Strengthen monitoring capacity for evaluating land degradation rates	Develop a regional commission with appropriate policy/legal basis to monitor regional land degradation	Policy	Insufficient regional agreements; Inadequate training; Inadequate h capacity; Inadequate institutions	numan
			Develop training and educational programs to train regional personnel on monitoring and use of GIS as a planning tool	Capacity Building		
			Develop regional and national institutions to perform ongoing monitoring of land degradation, including geographic areas, causes, and rates	Investment		

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Involve stakeholders, including NGOs and natural resource users, by communicating the results of monitoring and communicating alternative strategies for resource use	Capacity Building	
		Determine and satisfy training needs in region for land-based activities and sources	Conduct survey on training needs and conduct training on land-based activities and sources (for high officials, mid-level government, community, resource users, experts, industry, etc.)	Capacity Building	Inadequate training; Inadequate human capacity
		Improve Stakeholder knowledge of causes of land degradation, and involve the stakeholders in its solution	Develop outreach and public awareness program regarding land degradation	Investment	Insufficient knowledge/ understanding
			Create community-based agent network to educate and advise stakeholders on alternatives to traditional, harmful activities causing land degradation	Investment	
		Develop educational programs at all levels on land-based activities and sources	Conduct survey on educational needs to support reduction of land-based activities and sources and implement the activities to address three top priority regional educational needs, in appropriate languages	Capacity Building	Insufficient knowledge/ understanding; Inadequate training; Inadequate technology
			Develop necessary training at different levels on public awareness, applying Best and Cost Effective Technology, Best Agricultural Practices, Integrated Pest Management, increasing irrigation efficiency and fertilizer use, etc.	Capacity Building	
		Develop Regional/ Governmental/ Private Sector partnerships on LB activities and sources	Integrate private sector into activities of this project, as appropriate, as sub-contractor, consultant, or cosponsor of specific activities	Policy	Insufficient economic incentives
		Strengthen legal basis and institutional capacity to reduce impacts of agriculture and animal husbandry	Develop and enforce land use codes for agriculture and animal husbandry	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Inadequate institutions

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Strengthen institutional capacity to support rangeland management; develop community rangelands	Institutional Capacity	
		Develop programs to reduce impacts of agriculture and animal husbandry	Riparian countries agree to a list of banned agrochemicals and develop a program to destroy stored banned products	Legislative/ Regulatory	Insufficient regional agreements; Inadequate training; Inadequate legal/ regulatory basis; Inadequate technology; Insufficient scientific capacity
			Riparian countries agree on limits to the application of agrochemicals and develop strategies to encourage the sustainable use of organic manure fertilizer	Legislative/ Regulatory	
			Riparian countries agree on regional controls on bushfires for agriculture, pasturage, and hunting, and enforce the controls	Policy	
			Conduct training courses at farmer and industry level to apply the most appropriate and new findings in their practice by 2008	Capacity Building	
			Strengthen and enforce regulations on the disposal of animal waste	Legislative/ Regulatory	
			Develop more efficient ways to use existing land, increasing yields through better land management, crop rotation, or crop selection	Investment	
			Develop basin-wide corridors for seasonal migration of livestock through adjacent countries, based on historical common use zones	Policy	
			Develop community-based agricultural/ animal husbandry networks for transfer of technology and best practice	Institutional Strengthening	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of agriculture and animal husbandry, including protection objectives. Broadly disseminate the results to rural inhabitants.	Investment	
		Establish and maintain a network of well-managed protected areas in the Volta River Basin	Establish a functioning regional protected area working group for protection and management functions, financial arrangements, recommending new protected areas and addressing management of protected areas located along international borders	Institutional Strengthening	Inadequate institutions; Insufficient regional agreements; Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Insufficient economic incentives; Inadequate training; Insufficient scientific capacity
			Obtain government endorsement for the recommended protected areas	Policy	
			Evaluate the priority targets for protection in each protected area and how these fit into regional priorities	Scientific Investigation	
			Review and propose revisions for national legislation on protected areas to permit environmentally friendly uses of the protected areas	Legislative/ Regulatory	
			Allocate a zone within protected areas or adjacent to them for ecotourism activities	Legislative/ Regulatory	
			Provide training in national protected area management and development of ecotourism	Capacity Building	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Reduce poaching in protected areas by ensuring that legislation regulating hunting equipment, quotas, seasons and allowed hunting areas are in place and strengthening enforcement of these regulations	Legislative/ Regulatory	
			Increase stakeholder participation, including community ownership, of protected areas	Capacity Building	
			Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of protected areas, including protection objectives. Broadly disseminate the results to rural inhabitants.	Investment	
		Reduce rates of deforestation	Identify main contributors to deforestation, including public and private sector, as well as legal and regulatory failures	Scientific Investigation	Insufficient demonstration projects Insufficient economic incentives; Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Inadequate human capacity
			Identify alternative sources for products historically produced from forests, and link with appropriate incentives and disincentives	Scientific Investigation	
			Identify means to increase efficiency and reduce waste in use of forest products, through demonstration projects	Investment	
			Establish legislation to reduce rates of deforestation based on economic incentives and disincentives	Legislative/ Regulatory	
			Establish reforestation programs and begin their implementation in affected areas, at village, community, national, and regional levels	Investment	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Establish regional and national capacities to monitor, examine causes, and map (using GIS) rates and geographic locations of deforestation and reforestation. Broadly disseminate the results to rural inhabitants.	Investment	
		Reduce rates of loss of land to desertification	Increase awareness of local populations of the desertification process, perhaps working through existing mechanisms	Capacity Building	Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Insufficient scientific capacity; Insufficient demonstration projects
			Improve legal basis in each country for combating desertification, including: criteria to define land degradation; amended laws on forestry, water resources and land; and, strengthened legal mechanisms such as EIA and planning procedures	Legislative/ Regulatory	
			Develop a desertification monitoring system and widely disseminate results	Capacity Building	
			Demonstrate ways to reverse desertification	Investment	
		Reduce land degradation due to mining	Evaluate national legislation addressing mining and use of non-living resources	Scientific Investigation	Inadequate legal/ regulatory basis; Inadequate intersectoral coordination; Insufficient regional agreements; Insufficient demonstration projects

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Create regional working group on land degradation due to mining, and recommend specific common regional improvements to policy and legislation	Policy	
			Implement recommendations of regional working group in national laws and regulations	Legislative/ Regulatory	
			Perform demonstration projects of ways to avoid adverse environmental impacts of mining	Investment	
		Develop culturally-adapted improvements to land tenure systems/property rights in the region	Perform investigation of the policy, legal, and cultural basis for land tenure policies in the Volta River Basin	Scientific Investigation	Inadequate legal/ regulatory basis; Insufficient economic incentives
			Develop more effective methods of land tenure to reduce tendency for migration to fresh lands, and to encourage "investment" in lands (e.g., efficient irrigation, improved crop methods)	Policy	
			Implement environmentally sustainable land tenure systems in the region, perhaps as a "special planning zone"	Investment	
	Reduce coastal erosion rates by 25% by 2012	Fill gaps in knowledge	Conduct assessment of the effects of Akosombo Dam on coastal erosion on the Gulf of Guinea coast	Scientific Investigation	Insufficient knowledge/ understanding
		Develop coastal erosion management plan through a participatory process	Promote environmental and community-based tourism	Capacity Building	Insufficient economic incentives; inadequate human capacity
		Strengthen legal basis for protection of coastline	Review, harmonize and strengthen relevant local and national policies and legislation regarding coastal zone and river basin management	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Inadequate intersectoral coordination

 Table 5.
 Priority Actions within Each Category of Intervention

Category	Environmental Quality Objectives	Interventions	
Policy Actions	I. Balanced Aquatic Ecosystem	Develop national and regional aquatic weed management strategies/plans/frameworks combined with monitoring and GIS capabilities	
		Develop a regional commission with appropriate policy / legal basis to monitor regional water quantity and quality	
		Develop regional basin water management plan of action	
		Strengthen enforcement of quotas, size limits, seasons, etc., relying on community-based fishery management activities	
		Help harmonize fishing regulations amongst Volta River Basin countries	
		Develop and demonstrate mechanisms to reduce by-catch	
		Develop national wetlands management strategies/ plans/ frameworks	
		(including community participation and empowerment)	
		Prepare a regional biodiversity strategy document, including a gap analysis, and obtain endorsement by riparian states	
		Develop a regional commission with appropriate policy/legal basis to	
		monitor regional water quality and quantity	
	II. Stabilized high-quality freshwater supplies	Harmonize environmental and economic policy regarding water use	
		Rationalize the use of small dams and barrages for local communities	
	III. Sustainable land use	Develop a regional commission with appropriate policy/legal basis to	
		monitor regional land degradation	
		Integrate private sector into activities of this project, as appropriate, as	
		sub-contractor, consultant, or co-sponsor of specific activities	
		Riparian countries agree on regional ban on bushfires for agriculture, pasturage, and hunting, and enforce the ban	
		Develop basin-wide corridors for seasonal migration of livestock	
		through adjacent countries, based on historical common use zones	
		Obtain government endorsement for the recommended protected areas	
		Create regional working group on land degradation due to mining,	
		and recommend specific common regional improvements to policy	
		and legislation	
		Develop more effective methods of land tenure to reduce tendency for migration to fresh lands, and to encourage "investment" in lands (e.g., efficient irrigation, improved crop methods)	
Legislative /	I. Balanced Aquatic		
Regulatory Actions	Ecosystem	monitoring and assessment (including sampling, analysis, risk assessment)	
		Develop and enforce regulations on the disposal of industrial and	
		mining effluents Establish and implement a control system for the import and export of	
		exotic species into and from the Volta River Basin	
		Agree regionally on extraction of river water and control of river flow	
		regimes	
		Manage water release from hydro-electric dams in accordance with natural requirements	
		Manage water usage for agriculture and other uses in order to maintain more natural river water level and prevent detrimental	
		impact on the ecosystem	

Category	Environmental Quality Objectives	Interventions	
		Implement regional EIA for water management projects, perhaps through the ESPOO Convention, to enhance broad stakeholder involvement in major water projects	
		Assure that legislation regulating fishing gear, quotas, size limits, seasons and allowed fishing areas are in place	
		Establish "no take zones" either geographically or seasonally Develop management plans, and implement and monitor them with	
		local communities and user groups Review, harmonize, and strengthen relevant local, national, regional, and international legislation and conventions relevant to the conservation and management of wetlands	
		If necessary, develop legislation for the protection of areas not currently covered or included in protected zones	
	II. Stabilized high-quality freshwater supplies	Develop common regional guidelines for periodic assessment of river water quality and groundwater quality	
	M. C. d. 11.1.1	Review and strengthen existing regional river system agreements; develop new agreements	
	III. Sustainable land use	National review of policy, legal, and regulatory frameworks, and institutional structure for addressing land-based activities (including international conventions such as climate change)	
		Draft Regional EIA process review in a regional workshop; adopt regional EIA	
		Develop and enforce land use codes for agriculture and animal husbandry	
		Riparian countries agree to a list of banned agrochemicals and develop a program to destroy stored banned products	
		Riparian countries agree on limits to the application of agrochemic and develop strategies to encourage the use of organic manifertilizer	
		Strengthen and enforce regulations on the disposal of animal waste Review and propose revisions for national legislation on protected	
		areas to permit environmentally friendly uses of the protected areas Allocate a zone within protected areas or adjacent to them for	
		ecotourism activities Establish legislation to reduce rates of deforestation based on	
		economic incentives and disincentives Improve legal basis in each country for combating desertification, including: criteria to define land degradation; amended laws on forestry, water resources and land; and, strengthened legal mechanisms such as EIA and planning procedures	
		Implement recommendations of regional working group in national laws and regulations	
		Review, harmonize and strengthen relevant local and national policies and legislation regarding coastal zone and river basin management	
		Reduce poaching in protected areas by ensuring that legislation regulating hunting equipment, quotas, seasons and allowed hunting areas are in place and strengthening enforcement of these regulations	
Institutional Strengthening Actions	I. Balanced Aquatic Ecosystem	Strengthen the capacity of institutions to enforce mining and industry regulations	
		Strengthen the capacity of institutions to implement regional basin water management plan of action.	

Category Environmental Quality Objectives		Interventions		
		Strengthen capacity of institutions to enforce fisheries regulations		
		Strengthen capacity of local communities to implement and monitor management plans		
		Strengthen the capacity of local conservation groups to conserve wetlands		
	II. Stabilized high-quality freshwater supplies	None		
	III. Sustainable land use	Strengthen capacity of institutions to implement National Plans of Action and EIA process review		
		Strengthen institutional capacity to support rangeland management; develop community rangelands		
		Develop community-based agricultural/ animal husbandry networks for transfer of technology and best practice		
		Establish a functioning regional protected area working group for protection and management functions, financial arrangements, recommending new protected areas and addressing management of protected areas located along international borders		
Capacity Building Actions	I. Balanced Aquatic Ecosystem	None		
	II. Stabilized high-quality freshwater supplies	None		
	III. Sustainable land use	Develop realistic National Plans of Action for land-based sources and activities		
		Develop training and educational programs to train regional personnel on monitoring and use of GIS as a planning tool		
		Involve stakeholders, including NGOs and natural resource users, by communicating the results of monitoring and communicating alternative strategies for resource use		
		Conduct survey on training needs and conduct training on land-based activities and sources (for high officials, mid-level government, community, resource users, experts, industry, etc.)		
		Conduct survey on educational needs to support reduction of land- based activities and sources and implement the activities to address three top priority regional educational needs, in appropriate languages		
		Develop necessary training at different levels on public awareness, applying Best and Cost Effective Technology, Best Agricultural Practices, Integrated Pest Management, increasing irrigation efficiency and fertilizer use, etc.		
		Conduct training courses at farmer and industry level to apply the most appropriate and new findings in their practice by 2008		
		Provide training in national protected area management and development of ecotourism		
		Increase stakeholder participation, including community ownership, of protected areas		
		Increase awareness of local populations of the desertification process, perhaps working through existing mechanisms		
		Develop a desertification monitoring system and widely disseminate results		
_		Promote environmental and community-based tourism		
Investment Actions	I. Balanced Aquatic Ecosystem	Conduct routine targeted monitoring of riverine sediments and biota for purposes of identifying major hot spots of pollution and land- based activities		

Category	Environmental Quality Objectives	Interventions
		Construct or extend sewage collection systems in all major cities in
		the basin and route discharges to treatment plant
		Upgrade/renovate existing treatment plants for mechanical and biological treatment
		Expand solid waste collection in all major cities and improve disposal methods so waste does not run-off or leach into waterways
		Implement demonstration projects to bring best technology and practice to industrial discharges (e.g., pre-treatment, source control, process control)
		Implement biodiversity strategy, including species specific action plans
		Develop and implement action plans for those sensitive areas where human impact is adverse
		Implement alternatives to agricultural expansion, unchecked grazing, and poor hunting practices, including bushfires and poaching, to conserve biodiversity
	II. Stabilized high-quality freshwater supplies	Implement a first periodic assessment (3-year interval) of the river quality and trends
		Monitor supply and quality of water in major rivers Prepare environmental impact assessments (EIAs) for major investments that may affect water quantity or quality
		Support freshwater resource tenure and valuation
		Develop and implement a groundwater quality trend monitoring programme
		Conduct the first periodic assessment of groundwater quality and its trends
		Based on the sustainable groundwater use rates, improve water extraction and transport systems to rural and urban areas
		Institute a water use fee structure for all water users
		Revegetate (reforest, replant) the drainage basin to increase natural evapotranspiration processes
	III. Sustainable land use	Develop regional and national institutions to perform ongoing monitoring of land degradation, including geographic areas, causes, and rates
		Develop outreach and public awareness program regarding land degradation
		Create community-based agent network to educate and advise stakeholders on alternatives to traditional, harmful activities causing land degradation
		Develop more efficient ways to use existing land, increasing yields through better land management, crop rotation, or crop selection
		Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of agriculture and animal husbandry, including protection objectives. Broadly disseminate the results to rural inhabitants.
		Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of protected areas, including protection objectives. Broadly disseminate the results to
		rural inhabitants. Identify means to increase efficiency and reduce waste in use of forest products, through demonstration projects

Category	Environmental Quality Objectives	Interventions
		Establish reforestation programs and begin their implementation in
		affected areas, at village, community, national, and regional levels
		Establish regional and national capacities to monitor, examine causes,
		and map (using GIS) rates and geographic locations of deforestation
		and reforestation. Broadly disseminate the results to rural inhabitants.
		Demonstrate ways to reverse desertification
		Perform demonstration projects of ways to avoid adverse
		environmental impacts of mining Implement environmentally sustainable land tenure systems in the
		region, perhaps as a "special planning zone"
Scientific Investigation Actions	I. Stabilize surface water quality by 2012	Conduct regional assessment of priority land-based activities, sources of contaminants, and pollutant levels in water and sediments
		Identify major pollutants affecting water quality, and regulatory levels for those pollutants
		Improve knowledge of distribution of aquatic weeds using regional working groups
		Establish criteria for "healthy" fisheries situation
		Undertake inventory of selected wetlands sites in the basin to
		establish extent and condition of habitat and management challenges
		Implement biodiversity strategy, including species specific action
		plans
		Evaluate sensitivity of areas and habitats in the Volta River Basin and
		evaluate levels of human impacts on them
	II. Stabilized high-quality freshwater supplies	Develop common guidelines for periodic assessment of groundwater quality and quantity trends
	neshwater supplies	Evaluate sustainable groundwater use rates, and appropriate
		monitoring systems
	III. Sustainable land use	Develop common regional guidelines containing appropriate
		recommendations for decision makers for management of land-based
		point and non-point pollutant sources
		Evaluate the priority targets for protection in each protected area and how these fit into regional priorities
		Identify main contributors to deforestation, including public and private sector, as well as legal and regulatory failures
		Identify alternative sources for products historically produced from
		forests, and link with appropriate incentives and disincentives
		Evaluate national legislation addressing mining and use of non-living
		resources
		Perform investigation of the policy, legal, and cultural basis for land
		tenure policies in the Volta River Basin
		Conduct assessment of the effects of Akosombo Dam on coastal erosion on the Gulf of Guinea coast
Data Management	I. Stabilize surface water	Develop and establish national/regional land-based activities data and
Actions	quality by 2012	information management system as a tool for contaminant assessment
		and management
		Develop legislation and technology basis for the free and regular
		exchange of environmental data and information within the region
	II. Stabilized high-quality freshwater supplies	None
	III. Sustainable land use	None

5.0 Cost Benefit Analysis of Programme Actions

In this section the evaluation is focused on:

- The economic and ecological valuations of the resources;
- The costs of the actions to meet the targets as identified in Sections 3 and 4;
- The value saved by meeting the targets identified by specific actions of the project;
- The benefits obtained after the GEF project is complete.

The actual cost-benefit analysis is not performed as part of this preliminary SAP, for several reasons:

- a) Insufficient knowledge is available about the status of the specific resources in question, so percent improvements as listed in the Targets cannot be quantified.
- b) The interventions proposed by the SAP have not been costed out fully yet. This costing exercise will take place as part of the full GEF project, and will contribute to the updated SAP.
- c) Lacking either the valuation of natural resources, or the cost with and without the alternative, a cost-benefit analysis cannot be made.

However, the following section briefly describes how the cost-benefit analysis would take place.

5.1 Valuation Considerations

The approach to the valuation of the resources of the Volta River Basin will estimate the value of ecosystems in terms of ecological functions and economic values which follows that used in Costanza *et al.* 1997 (The value of the world's ecosystem services and natural capital. Nature, 387, 253-260). Alternative valuation methods are time intensive and quite expensive, requiring considerable work at the site. During the full GEF project, both Constanza's evaluation methodology and more complete evaluation methodologies will be applied to the SAP alternative.

5.2 Valuation of Resources

Using the methodology of Constanza et al., or an alternative valuation methodology developed during the full GEF project, the following valuations will be performed:

- **5.2.1** Habitat Values
- **5.2.2** Biodiversity Values
- 5.2.3 Pollution

5.3 Estimated Cost of Strategic Action Programme

As Table 3 indicates, the costs of the various interventions has not been established. These will be established as part of the full GEF Project. Once these costs have been established, the cost-benefit analysis can be completed.

6.0 Priority Regional and National Actions to Address the Causes of Environmental Degradation and Threats to the Environment of the Volta River Basin

In this section the priorities of the Strategic Action Plan are presented. These priorities must be agreed by the stakeholders in order for the GEF/SAP interventions to be effective. The prioritization exercise with stakeholders will take place during the full GEF project. At present, only governmental "stakeholders" have agreed to these priorities.

6.1 Priorities

The following priorities have been established:

I. Policy Actions

- a. Develop regional basin water management "plan of action"
- b. Prepare a regional biodiversity strategy document, including a gap analysis, and obtain endorsement by riparian states
- c. Harmonize environmental and economic policy regarding water use
- d. Develop a regional commission with appropriate policy/legal basis to monitor regional land degradation
- e. Riparian countries agree on regional control on bushfires for agriculture, pasturage, and hunting, and enforce the control
- f. Develop more effective methods of land tenure to reduce tendency for migration to fresh lands, and to encourage "investment" in lands (e.g., efficient irrigation, improved crop methods)

II. Legislative/Regulatory Actions

- a. Develop guidelines for methods of water, sediment, and biota monitoring and assessment (including sampling, analysis, risk assessment)
- b. Agree regionally modalities for extraction of river water and control of river flow regimes
- c. Manage water release from hydro-electric dams in accordance with natural requirements
- d. Implement regional EIA for water management projects, perhaps through the ESPOO Convention, to enhance broad stakeholder involvement in major water projects
- e. Review, harmonize, and strengthen relevant local, national, regional, and international legislation and conventions relevant to the conservation and management of wetlands
- f. Review and strengthen existing regional river system agreements; develop new agreements
- g. Draft Regional EIA process review in a regional workshop; adopt regional EIA
- h. Develop and enforce land use codes for agriculture and animal husbandry
- i. Establish legislation to reduce rates of deforestation based on economic incentives and disincentives
- j. Improve legal basis in each country for combating desertification, including: criteria to define land degradation; amended laws on forestry, water resources and land; and, strengthened legal mechanisms such as EIA and planning procedures

III. Institutional Strengthening and Development Actions

- a. Strengthen the capacity of local conservation groups to conserve wetlands
- b. Establish a functioning regional protected area working group for protection and management functions, financial arrangements, recommending new protected areas and addressing management of protected areas located along international borders
- c. Establishment of a basin commission to manage land and water resources of the Volta Basin
- d. Strengthening local and national institutions for the management of land and water resources of the basin

IV. Capacity Building Actions

- a. Develop training and educational programs to train regional personnel on monitoring and use of GIS as a planning tool
- b. Involve stakeholders, including NGOs and natural resource users, by communicating the results of monitoring and communicating alternative strategies for resource use
- c. Develop necessary training at different levels on public awareness, applying Best and Cost Effective Technology, Best Agricultural Practices, Integrated Pest Management, increasing irrigation efficiency and fertilizer use, etc.
- d. Conduct training courses at farmer and industry level to apply the most appropriate and new findings in their practice by 2008
- e. Increase stakeholder participation, including community ownership, of protected areas
- f. Increase awareness of local populations of the desertification process, perhaps working through existing mechanisms
- g. Develop a desertification monitoring system and widely disseminate results

V. Investment Actions

- a. Conduct routine targeted monitoring of riverine sediments and biota for purposes of identifying major hot spots of pollution and land-based activities
- b. Implement biodiversity strategy, including species specific action plans
- c. Implement alternatives to agricultural expansion, unchecked grazing, and poor hunting practices, including bushfires and poaching, to conserve biodiversity
- d. Implement a first periodic assessment (3-year interval) of the river quality and trends
- e. Prepare environmental impact assessments (EIAs) for major investments that may affect water quantity or quality
- f. Support freshwater resource tenure and valuation
- g. Conduct the first periodic assessment of groundwater quality and its trends
- h. Institute a water use fee structure for all water users
- i. Revegetate (reforest, replant) the drainage basin to increase natural evapotranspiration processes
- j. Develop regional and national institutions to perform ongoing monitoring of land degradation, including geographic areas, causes, and rates
- k. Create community-based agent network to educate and advise stakeholders on

- alternatives to traditional, harmful activities causing land degradation
- 1. Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of agriculture and animal husbandry, including protection objectives. Broadly disseminate the results to rural inhabitants
- m. Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of protected areas, including protection objectives. Broadly disseminate the results to rural inhabitants
- n. Establish reforestation programs and begin their implementation in affected areas, at village, community, national, and regional levels
- o. Establish regional and national capacities to monitor, examine causes, and map (using GIS) rates and geographic locations of deforestation and reforestation. Broadly disseminate the results to rural inhabitants.
- p. Demonstrate ways to reverse desertification

VI. Scientific Investigation Actions

- a. Conduct regional assessment of priority land-based activities, sources of contaminants, and pollutant levels in water and sediments
- b. Identify major pollutants affecting water quality, and regulatory levels for those pollutants
- c. Implement biodiversity strategy, including species specific action plans
- d. Evaluate sensitivity of areas and habitats in the Volta River Basin and evaluate levels of human impacts on them
- e. Perform investigation of the policy, legal, and cultural basis for land tenure policies in the Volta River Basin

VII. Data Management Actions

- a. Develop and establish national/regional land-based activities data and information management system as a tool for contaminant assessment and management
- b. Develop legislation and technology basis for the free and regular exchange of environmental data and information within the region

Appendix A

List of Abbreviations

CAW Center for Africa Wetlands

EIA Environmental Impact Assessment EQO Environmental Quality Objective

GDP Gross Domestic Product
GEF Global Environment Facility
GIS Geographic Information System

GWP/WATAC Global Water Partnership/West African Technical Advisory Committee

ICARM Integrated Coastal Area and River Basin Management

LBA Land-Based Activities

LOICZ Land-Ocean Interactions in the Coastal Zones

MSP Medium Sized Project

NEPAD New Partnership for Africa's Development

NGO Non-Governmental Organization
SAP Strategic Action Programme
TDA Transboundary Diagnostic Analysis
UNEP United Nations Environment Programme

WACAF West and Central Africa Action Plan for Abidjan Convention

Volta River Basin

A Programme of the Governments of the Volta River Countries, with the assistance of the Global Environment Facility (the United Nations Environment Programme)

Volta River Basin Preliminary Transboundary Diagnostic Analysis

Final Report

December 2002

Global Environment Facility-United Nations Environment Programme Project Development Facility (PDF-B)

Table of Contents

1.0 INTRO	DDUCTION	1
1.1 TD	A CONTENT AND PROCESS	1
	OPE OF THE TDA	
	EOPHYSICAL AND SOCIO-ECONOMIC SETTING OF THE VOLTA	
	EOPHYSICAL AND SOCIO-ECONOMIC SETTING OF THE VOLTA	
	GEOPHYSICAL CHARACTERISTICS	
2.1.1 2.1.2	Relief	
2.1.2	Geology and Soils	
2.1.3	Hydrogeology Soils	
2.1.4	Climate	
2.1.5	Hydrology	
2.1.0	Dams and Reservoirs	
	DSYSTEMS	
2.2.1	The Short Grass (Steppe) Vegetation	
2.2.1	Woody and Shrub Savannah, Open Forest of Dry Type	
2.2.3	Woody and Shrub Savannah, Open Forest of Humid Type	
2.2.3	Dense Forest	
2.2.4	Coastal Ecosystem	
2.2.5	Protected Areas	
	DIVERSITY	
2.3 Dic	Benin	
2.3.2	Burkina Faso	
2.3.3	Côte d'Ivoire	
2.3.4	Ghana	
2.3.5	Mali	
2.3.6	Togo	
	D-ECONOMIC AND DEVELOPMENT SETTING	
	PULATION AND DEMOGRAPHIC PATTERNS	
	GIONAL ECONOMIC CHARACTERISTICS	
3.2.1	Agriculture	
3.2.2	Livestock	
3.2.3	Fisheries	
3.2.4	Forestry	
3.2.5	Industry	
3.2.6	Mining	
3.2.7	Tourism	
	ALYSIS OF USE OF LAND AND WATER RESOURCES AND FUTURE TRENDS	
3.3.1	Regional Land and Water Resource Availability	
3.3.2	Regional Land and Water Resource Demand for the Present and Future	39
4.0 LEGA	L AND REGULATORY SETTING	43

4.1	Benin	43
4.2	BURKINA FASO	44
4.3	CÔTE D'IVOIRE	45
4.4	Ghana	46
4.5	Mali	48
4.6	Togo	49
4.7	OVERVIEW OF NATIONAL INSTITUTIONAL AND LEGAL FRAMEWORK FOR	INTEGRATED
	MANAGEMENT	50
4.	7.1 Regional Coordination	50
4.	7.2 International Cooperation	52
5.0 M	AJOR PERCEIVED PROBLEMS AND ISSUES	54
5.1	LAND DEGRADATION	57
5.2	WATER SCARCITY	67
5.3	Loss of Biodiversity	75
5.4	FLOODING	81
5.5	WATER-BORNE DISEASES	85
5.6	GROWTH OF AQUATIC WEEDS	88
5.7	COASTAL EROSION	89
5.8	WATER QUALITY DEGRADATION	91
5.9	Emerging Issues	100
6.0 ST	TAKEHOLDER ANALYSIS	101
6.1	LAND DEGRADATION	101
6.2	WATER SCARCITY	102
6.3	Loss of Biodiversity	104
6.4	FLOODING	105
6.5	WATER-BORNE DISEASES	106
6.6	GROWTH OF AQUATIC WEEDS	107
6.7	COASTAL EROSION	108
6.8	WATER QUALITY DEGRADATION	108
7.0 E	NVIRONMENTAL QUALITY OBJECTIVES	110
7.1	ENVIRONMENTAL QUALITY OBJECTIVES FOR THE VOLTA RIVER BASIN	111
	ACTION AREAS AND POSSIBLE SPECIFIC ACTIONS	

List of Figures

In Annandiy I	n.	
In Appendix I	J.	
Figure 2.1-1.	Volta River Basin	D2
Figure 2.1-2.	Geology	D3
Figure 2.1-3.	Major Dams in the Volta Basin	D4
Figure 5.1-1.	Bushfires	
Figure 5.1-2.	Map of High Forest and Land Degradation in the Volta Basin	D6
Figure 5.2-1.	Map of the Volta Basin Showing Water Shortage Areas	D7
Figure 5.3-1.	Biodiversity and Coastal Erosion	
Figure 5.4-1.	Map of the Volta Basin Showing Areas Liable to Flooding	
Figure 5.5-1.	Map of the Volta Basin Showing Areas with Water-Borne Diseases	
Figure 5.6-1.	Aquatic Weeds	
	List of Tables	
Table 2.1-1.	Distribution of the Basin Among the Six Riparian Countries.	4
Table 2.1-2.	Some Important Relief Characteristics	
Table 2.1-4.	Identified Soil Groups in the Basin	
Table 2.1-5.	Catchment Areas and River Lengths in Burkina Faso	
Table 2.1-6.	Area Coverage of Volta River Basin	
Table 2.1-7.	Catchment Areas and River Lengths of Black Volta and Main Tributaries in	
	Ghana	9
Table 2.1-8.	Catchment Areas and River Lengths of White Volta and Main Tributaries in	
	Ghana	10
Table 2.1-9.	Catchment Areas and River Lengths of Oti and Main Tributaries in Ghana	
Table 2.1-10.	Catchment Areas and River Lengths in Togo	
Table 2.1-11.	Information on Dams in the Volta Basin of Cote d'Ivoire	
Table 2.1-12.	Information on Dams in the Volta Basin of Togo	
Table 2.2-1.	Vegetation Characteristics of the Volta Basin	
Table 2.2-2.	List of Fauna Reserves of the Sudan Territory of the Basin	
Table 2.2-3.	Protected Areas in Ghana	
Table 2.2-4.	Distribution of Protected Areas in the Sub-Basin	
Table 2.3-1.	Plant Species in the Oti Basin.	
Table 2.3-2.	Animal Species in White and Black Volta Basins in Burkina Faso	
Table 2.3-3.	Aquatic Fauna of Burkina Faso	
Table 2.3-4.	Wild Terrestrial Fauna of Burkina Faso	
Table 2.3-5.	Status of Threatened Species at the National Level in Burkina Faso	
Table 2.3-6.	Plant Species in White and Black Volta Basins in Burkina Faso	
Table 2.3-7.	Threatened Plant Species in the Northern and Central Region of Burkina Fasc	
Table 2.3-8.	Rare and Endangered Species Inventoried in the National Park of Comoé in C	
14010 2.3 0.	d'Ivoire	

Table 2.3-10. Fauna of Global Conservation Significance within the Volta Basin in Ghana..... 23

Table 2.3-9.

Table 2.3-11.	Rare and Endangered Plant Species in the Oti Basin of Togo	. 26
Table 2.3-12.	Threatened and Endangered Animal Species in the Oti Basin of Togo	
Table 3.1-1.	Population Statistics in the Volta Basin	. 28
Table 3.1-2.	Population Statistics (1999)	
Table 3.2-1.	Gross National Product and Average Growth Rate for the Riparian Countries	
Table 3.2-2.	External Debt of the Riparian Countries (1998)	
Table 3.2-3.	Structure of Economic Output at the National Level	
Table 3.2-4.	Production Levels of Selected Crops by Regions in the Volta Basin in Ghana	
	(Tonnes)	. 32
Table 3.2-5.	Cereal Production in the Mopti Region of Mali (Tonnes)	
Table 3.2-6.	Crop Production in Côte d'Ivoire (1996)	
Table 3.2-7.	Livestock Production in Côte d'Ivoire	
Table 3.2-8.	Projected Livestock Production in Togo (1999-2005)	
Table 3.2-9.	Projected Livestock Production in Togo (2010-2025)	
Table 3.2-10.	Population of Major Livestock by Region Based on 1996 Livestock Census in	
	Ghana	. 35
Table 3.2-11.	Estimates of National Livestock Population in Ghana (1995 – 2000)	. 35
Table 3.2-12.	Population of Major Livestock in the Volta Basin in Ghana	
Table 3.2-13.	Annual Fish Production in Ghana	
Table 3.2-14.	Industry in Ghana	. 37
Table 3.3-1.	Domestic/Industrial Water Demand of the Volta River Basin (x 10 ⁶ m ³)	. 41
Table 3.3-2.	Irrigation Water Demand of the Volta River Basin (x 10 ⁶ m ³)	. 41
Table 3.3-3.	Water Demand for Livestock of the Volta River Basin (x 10 ⁶ m ³)	. 41
Table 3.3-4.	Total Consumptive Water Demand of the Volta River Basin (x 10 ⁶ m ³)	. 42
Table 4.1-1.	Ministries and Departments for Managing Land and Water Resources in Benin	
Table 4.2-1.	Departments for Managing Land and Water Resources in Burkina Faso	
Table 4.3-1.	Ministries and Their Responsibilities in Côte d'Ivoire	
Table 4.3-2.	Ministries for the Management and Use of Land Resources in Côte d'Ivoire	. 46
Table 4.4-1.	Ministries and Departments Responsible for Water Resources Development an	
	Utilization in Ghana	. 47
Table 4.6-1.	Ministries, Departments, and Institutions Responsible for the Management of	
	Water and Soils in Togo	. 49
Table 4.7-1.	Bilateral Cooperation Among Riparian Countries	
Table 4.7-2.	Dates of Ratification of Major International Environmental Conventions	. 53
Table 5.0-1.	Analysis of Prioritized Land and Water Issues	
Table 5.0-2.	Root Causes and Major Perceived Problems and Issues	. 56
Table 5.1-1.	Characteristics of the Zones	
Table 5.1-2.	Erosion Hazards of the Volta Basin in Ghana	
Table 5.1-3.	Rate of Occupation of Cultivable Land in the Basin in Togo (1,708,800 ha)	. 66
Table 5.1-4.	Evolution of Various Vegetation Formations in Togo (1979-1991)	
Table 5.2-1.	Potential Surface Water Resources of the Volta Basin in Burkina Faso	.71
Table 5.2-2.	Water Resources of the Volta River in Ghana	
Table 5.2-3.	Minimum Recharge and Replenishable Groundwater Capacities	. 73
Table 5.3-1.	Status of Species in Burkina Faso	
Table 5.3-2.	Specific Threats to Biodiversity	. 79

Table 5.3-3.	Estimation of the Population Change of the Ungulates in the Comoé National	
	Park from 1978-1998 (according to Fischer, 1999)	79
Table 5.4-1	Localization and Assessment of Floods In Burkina Faso	82
Table 5.5-1.	Water-Borne and Associated Diseases and Their Vectors in the Volta Basin	87
Table 5.8-1.	Summary of Water Quality Parameters for Selected Rivers in the Volta Basin .	95
Table 5.8-2.	Summary of Water Quality at Kpong (1995)	. 96
Table 5.8-3.	Summary of Water Quality Parameters for Groundwater in the Volta Basin	. 96
Table 5.8-4.	Physio-chemical Analysis of the Waters of the Kara River in Togo	. 98
Table 5.8-5.	Physio-chemical Analysis from the Waters of the Brewery of Benin of Kara	99
Table 5.8-6.	Results of the Bacteriological Analysis of the Waters of the Kara River	. 99
Table 5.8-7.	Amount of Chemical Products Used in the Volta Basin in Togo	99
Table 7.2-1.	Environmental Quality Objectives, Targets, and Interventions	113

APPENDIXES

APPENDIX A List of Abbreviations

APPENDIX B Causal Chain Analysis

APPENDIX C Bibliography

APPENDIX D Figures

1.0 Introduction

1.1 TDA Content and Process

According to GEF guidance, the purpose of conducting a Transboundary Diagnostic Analysis (TDA) is to scale the relative importance of sources and causes, both immediate and root, of transboundary 'waters' problems, and to identify potential preventive and remedial actions. The TDA provides the basis for development of both the National Action Plans (NAPs) and the Strategic Action Programme (SAP) in the area of international waters of the GEF.

This TDA, therefore, summarizes information available from the region, gathered both as part of ongoing national activities within the littoral states, as well as information made available from a variety of internationally supported activities in the region.

The methodology for a TDA consists of the following steps, at a minimum:

- Identification of major perceived problems and issues, including status and gaps
- Classification as national or transboundary in nature
- Causal chain analysis (including root causes)
- Identification of interventions to address the root causes and primary perceived problems and issues

Because the list of possible interventions and actions arising from the analysis of the Volta River Basin problems is so large, a mechanism was needed in order to prioritize the interventions. Borrowing from methodology commonly used in the European Union and other regions, the present TDA identifies a series of Environmental Quality Objectives (EQOs), which represent the regional perspective of major goals for the regional environment. The use of EQOs helps to refine the TDA process by achieving consensus on the desired status of the Volta River Basin. Within each EQO (which is a broad policy-oriented statement), several specific targets were identified. Each target generally had a timeline associated with it, as well as a specific level of improvement or target status. Thus, the targets illustrate the chain of logic for eventual achievement of the EQO. Finally, specific interventions or actions were identified to permit realization of each of the targets within the designated time frame.

In summary, this TDA follows the GEF TDA Guidelines for International Waters projects. However, an additional step was achieved, that is, the use of EQOs to facilitate consensus on the desired state of the Volta River Basin after the next pentade or decade. The EQOs naturally led to the identification of specific targets to be met within the desired time frame, which then led to the identification of specific interventions and actions that can be considered in the framework of the NAPs and SAP.

1.2 Scope of the TDA

The present analysis covers the six countries that are located in the Volta River Basin: Benin, Burkina Faso, Côte d'Ivoire, Ghana, Mali, and Togo. Many institutions and experts participated

in the development of this TDA by assisting in the drafting of national reports. At least three workshops, including one national, were held in each of the six countries to gather input for these reports. Additionally, two meetings for national coordinators and two meetings for steering committee members were held on the Volta River Basin. While much data were obtained through this process, only partial information on the environmental status was provided by each country, so this TDA is a summary of available information only. Where possible, additional sources of data were sought.

This Preliminary TDA is drawn from the Draft Preliminary TDA prepared by Dr. Yaw Opoku-Ankomah, national reports from the participating countries, and various technical publications available for the region prepared by UNEP, ACOPS, and other organizations. The major sources of information are listed in the bibliography accompanying this TDA. Gaps in information available for this Preliminary TDA can be filled during the full GEF project.

This Preliminary TDA identifies the following list of major perceived problems and issues:

- 1. Land degradation
- 2. Water scarcity
- 3. Loss of biodiversity
- 4. Flooding
- 5. Water-borne diseases
- 6. Growth of aquatic weeds
- 7. Coastal erosion
- 8. Water quality degradation

Below, each of these problems and issues is addressed from a status perspective. It answers the questions: What do we know about each problem/issue? What data support the quantification of the extent of the problem/issue? Do the data support these as real problems and issues, or just as perceptions? This analysis took place on a scientific level, including biological, hydrological, physical, social, and other perspectives on the problem. This is in effect the "status" assessment.

The next step was to perform the causal chain analysis; the major perceived problems and issues were analyzed to determine the primary, secondary and root causes for these problems/issues. Identification of root causes is important because root causes tend to be more systemic and fundamental contributors to environmental degradation. Interventions and actions directed at the root causes tend to be more sustainable and effective than interventions directed at primary or secondary causes. Because the linkages between root causes and solutions of the perceived problems are often not clear to policymakers, however, interventions commonly are mistakenly directed at primary or secondary causes.

This Preliminary TDA attempts to clarify the linkages between root causes and perceived problems to encourage interventions at this more sustainable level. Fortunately, a number of different perceived problems and issues have the same root causes so addressing a few root causes may have positive effects on several problems and issues.

This Preliminary TDA faced several challenges, including a lack of complete information and data, a short time frame for its final preparation, and limited time in the Region.

2.0 Biogeophysical and Socio-Economic Setting of the Volta River Basin

2.1 Biogeophysical Characteristics

Physical Features

The Volta River Basin is the 9th largest in sub-Saharan Africa with an estimated area of 400,000 km². The Volta basin stretches from approximately latitude 5 ⁰45' N in Ghana to 14 ⁰N in Mali. The widest stretch is from approximately longitude 5⁰W to 2⁰E along latitude 11⁰ N, but the basin becomes more narrow towards the coast of the Gulf of Guinea. The Volta basin is spread over six West African countries (Figure 2.1-1 in Appendix D.)

The distribution of the area of the basin among the six riparian countries is shown in Table 2.1-1, below.

Table 2.1-1. Distribution of the Basin Among the Six Riparian Countries.

Country	Area Of Volta River Basin (km²)	% Of Basin	% Of Country In Basin
Benin	17,098	4.10	15.2
Burkina Faso	178,000	42.65	63.0
Côte d'Ivoire	12,500	2.99	3.9
Mali	15,392	3.69	1.2
Togo	26,700	6.40	47.3
Ghana	167,692	40.18	70.0
Total	417,382*	100%	

Figures for the area of the Volta River Basin are from respective National Reports. The areas recorded from the country reports are quite similar to those quoted from Moniod, et al. (1977). The slight differences may be due to the scale of the topographic sheet used in estimating the area or some changes in the geomorphology of the basin.

As Table 2.1-1 indicates, the relative proportion of a basin area found within a country does not necessarily reflect the relative importance of that part of the basin in that country. While a country may only have a small percentage of the total basin within its borders, as in the case of Togo, this area might comprise a significant proportion of the entire country. Additionally, the area of the country within the basin might hold an abundance of natural resources with respect to the entire country, such as in the case of Mali. Thus this project is of comparable importance for each of the six riparian countries.

2.1.1 Relief

The basin is flanked by a mountain chain on its western-most section. From the sea and north-eastwards rises the Akwapim ranges, followed by Togo Mountain, Fazao Mountain, and the Atakora ranges in Benin. The Kwahu plateau branches north-westwards after the Akosombo Gorge. The only other significant relief on the western part of the basin is the plateau of Banfora.

The basin in general has a low relief with altitudes varying between 1 and 920 m. The average mean altitude of the basin is approximately 257 m, with more than half the basin in the range of 200 - 300 m. The global slope index is between 25 - 50 cm/km. Some of the characteristics of the relief are shown in Table 2.1-2.

Table 2.1-2. Some Important Relief Characteristics

Elevations at MSL (m)	Black Volta	White Volta	Oti	Main Volta
Minimum altitude	60	60	40	1
Maximum altitude	762	530	920	972
Average altitude	287	270	245	257

ORSTOM Hydro. Monographs edited by Moniod et al., 1977.

2.1.2 Geology and Soils

The geology of the main Volta is dominated by the Voltaian system. Other geological formations include the Buem formation, Togo series, Dahomegan formation, and Tertiary-to-Recent formations. The Voltaian system consists of Precambrian to Paleozoic sandstones, shales and conglomerates. The Buem series lies between the Togo series in the east and the Voltaian system in the west. The Buem series comprises calcareous, argillaceous, sandy and ferruginous shales, sandstones, arkose, greywacke and agglomerates, tuffs, and jaspers. The Togo series lies to the eastern and southern part of the main Volta and consists of alternating arenaceous and argillaceous sediment. The Dahomeyan system occurs at the southern part of the main Volta Basin and consists of mainly metamorphic rocks, including hornblende and biotite, gneisses, migmatites, granulites, and schist.

The Oti Basin is underlain mainly by the Voltaian system, the Buem formation and the Togo series.

The White Volta Basin is composed of the Birimian system and its associated granitic intrusives and isolated patches of Tarkwaian formation. The other significant formation is the Voltaian system. The Birimian system consists of metamorphosed lavas, pyroclastic rocks, phyllites, schists, tuffs, and greywackes.

The Black Volta Basin consists of granite, the Birimian and Voltaian systems, and, to a minor extent, the Tarkwaian system. The Tarkwaian formation consists of quartzites, phyllites, grits, conglomerates, and schists.

The underlying rocks of the basin have no inherent porosity. Thus, groundwater storage occurs only in fractured zones of the rocks.

2.1.3 Hydrogeology

As discussed above, the geological characteristics of the basin show that the rocks have no inherent porosity. Formation of aquifers, therefore, depends upon secondary porosity created as a result of fissuring or weathering. Weathering is a consequence of circulation of water through joints, fractures, and quartz veins which had formed earlier in the rocks. Muscovite or hornblende can weather to approximately 30 m, whereas the Birimian formation can weather to a depth of approximately 73 m, thus giving rise to a thicker aquifer. The hydrogeological

characteristics are presented in Table 2.1-3. See Figure 2.1-2 in Appendix D for a map of the geology of the Volta River Basin.

	Run-off Coefficient (%)	Borehole Yields (m³/h)	Mean Borehole Yields (m³/h)	Specific Capacities (m³/h/m)	Depths to Aquifer (m)	Mean Depth to Aquifer (m)	Depth of Boreholes (m)	Mean Depth of Borehole (m)
White Volta	10.8	0.03 – 24.0	2.1	0.01 – 21.1	3.7 – 51.5	18.4	7.4 – 123.4	24.7
Black Volta	8.3	0.1 – 36.0	2.2	0.02 - 5.28	4.3 – 82.5	20.6		
Oti	14.8	0.6 - 36.0	5.2	0.06 - 10.45	6.0 - 39.0	20.6	25.0 - 82.0	32.9
Lower Volta	17.0	0.02 – 36.0	5.7	0.05 - 2.99	3.0 – 55.0	22.7	21 – 129.0	44.5

Table 2.1-3. Hydrogeological Characteristics of the Basin

Tabulated from MWH, 1998

The table indicates that run-off coefficients are in general low. This means that direct recharge of aquifers from precipitation is less than 20% across the basin. These figures do not give a good outlook for recharge of the groundwater resources.

The borehole yields are quite variable with a mean for all the sub-basins between 2.1 and 5.7 m³/h. These figures suggest that the groundwater yields in the basin are low.

Specific capacity is a measure of transmissivity of the aquifers. High specific capacity indicates a high coefficient of transmissivity and similarly, a low specific capacity indicates low transmissivity. The figures in the table show that the region has low hydraulic transmissivity.

The depth of aquifers is also variable in the basin. Studies have shown that there is no correlation between depths to aquifer and borehole yields (WARM, 1998).

The results indicate that groundwater resources are not abundant in the basin and face threats if not properly managed.

2.1.4 Soils

The geology, relief, and climate of locations interact to produce soils of typical characteristics. The soils of the Main Volta Basin in the sub-humid Savannah Zones are Savannah Ochrosols, Groundwater Laterites, Savannah Ochrosol – Groundwater Laterite (GWL), Savannah Ochrosol – GWL Intergrades, Savannah Ochrosol – Rubrisol Intergrades, Tropical Black Clays, Alluviosols, Tropical Grey Earths, Sodium Vleisols, and Savannah Gleisols.

The major soil groups in the Black and White Volta are Savannah Ochrosols, Groundwater Laterites, Savannah Ochrosols – Groundwater Laterite Intergrades, Savannah Lithosol, Savannah Gleisols, Savannah Ochrosols – Rubrisol Intergrades, and Savannah Gleisol – Alluviosol Intergrades.

The soils of the Oti Basin are Savannah Ochrosols, Groundwater Laterites, Savannah Ochrosol-GWL Intergrades, Savannah Lithosols, Savannah Gleisols, and Forest Lithosols.

Table 2.1-4. Identified Soil Groups in the Basin

Soil Group	Predominant Relief	Predominant Texture	Erosion Hazard
Savannah Ochrosols	Upper and middle slopes gently undulating	Moderately heavy to light	Moderate sheet and gully erosion
Groundwater Water Laterites (GWL)	Near level to level lower slopes to valley bottoms	Light over concretions and Ironpan	Severe to very severe sheet erosion
Savannah Ochrosols GWL Intergrades	Gently undulating to level middle to lower slopes	Medium to light	Moderate to severe sheet erosion
Savannah Lithosols	Summits with steep slopes	Medium to light	Severe gully erosion
Savannah Gleisols (GLE)	Near-level to level lowlands	Moderately heavy to very heavy	Slight sheet erosion
Savannah GLE- Alluviosol Intergrades	Lowland terraces	Light to very light	Moderate to slight sheet erosion

2.1.5 Climate

The climate of the region is controlled by two air masses: the North-East Trade Winds and the South-West Trade Winds.

The North-East Trade Winds, or the Harmattan, blowing from the interior of the continent, are dry. In contrast, the South-West Trade Winds, or the monsoons, are moist since they blow over the seas. The interphase of these two air masses is called the Inter-tropical Convergence Zone (ITCZ). There is a lot of convective activity in the region of the ITCZ, hence the region is associated with a considerable amount of rainfall. The ITCZ moves northwards and southwards across the basin from about March to October when rainfall is received in the region.

Three types of climatic zones can be identified in the region: the humid south with two distinct rainy seasons; the tropical transition zone with two seasons of rainfall very close to each other; and, the tropical climate, north of lat 9° N, with one rainfall season that peaks in August. Average annual rainfall varies across the basin from approximately 1600 mm in the southeastern section of the basin in Ghana, to about 400 mm in the northern part of Mali.

The annual mean temperatures vary from about 27° C to 30° C. Daily temperatures can be as high as 32° C - 44° C, however, whereas night temperatures can be as low as 15° C. The humidity varies between 6% and 83% depending on the season and the location.

There have been a number of changes in the precipitation patterns of some sub-catchments in the basin, as rainfall and run-off reductions have been evident since the 1970s (Opoku-Ankomah, 2000). Some areas that used to have bi-modal type of rainfall have only one mode as the second minor season has become very weak or non-existent. This situation means that rainfed agriculture can only be carried out once instead of twice a year.

It has been estimated that 340 km³ of rain must fall on the catchment before run-off occurs at significant levels. Once this threshold has been reached, approximately half of the precipitation becomes run-off. This indicates that only small changes in rainfall could have dramatic effects on run-off rates. Although rainfall decreased by only 5% from 1936 to 1998, run-off decreased by 14% (Andreini, 2000).

Simulations of run-off using GCM-based climate scenarios developed by Minia (1998) showed 15.8% and 37% reduction in run-off of the White Volta Basin for the years 2020 and 2050, respectively (Opoku-Ankomah, 2000). These projections showed that projects whose design was based on historical records without considering climate change, such as the hydropower dam at Akosombo, could be vulnerable.

2.1.6 Hydrology

The basin is drained by several major rivers: the Black Volta, the White Volta with the Red Volta as its tributary, the Oti River and the Lower Volta. The mean annual flows of the Black Volta, White Volta, and Oti River are 8,300 x 10⁶, 8,180 x 10⁶, and 12,606 x 10⁶, respectively (MWH, 1997). The Oti River with only about 18% of the total catchment area contributes between 30% and 40% of the annual flow of the Volta River System. This situation is due to the steep topography and the relatively high rainfall in the Oti sub-basin.

The Oti River begins in the Atakora hills of Benin at an altitude of about 600 m and flows through Togo and Ghana. In Benin, the Oti River is referred to as the Pendjari River. Tributaries include the Koumongou, Kéran, Kara, Mô, Kpanlé, Wawa, Ménou, and Danyi Rivers. Due to the regularization by the Kompienga Dam in Burkina Faso, the Oti River has a permanent flow with an annual average flow of 100 to 300 m³/s, and can reach more than 500 m³/s. Virtually all of the tributaries stop flowing during the dry season, however, and their annual average flows are only in the range of 5 m³/s.

The White Volta begins as the Nakanbé River in Burkina Faso. The Red Volta, referred to as Nazinon in Burkina Faso, and Sissili, are tributaries of the White Volta and they all have their source in Burkina Faso. The mean annual flow of the White Volta Basin is estimated to be about 300 m³/s where the percentage of flow from outside Ghana to the total flow is estimated to be 36.5%.

The Sourou from Mali and the Mouhoun from Burkina Faso join in the latter country and flow downstream to Ghana as the Black Volta. In Burkina Faso, apart from the Mouhoun, all of the rivers, including the Nakanbé, Nazinon and Sissili, dry up for approximately two months out of the year. The mean annual flow of the Black Volta at Bamboi is about 200 m³/s, out of which about 42.6% originates from outside Ghana.

In Ghana, the Black Volta, the White Volta and the Oti join the main Volta at Volta Lake, which was created by the Akosombo Dam.

Table 2.1-5. Catchment Areas and River Lengths in Burkina Faso

Catchment	Surface	Length
Mouhoun (Black/Volta)	75,800	997
Sourou	15,200	284 ^a
Nakanbé (White Volta)	41,000	592
Nazinon (Red Volta)	11,200	343
Sissili	7,450	184
Pendjari (Oti)	21,600	503 ^b

a: The Sourou, before joining the Mouhoun, begins in Burkina Faso then flows through Mali and then flows through Burkina Faso

Table 2.1-6. Area Coverage of Volta River Basin

	Area in Ghana (km²)	Area Outside Ghana (km²)	Total Area (km²)
Black Volta	35,107	113,908	149,015
White Volta	45,804	58,945	104,749
Daka	9,174	-	9,174
Oti	16,213	56,565	72,778
Lower Volta	59,414	3,237	62,651
Todzie/Aka	1,865	363	2,228
Songhor	115	-	115
Total	167,692	233,054	400,710

Table 2.1-7. Catchment Areas and River Lengths of Black Volta and Main Tributaries in Ghana

Catchment	Area (km²)	Length (km)
Black Volta	33,000 (142,060)*	1,360
Benchi	1,450	100
Chuko	1,670	90
Chiridi	350	70
Oyoko	640	60
Laboni	3,270	160
Gbalon	1,490	60
San	390	40
Pale	1,030	60

b: Calculated as leaving the source while passing through Burkina Faso all the way down to the Togo-Benin border.

Catchment	Area (km²)	Length (km)
Dagere	340	40
Aruba	460	40
Kule	480	40
Bekpong	380	30
Kuon	290	40
Kamba	1,310	60
Tain	6,340 (7,200)*	210

^{()*} Total area including catchment outside Ghana

Table 2.1-8. Catchment Areas and River Lengths of White Volta and Main Tributaries in Ghana

Catchment	Area (km²)	Length (km)
White Volta	49,230 (106,740)*	1,140
Tamne	880	50
Morago	620 (1,610)*	80
Mole	5970	200
Kulpawn	10,600 (10,640)*	320
Sisili	5,180 (8,950)*	310
Red Volta	590 (11,370)*	310
Asibilika	1,520 (1,820)*	100
Agrumatue	1,410 (1,790)*	90
Nasia	5,240	180
Nabogo	2,960	70

^{()*} Total area including catchment outside Ghana

Table 2.1-9. Catchment Areas and River Lengths of Oti and Main Tributaries in Ghana

Catchment	Area (km²)	Length (km)
Oti	16,800 (75,110)*	940
Bonjari	890	70
Afram	11,400	320
Obosom	3,620	120
Sene	5,370	210
Pru	8,730	300
Kulurakun	5,930	180
Daka	8,280	430
Asukawkaw	2,230 (4,780)*	180
Mo	680 (5,160)*	210

^{()*} Total area including catchment outside Ghana

Table 2.1-10. Catchment Areas and River Lengths in Togo

Name	Surface of the Basin (km²)	Length (km)	Flow (m ³ /s)	
Kara	9,460	230	56.6	
12010	(Kara, Kpessidé, and N'Maboupi)	200	20.0	
Mô	3,175	160	75	
1,10	(route Sokodé – Bassar and Bougoulou)	100	, ,	
Kéran	9,165	85	17.7	
Keran	(Titira and Naboulgou)	0.5	17.7	
Oti	54,750	185	123	
Oti	(Mango)	103	123	
Sansargou	2,240		4.39	
Sansargou	(Borgou)	_	7.57	
Kama	202		4.42	
Kailla	(Bassar)	_	7.7 2	
Binah	690	60		
Dillali	(Pouda)	00	_	
Kpélou	417	-	16	
Voumongou	6,730		106	
Koumongou	(Koumongou)	-	100	
Vnovo	394		34.4	
Kpaya	(Atchangbade)	=	34.4	
Koulougouna	990	40	6.03	
Donyi	52		2.02	
Danyi	(Dzobegan)	_	2.03	

Source: Annales hydrologiques de l'ORSTM 1983 à 1987 (données de 1987)

The estimation of direct recharge in the Volta River system is based on the assumption that recharge occurs when actual evapotranspiration and direct run-off are balanced by precipitation. This occurs when the soil is saturated to the field capacity, which is likely to occur when precipitation exceeds evapotranspiration. Analyses of rainfall data from various stations within the Volta River system indicate that the months in which precipitation exceeds the evapotranspiration are usually June, July, August, and September. The annual recharge for the Volta River system ranges from 13.4% to 16.2% of the mean annual precipitation. On average, the mean annual recharge of the Volta River system is about 14.8% of the mean annual precipitation.

2.1.7 Dams and Reservoirs

Throughout the Volta River Basin, dams and reservoirs have been created in order to mobilize water for agricultural, industrial, and electricity-generating purposes. The amount of these large and small dams continues to expand as population pressure grows. Increasing use of these waters and decreasing precipitation in the region, however, threaten continued sustainable management of the waters in the basin. Figure 2.1-3 in Appendix D indicates the location of dams in the Volta Basin.

^{*} Calculations carried out by Dr. GNONGBO, University of Lome from the topographic maps at a scale of 1/200,000; sheets of Dapaong, Kara, Sokodé and Atakpamé.

Several large dams have been constructed throughout the Volta River Basin with the primary purpose of generating electricity. The damming of the Volta River at Akosombo has created one of the largest man-made lakes in the world, covering an area of approximately 8500 km 2 . A smaller and shallower impoundment, the Kpong Headpond, covering an area of roughly 38 km 2 with a storage capacity of 2000 x 10^6m^3 , was completed in 1981 when another hydroelectric dam was constructed at Kpong, 20 km downstream of Akosombo.

Benin has a hydroelectric power station on the Oti River with a storage capacity of 350 million m³ and the capacity to produce 15 MW. Additionally, a hydroelectric power station is planned at Pouya (Natitingou) on the Yéripao.

In recent decades there has been a great push in Burkina Faso to expand the number of dams in the Volta River Basin and, as a result, there are now approximately 600 dams and lakes with a total storage capacity of 4.7 billion m³. The volume stored annually in these reservoirs is 2,490 billion m³.

Cote d'Ivoire does not have any major dams in the Volta Basin since their basin is small and is on the border with Ghana. The following minor dams are located in Cote d'Ivoire.

Table 2.1-11. Information on Dams in the Volta Basin of Cote d'Ivoire

Name of the Dam	Year	Manager	North	West	Use	Surface of the Basin (km²)	Height of the Dike (m)	Storage Capacity (1000 m ³)
Sorobango	1994	Sodepra	8°09	2°43	Livestock	2,50	4,75	30
Kamala	1994	Sodepra	8°24	2°44	Livestock	3,00	5,00	36
Yerekaye	1994	Sodepra	8°21	2°49	Livestock	7,00	4,50	64
Kiendi	1994	Sodepra	8°11	2°42	Livestock	6,00	5,00	73
Poukoube	1994	Sodepra	8°23	2°42	Livestock	6,00	5,00	30
Tambi	1994	Sodepra	8°13	2°35	Livestock	6,00	4,50	37
Borombire	1989	Sodepra	8°44	3°08	Livestock	4,00	4,25	73
Imbie	1988	Sodepra	9°13	2°54	Livestock	5,50	3,90	73
Lankara	1988	Sodepra	9°11	3°02	Livestock	5,00	4,25	73
Niandegue 2		Sodepra	9°13	2°54	Livestock		5,00	73
Syaledouo	1988	Sodepra	9°03	3°01	Livestock	4,50	4,25	73
Tidio	1980	Prive	9°16	2°57	Livestock		4,50	73
Angai	1988	Sodepra	9°35	3°17	Livestock	4,50	4,25	73
Bikodidouo	1983	Sodepra	9°34	3°04	Livestock	6,00	4,25	73
Bouko	1990	Sodepra	9°28	3°13	Livestock	4,00	4,20	73
Bouna	1979	Sodepra	9°17	2°58	Livestock	6,00	4,00	73
Bromakote	1988	Sodepra	9°21	3°03	Livestock	9,50	4,25	73
Danoa	1990	Sodepra	9°41	3°16	Livestock	7,00	4,25	73
Gnonsiera	1990	Sodepra	9°37	3°04	Livestock	5,00	4,05	73
Kalamon	1988	Sodepra	9°48	3°10	Livestock	7,50	4,25	73
Kodo	1980	Sodepra	9°41	3°18	Livestock	6,00	4,00	73
Kpanzarani	1988	Sodepra	9°25	3°05	Livestock	5,00	4,00	73
Kpoladouo	1988	Sodepra	9°30	3°19	Livestock	5,00	4,25	73
Nambelessi	1988	Sodepra	9°32	3°18	Livestock	5,00	4,20	73

Name of the Dam	Year	Manager	North	West	Use	Surface of the Basin (km²)	Height of the Dike (m)	Storage Capacity (1000 m ³)
Niamoin	1982	Sodepra	9°37	3°27	Livestock	7,00	4,25	73
Niandegue 1	1982	Sodepra	9°16	2°54	Livestock	6,00	4,25	73
Peko	1983	Sodepra	9°31	3°02	Livestock	5,50	4,25	73
Piri	1991	Sodepra	9°29	3°11	Livestock		5,00	73
Sepedouo	1982	Sodepra	9°40	3°24	Livestock	5,00	3,50	73
Sipe		Sodepra	9°40	3°24	Livestock			73
Sipirition	1983	Sodepra	9°25	2°54	Livestock	5,50	4,25	73
Tchassondouo	1988	Sodepra	9°35	3°25	Livestock	5,50	4,25	73
Timperdouo	1990	Sodepra	9°32	3°11	Livestock	10,00	4,25	73
Didre Douagre	1990	Sodepra	9°43	3°21	Livestock	5,00	4,25	73
Minichio	1990	Sodepra	9°46	3°29	Livestock	6,00	3,90	73
Nankele	1990	Sodepra	9°52	3°23	Livestock	9,00	4,25	73
Nikindjoka	1990	Sodepra	9°43	3°17	Livestock	4,00	4,20	73
Peon	1990	Sodepra	9°45	3°24	Livestock	4,00	4,00	73
Tinkalamon		Sodepra	9°49	3°38	Livestock	5,50	4,20	73
Yalo	1982	Sodepra	9°48	3°24	Livestock	7,00	4,25	73
Boromeredouo	1989	Sodepra	8°59	3°08	Livestock	4,00	4,25	73
Yonodouo			8°59	2°57	Livestock	5,60	4,25	73
Barriera	1982	Sodepra	9°53	3°27	Livestock	6,00	4,25	73
							Total	2,971

In the Volta Basin in Mali, Pont-barrage of Baye is the only significant dam.

Togo has the following dams in the Volta Basin.

Table 2.1-12. Information on Dams in the Volta Basin of Togo

Dam	Volume (m ³)	Uses
Dalwak	10,000,000	Domestic water supply, irrigation
Tantiégon	762,400	Agriculture, animal husbandry, domestic water supply
Namiété	600,000	Domestic water supply, animal husbandry market garden
Magna	500,000	Domestic water supply, animal husbandry, market gardening
Kozah	5,000,000	Domestic water supply, animal husdandry

Although there are believed to be hundreds of dams in the Volta River Basin, the data on the locations and size of these waterworks are inadequate. Thus, it is difficult to quantify the effects of the dams on the Volta River Basin.

2.2 Ecosystems

Four main types of ecosystems can be identified in the Volta Basin (Moniod et al., 1977). Additionally, a coastal ecosystem can be found where the Volta River enters the ocean.

2.2.1 The Short Grass (Steppe) Vegetation

This zone is located in the extreme northwest region of the White Volta, covering some parts of Burkina Faso and Mali. With only a minimal amount of rainfall of between 150 and 500 mm annually, this zone can also be described as the Sudano-Sahelian sector. Trees and shrubs are rare in this ecosystem, but a few tree species, such as Baobab, can be found.

2.2.2 Woody and Shrub Savannah, Open Forest of Dry Type

This ecosystem is found in the northern and middle sudan. The strands of forest are open and the vegetation is generally dry. The zone covers parts of the Sourou Basin, northern White Volta, Oti, Red Volta, and Black Volta basins. Thus, this ecosystem covers a significant part of Burkina Faso and the northern parts of Togo and Benin.

2.2.3 Woody and Shrub Savannah, Open Forest of Humid Type

This ecosystem covers the southern sudan sector. The vegetation occupies the southwestern region of Burkina Faso and greater parts of Ghana, Togo, and Benin. Rainfall in this zone is between 1000 - 1300 mm annually. The zone is marked by forest galleries of thick vegetation along river channels where adequate moisture is available. The tall trees found in the forest galleries include the following: *Cola laurifolia, Pterocarpus, Santalinoides, Cynometra magalophylla*, and *Parinari congenis*. In areas where trees have been felled at unsustainable levels followed by incessant bushfires, few trees remain.

The following species are more commonly found in this ecosystem than in others: *Burkea africana, Isoberlina doka, Isoberlina dolziellii, Detarium microcarpum.* Other species unknown in the Woody and Shrub Savannah dry type, such as *Uapaca togoensis, Parinari polyandra, Syzyglum guineense, Lohira lanceolata, and Cussonia barteri*, are found in this system.

In the southern part of this zone, a transition from the dry forest-belt to the dense rainforest occurs.

2.2.4 Dense Forest

The dense forest vegetation type is dependent upon abundant rainfall in the region. Since the vegetation is also dependent upon soils, climate, and other factors, the vegetation in the region is not uniform. In the dense forest zone, the following species are found: *Milicia excelsa, Khaya grandifoliola, Terminalia, Distemomanthus, Benthamianum, Pycnanthus angolensis, Triplochiton scleroxylon*, and *Antiaris africana*. The National Park of Kéran in Togo is located in this ecosystem.

2.2.5 Coastal Ecosystem

The Volta River delta, containing lagoons and mangroves, serves as an additional ecosystem. The delta contains both open and closed lagoons as drought and reduction or cessation of flooding due to the Aksombo Dam have isolated parts of the system, causing them to behave like closed lagoons. This area contains Ghana's most species-diverse mangrove forest, which is located at the mouth of the river and serves as a nursery site for commercial marine fishes and shrimps. The Volta River, including its delta, is a globally significant habitat for migrating birds and, as a result, the Keta and the Songhor Lagoons have been designated as Ramsar sites.

Table 2.2-1. Vegetation Characteristics of the Volta Basin

Sub Basin	Vegetation Type
Black Volta	Tall grassland with fire resistant trees, scattered shrubs,
	patches of reserve forest (8%)
White Volta	Guinea savannah woodland (82%) interspersed by
	reserved forest (18%)
Lower Volta	Mixed savannah woodland, Tall grassland with fine
Northern	resistant trees
	Derived savannah interspersed with semi-deciduous rain
Central	forest
	Semi-deciduous rain forest with patches of derived
Southern	savannah
Daka	Savannah re-growth with scattered trees resulting from
	extensive cultivation
Oti	Savannah re-growth with scattered trees
	Semi-deciduous rain forest in southeastern corner

2.2.6 Protected Areas

In order to preserve some of the important ecosystems and biodiversity in the basin, the riparian countries designated a number of protected areas. Some of these are listed below.

Benin

The Pendjari National Park is located in the Volta Basin. This park has been included in the UNESCO Biosphere Reserve program due to its unique biodiversity and ecosystem.

Burkina Faso

The following is a list of fauna reserves in Burkina Faso's basin.

Table 2.2-2. List of Fauna Reserves of the Sudan Territory of the Basin

Designation	Classification	Area (ha)	Year of Creation	Location
Fauna reserve of Bontioli	Total	12,700	1957	Bougouriba Province
Fauna reserve of Nabéré	Partial	36,000	1957	Bougouriba Province
Fauna reserve of Bontioli	Partial	29,500	1957	Bougouriba Province

Designation	Classification	Area (ha)	Year of Creation	Location
TOTAL	-	78,200	-	-

Source: National monography on biodiversity.

Côte d'Ivoire

Within the Volta Basin, there are two classified forests where development is forbidden: Kolodio (61,000 hectares) and Nassian (19,640 hectares).

The Comoé National Park is also located in the basin with 1,150,000 hectares. Although it has only partially been studied, the following species have been identified under the framework of the pilot project GEPRENAF:

- 153 species of mammals
- 501 species of birds
- 35 species of amphibians
- 71 species of reptiles
- 60 species of fish

As in the majority of the protected areas, however, the true wealth of insects and other invertebrates remains unknown.

Ghana

The conservation areas in Table 2.2-3 (below) contain a wide variety of animals of global conservation significance. These include the elephant *Loxodonta africana*, many ungulates (duikers, antelopes, bushbucks, hartebeests, warthogs), carnivores (civets, leopards, cheetahs, hyenas, lions), primates (baboons, chimpanzees), reptiles (African python, monitor lizards, Nile crocodiles, hinged tortoise), the rare pygmy hippo *Choeropsis liberiensis*, the manatee *Trichehus senegalensis*, along with many birds, butterflies and other insects. Furthermore, two ungulates thought to be extinct, namely, the Korignum in northern Ghana, and Sigataunga, the only known ungulate inhabiting wetlands (recorded from Avu lagoon wetlands), have all been recently sighted in the basin. Finally, a wide variety of fin and shellfishes, macroinvertebrates, phytobenthos, and phytoplankton species, and wetland plants are found in Ghana's Volta Basin.

Table 2.2-3. Protected Areas in Ghana

Classification	Name	Area km²	IUCN Management Category	Description
National Parks	Bui National Park	1821	II	Areas of national or international importance set
	Digya National Park	3478	II	aside by law to promote tourism, recreation, scientific
	Mole National Park	4840	II	research and education, and recreational uses
Strict Nature Reserve	Kogyae	386	Ia	Areas set aside for nature to take its own course without

Classification	Name	Area km²	IUCN Management Category	Description
				human influence, permitting a first-hand study of primary ecosystem dynamics
	Gbele	565	VI	Areas in which habitats are
Resource Reserve	Kalakpa	325	VI	managed for sustainable production of wildlife products for cultural practices, tourism, and trophy hunting. Other compatible land uses may be allowed (previously known as game reserves)
Wildlife Sanctuary	Agumatsa	3	VI	Small areas set aside for the protection of rare and endangered species. These species may be introduced from other reserves when conditions are favorable
Ramsar Sites	Anlo-Keta Songhor	300 115	VII VII	Area set aside for the management of wetlands of international importance for waterfowl in which compatible land uses are allowed (The Ramsar sites in Ghana provide sanctuary to more than 80% of the migratory water birds stopping in the country)

Mali

Ramsar sites in Mali include Walado Débo, Lake Horo, and the Séri plain.

Togo

Togo has designated a number of protected areas in the basin. The table below outlines the amount of area protected by region.

Table 2.2-4. Distribution of Protected Areas in the Sub-Basin

Region	Number of Areas	Surfaces in ha	% of the entire surface area
Plateau	33	143,726	8.5
Central	13	248,662	18.7
Kara	22	109,777	9.3
Savannahs	9	265,981	31.4

Region	Number of Areas	Surfaces in ha	% of the entire surface area
Total	77	768,146	14.2

Source: DPCEF, Recueil des principaux textes relatifs à la protection de l'environnement, Edition 1993.

2.3 Biodiversity

The Volta Basin has a rich diversity of flora and fauna. Listed below are many of the species of global significance, including threatened and endangered species that are found in the Volta Basin. Although the data are lacking in some cases, the true wealth of the basin's biodiversity can nevertheless be seen.

2.3.1 Benin

a) Flora: The following flora can be found in the Oti (Pendjari) Basin.

Table 2.3-1. Plant Species in the Oti Basin

Species
Acacia seiberina (acacia)
Andansonia digitata (baobab)
Borassus aethiopum (rhônier)
Daniella oliveri (ledaniella)
Tamarindus indica (tamarinier)
Bombax coslatum (kapokier)
Parkia biglobosa (néré)
Diospyros mespikoformis
Khaya senegalensis
Cola laurifolia
Mitragyna inermis
Fereitia apodanthera

b) Fauna: From the north to the south, Benin has a variety of ecological conditions that support savannah and forest species. Elephants, Cobe de Buffon, panthers, buffalo, lions, monkeys, and a number of birds such as the gravelot, the brush garzette and the water hen can be found in the Oti Basin.

2.3.2 Burkina Faso

According to the national monograph on biological diversity of Burkina Faso (February, 1999), few systematic inventories have been undertaken, which leaves many gaps in data. The total number of indexed species is 3,992 macro-organisms. Summaries of the taxonomic inventory of the biological diversity in the White and Black Volta in Burkina Faso are presented below:

Table 2.3-2. Animal Species in White and Black Volta Basins in Burkina Faso

Kingdom	Components	Families	Genus	Species
Animalia	Insects	151	250	1,515
	Fauna (aquatic)	54	106	198
	Fauna (wild)	119	362	665
	Fauna (domestic)	11	14	16
Sub-Total		335	732	2,394

Table 2.3-3. Aquatic Fauna of Burkina Faso

Taxonomy	Family	Genus	Species
Fish	24	57	118
Batrachians	5	16	30
Mollusks	10	13	23
Shellfish	5	7	6
Zooplankton	10	13	16
Total	54	106	193

Source: Traore, A.C. and S.N. Zigani, 1996, Monographie

Table 2.3-4. Wild Terrestrial Fauna of Burkina Faso

Classification	Order	Family	Genus	Species
Mammals	11	33	77	128
Birds	20	76	246	477
Reptiles	4	10	39	60
Total	35	119	362	665

Source: Ouédraogo, L. and P. Kafando, 1996, Monographie

Table 2.3-5. Status of Threatened Species at the National Level in Burkina Faso

Category	Disappeared	In the Process of Disappearing	Threatened	Vulnerable	Total
Mammals	Oryx		Panthère Guépard Elephant	Damalisque Gazelle rufifron Gazelle dorcas Lycaon	8
Birds		Ostrich	Calao of abyssini	Crowned Crane	3
Reptiles			Crocodile Python		2
Fish				Protoptère (eel)	1
Woody Flora			Acacia senegal Dalbergia	Adansonia digitata	16

Category	Disappeared	In the Process of Disappearing	Threatened	Vulnerable	Total
			melanoxylon	Bombax costatum	
			Pterocarpus	Ceiba will	
			lucens	pentandra	
			Vitex doniana	Anogeissus	
			Ximenia	leiocarpus	
			americana	Khaya	
			Dalbergia	senegalensis	
			melanoxylon	Prosopis africana	
				Parkia biglobosa	
				Vitellaria	
				paradoxa	

Source: Sp-conagese

Table 2.3-6. Plant Species in White and Black Volta Basins in Burkina Faso

Kingdom	Components	Families	Genus	Species
Plants	Higher mushrooms	8	13	28
	Algae	32	88	191
	Herbaceous flora of the humid zone	76	118	185
	Herbaceous flora of the land	87	333	627
	Woody flora	55	214	376
Total		258	766	1,407

Table 2.3-7. Threatened Plant Species in the Northern and Central Region of Burkina Faso

Overexploited and Rare Species in Urban Areas	Rare Species Threatened with Extinction	Vulnerable Food Species
Daniella oliveri	Acacia erythrocalyx	Adansonia digitata
Diospyros mespiliformis	Annona senegalensis	Bombax costatum
Entada africana	Brachystelma simplex subsp. banforae	Vitellaria paradoxa subsp. Parkii
Zanthoxylum xanthoxyloides	Gossypium anomalium	Detarium microcarpum
Sarcocephalus latifolius	Guibourtia will copallifera	Lannea microcarpa
Rauvolfia will vomitora	Hibiscus gourmassia	Sclerocarya birrea.
Securidaca longepedunculata	Landolphia heudolotti	Spondias mombin
Trichilia roka (= T. emetica)		Saba senegalensis variété will
		glabriflora
Vitex doniana		Parkia biglobosa

Overexploited and Rare Species in Urban Areas	Rare Species Threatened with Extinction	Vulnerable Food Species
Ximenia americana		Tamarindus indica

Source: Sp-conagese

2.3.3 Côte d'Ivoire

The Comoé National Park serves as habitat for a great number of threatened and endangered species, as is detailed in the table below.

Table 2.3-8. Rare and Endangered Species Inventoried in the National Park of Comoé in Côte d'Ivoire

IUCN Status	Family	Common Name
	Cercopithecidae	Cercocèbe à collier blanc
		Céphalophe à bande dorsale
		noire
7 species with least risk of extinction	Cephalophinae	Céphalophe bleu/C. de
but may be threatened soon	Серпаюринае	Maxwell
but may be uncatened soon		Céphalophe noir
		Céphalophe à dos jaune
	Tragulidae	Chevrotain aquatique
	Tragelaphinae	Bongo
	Hyaenidae	Hyène tachetée
	Alcelaphinae	Bubale
	Cephalophinae	Céphalophe à flancs roux
9 species with least risk of extinction,	Hippotraginae	Antilope rouanne
but depending on conservation		Cobe defassa
measures	Reduncinae	Cobe de Buffon
		Rédunca
	Neotraginae	Ourébi
	Bovinae	Buffle
	Cecopithecidae	Diane
4 vulnerable species	Cercopithecidae	Colobe magistrat
4 vullerable species	Felidae	Lion
	Crocodylidae	Crocodile de forêt
	Pongidae	Chimpanzé
3 species threatened with extinction	Canidae	Chien sauvage d'Afrique
	Elephantidae	Eléphant

Similar table not provided for flora

2.3.4 Ghana

Most flora and fauna species of international significance are found in the wet savannah, and wildlife and forest reserves within the basin. The Volta estuary and the Keta and Songhor

lagoons are important for their significant populations of waterfowl. These wetlands have been designated as Ramsar sites.

Ghana's coastal region also serves as habitat for significant species. Five species of marine turtles are found within the territorial waters of Ghana and use the beaches for nesting. These beaches are not protected, however, and in recent years have been threatened by erosion.

Table 2.3-9. Endemic Flora Species of the Volta Basin

Species	Status
Talbotiella genti	Endangered
Kyllinga echinatta	Not threatened
Aneilema setiferum	Not threatened
Gongronema obscurum	Insufficient data
Hilddergardia barteri	Insufficient data
Raphionacme vignei; var. pallidiciliatum	Not threatened
Rhinopterys angustifulia	Insufficient data

Table 2.3-10. Fauna of Global Conservation Significance within the Volta Basin in Ghana

Spec	eies				Animals In	Protected A	Areas			Status
English Name	Scientific Name	Mole N. P.	Dygya N. P.	Bui N. P.	Kogyae S. N. R.	Kalapa R. R.	Gbele R. R.	Agumatsa W. P.	Non - Protected	Endangered & Completely Protected
i. Probocidea							~		-	~
1. Elephant	Loxodonta africana	~	~	-	~					
ii. Primate										
2. Black & White colobus	Colobus polykomos	~	~		~	~			-	~
3. Mona Monkey	Cercopithecus mona		~		~				~	
4. Spot-nosed monkey	Cercopithecus petaurista		~	>	~				~	
5. Green monkey	Cercopithecus aethips	-	-		~	•			~	
6. Patas monkey	Erythrocebus patos	~	~	>	~	•			~	
7. Baboon	Papio anubis	~	~	~	~		~		~	
iii. Caruivora										
8. Lion	Panthera leo	~								
9. African civet	Vivera civetta	~		~					-	✓
10. Mongoose sp.	Atilax poludionosus								~	
Spotted hyena	Crocuta croauto	~								
iv. Arritiodctyla										
11. Hippopotamus	Hippopotamus amphibius		~	•			~		-	•
12. Pygmy hippopotamus	Cheoropsis liberiusis								-	~
13. Hartebeest	Alcelapluis burelophus	•	~	~			~		~	

Spec	eies				Animals In	Protected A	Areas			Status
English Name	Scientific Name	Mole N. P.	Dygya N. P.	Bui N. P.	Kogyae S. N. R.	Kalapa R. R.	Gbele R. R.	Agumatsa W. P.	Non - Protected	Endangered & Completely Protected
14. Roan Antelope	Hippotragus equinus	~	~	~			~		>	~
15. Warthog	Phacochoerus aethipicus	~	~	~			~		>	
16. Red river hog	Potamochoerus porcus		~	~			>		•	
17.Bushbuck	Tragelaphus scriptus	•	~	~			>		•	
18. Buffalo	Synceras caffer	~	~	>			~		<	
19. Reedbuck	Redunca redunca	~							>	
20. Waterbuck	Kobus defessa	~	~	~					~	
21. Kob	Kobus kob	~	~	~					~	
22. Oribi	Ourebia ourebi	~	✓	~					~	
23. Red-flawced duiker	Cephalophus rufitarus	~	~	~					•	
24. Maxwell's Duiker	Cephalophus maxwelli								~	
25 Gray Duiker	Sylvicapra grirmmia	~	~	~					~	
v. Crocodilia										
26. Nile Crocodile	Crocodilus niloticus	~	~	~		>	~		-	~
27. Long-snoufed crocodile	Crocodilus cataphractus	~		~					-	~
28. Nile Monitor	Veranus nitoticus	~		~		>	~			
vi. Rodentia										
29. Ground squirrel	Xerus sp.		~		~				•	
30. Tree squirrel	Heliosciurus sp.	~	~		~				~	

Spec	ies				Animals In	Protected A	Areas			Status
English Name	Scientific Name	Mole N. P.	Dygya N. P.	Bui N. P.	Kogyae S. N. R.	Kalapa R. R.	Gbele R. R.	Agumatsa W. P.	Non - Protected	Endangered & Completely Protected
vii. Logomorpha										
31. Togo hare	Lepus capensis	>	>	>		~			>	
viii. Ophidia										
32. African python	Python sebae	>		~		~			>	-
33. Royal python	Python regia			~		~			>	-

2.3.5 Mali

Endemic plant species in the Basin of Mali (Samori and Seno) include the following: Voandzea subterranean, Adansonia digitata, Acacia albida, Tamarindus indica, Parkia biglobosa, Vitellaria paradoxa, Ficus platiphylla, Kaya senegalensis, Pterocarpus erinaceus, Lanéa microcarpa, Combretum glutinosum, Prosopis africana, Bombax costatum, Sclerocarya birrea, and Sterculia setigera.

Fauna are rare in the Seno sub-basin. In the Samori sub-basin, however, one can find guinea fowl, geese, and ducks. Mammals include gazelles, hyenas, jackals, and hares.

2.3.6 Togo

The basin in Togo offers a great variety of ecological conditions favorable for the development of biological diversity. The tables below give the state of the flora and fauna in the basin.

Table 2.3-11. Rare and Endangered Plant Species in the Oti Basin of Togo

Species	R	T	E
Acacia albida Del (Mimosaceae)	X		
Adenim obesiun (Forssk) (Roem. 1 Schult (Apocynaceae)	X		
Alafia multiflora (Stapf) Stapf (Apocynaceae)	X	X	
Amorphophallus accrensis (N.E.Br. Araceae)	X	X	
Balanites wilsoniana L. (Zygophilaceae)	X	X	
Begonia oxyloba Welw ex Hook (Begoniaceae)	X	X	
Canarium schweinfurthii Engl. (Myristicaceae)		X	
Cassipourea barteri N.E. Br. (Rhizophoraceae)	X		
Chaetacme aristata Planch. (Ulmaceae)	X		
Chrisobalanus atacorensis A. Chev. (Chrisobalanaceae)	X		
Chrysophyllum welwitschi Engl. (Sapotaceae)	X	X	
Cyathea camerooniana Hook (Cyatheaceae)		X	
Cyperrus mapanioides CBCI (cyperaceae)		X	
Dacryodes klaineaena (pierre) H.J. Lam (Burceraceae)	X		
Denettia tripetala bak F. (Menispermaceae)	X		
Diospyros ferrea (Willd) Bakh (Ebenaceae)	X	X	
Diospyros tricolor (schum. & Thonn.) Hier (Ebenaceae)	X	X	

R - Rare Plant Species

The table shows that for the flora, approximately 10 species are endangered and 15 species are rare.

T - Threatened or Endangered

E - Extinct

Table 2.3-12. Threatened and Endangered Animal Species in the Oti Basin of Togo

Species	Habitat	Present Status	Legal Status of IUCN / CITES
Mammals			
Gazella rufifrons	Keran	Probably	
Damaliscus korigum	Kéran	Extinct	
Hyemoschus aquaticus	Fazao	Probably	III
Neotragus pygmaerus		Extinct	
Tragelaphus O. derbianus		Endangered	I
Lycaon pictus	Fazao, Kéran	Vulnerable	
Acinoyx jubatu	R. Fazao	Vulnerable	
Panthera pardus	Fazao	Vulnerable	
Pan troglodytes	Fazao	Extinct	
Loxodonta africana	Fazao et 'Zone l'	Vulnerable	
Reptiles			
Crocodylus cataphractus	Mare de Fambuegou	Vulnerable	I
Osteolamus tereaspis	Marais du sud P. Fazao	Vulnerable	I
Python sebae	P. Fazao		
Python regius	Guinea Savannah, galleries	Vulnerable	II
	Forest galleries	Vulnerable	II
Birds			
Balearica pavonina	Humid Zones of Oti	Vulnerable	
Insects			
Graphium adamastor	Guinea forest and galleries	Threatened	IUCN. 2000
Graphium antheus	Guinea forest and galleries	Threatened	IUCN. 2000
Graphium leonidas	Guinea forest and galleries	Threatened	IUCN. 2000
Graphium agamedes	Forest	Threatened	IUCN. 2000
Graphiumangolanus	Forest	Threatened	IUCN. 2000
Grasphium fulleri	Forest	Threatened	IUCN. 2000
Graphiumillyris	Forest	Threatened	IUCN. 2000
Graphium latreillatus	Forest	Threatened	IUCN. 2000
Papilio antimachus	Guinea forest and galleries	Threatened	IUCN. 2000
Papilio bromius	Guinea forest and galleries	Threatened	IUCN. 2000
Papilio cynorta	Forest		IUCN. 2000

3.0 Socio-Economic and Development Setting

3.1 Population and Demographic Patterns

Population statistics for the Volta Basin are provided in Tables 3.1-1 and 3.1-2. The total basin population is expected to grow significantly from an estimated 18,600,000 in 2000 to approximately 33,900,000 in 2025. This is an expected increase of 80% in a twenty-five year period, which is very high. This high growth is due to the high average population growth rate in the basin of 2.54%.

Further, the figures indicate that the population in the basin is generally rural, ranging from 64 – 88%. This population distribution suggests that people in the basin, to a large extent, depend on the exploitation of natural resources for their livelihood. Such exploitation of natural resources may not be environmentally sustainable.

The geographic distribution of the population is quite variable, with the population density ranging from approximately 8 to 104 persons/km². This means that the pressure on land and water resources is sometimes concentrated in a particular area. For example, the population density of Ghana's Upper East Regions is 104 persons/km², while that of the Northern Region is only 26 persons/km². In Côte d'Ivoire, population density varies from 8 persons/km² in the north to 22 persons/km² in the south. The location of one of the largest parks in West Africa, the National Park of Comoé in Côte d'Ivoire, probably induces the low population density of that part of the basin. Further, valleys of the Black Volta where onchocerciasis, or river blindness, was prevalent have also not been heavily populated as people fled to escape the parasitic disease.

Table 3.1-1. Population Statistics in the Volta Basin

Country	1990	2000	2010	2020	2025	Growth Rate (%)	P/km ² Density		
Country	1990	2000	2010	2020	2025	2000	2000	Urban %	Rural %
Benin	382,328	476,775	596,000	746,000	820,000	2.27	43.4	36	64
Burkina Faso	7,014,156	8,874,148	11,227,366	14,204,605	15,997,351	2.38	41.53	22.6	77.4
Côte d'Ivoire	-	397,853	497,469	632,313	717,672	2.53	8 - 22	23	77
Ghana	5,198,000	6,674,376	8,570,068	11,004,185	11,696,054	2.5	26 - 104	16	84
Mali	380,000	625,000	880,000	1,140,000	1,260,000	2.78	45 - 75	12.2	87.8
Togo	1,189,900	1,594,446	2,153,719	2,891,457	3,385,266	2.80	66	30	70
Total	14,474,276	18,642,598	23,924,622	30,618,560	33,876,343				
Average						2.54	48.49	23.30	76.70

Country	Life Expectancy (Yrs)	Death Rate (%)	Literacy Rate (%)
Benin	53	14.40	15.20
Burkina Faso	54	14.00	26.00
Côte d'Ivoire	49	12.00	35.50
Ghana	53	9.10	20.30
Mali	47	13.40	8.70
Togo	56	13.00	20.30
Average	52	12.65	21.45

Table 3.1-2. Population Statistics (1999)

There have been some population migrations in the basin. In Ghana, the decline of the fishing industry in the Lower Volta following the establishment of the Volta Lake upstream has attracted people to move upstream to live near the lake for their livelihood. It is unfortunate that these settlements are often close to the banks of the lake, however. In Togo, some people in the basin (Savannas and Kara regions) who migrated to the southern regions of the country before 1990 are now returning due to socio-political unrest.

Mali has also seen migration into the "forest" of Samori, a sub-basin of the Volta. This movement is caused by the quest for new land for farming activities. Others moved into the basin after the drought of 1985. Another sub-basin in Mali, the Seno, has seen such a surge in population that there is no longer sufficient farmland to allow land to lie fallow, resulting in an impoverishment of the land. Additionally, there has been some migration out of the basin and into the urban areas where jobs are sought.

As noted above in Table 3.1-2, the literacy rate is in the range of 9 to 36% with a mean of approximately 21% for the entire basin. This low level of literacy can serve as an impediment to environmentally sustainable development. Additionally, there are significant disparities in the schooling and literacy rates for men and women. In Togo, for example, between 43 and 83% of women are illiterate, while the illiteracy rates for men are between 25 and 50%.

Life expectancy in the basin is fairly low, varying between 47 and 56 years with an average of 52 (Table 3.1-2). The infant mortality rate in the basin is high, estimated in 1993 to be between 68.3 and 113.7 per 1000 births in Ghana. A major factor in the short life expectancy of the population of the Volta Basin is inadequate access to health care. Access to public health care in the Volta Basin of Ghana is poor and significantly below the national average of 37.2% (PIP, 1990). The average of access to public health care in the basin is only approximately 15%. In the southern rural part of the basin in Côte d'Ivoire, the doctor – patient ratio is 1:18,684, while in the north the ratio is 1:24,561. These figures are similar to those for other parts of the basin.

The tropical environment of the Volta River Basin is conducive to the growth of a wide variety of deadly microbes and their hosts. All major water-related diseases like Bilharzias, Onchocerciasis, Guinea worm, malaria, filariasis, etc., are prevalent in the Volta Basin.

3.2 Regional Economic Characteristics

The riparian countries of the Volta River Basin are some of the poorest in the world and have underdeveloped economies. According to the World Development Report 2000/2001, all of the Volta River Basin countries are considered to be in the low income category (GNP per capita of \$755 or less). Per capita GNP and economic growth rates for the riparian countries are shown in Table 3.2-1.

Table 3.2-1. Gross National Product and Average Growth Rate for the Riparian Countries

Country	GNP/Capita (\$) (1999)	Average Annual Growth Rate (%) (1998 - 1999)
Benin	380	2.2
Burkina Faso	240	2.7
Côte d'Ivoire	710	1.1
Ghana	390	2.1
Mali	190	2.7
Togo	320	-0.3

(World Development Report 2000/2001, 2001)

Côte d'Ivoire has the highest GNP in the region with \$710 per capita, while Mali is ranked lowest with only \$190. The average GNP/capita is \$372, making this one of the world's poorest regions. Although the figures quoted in the table are national values, the condition in the basin is not better than the remainder of the countries. The average annual growth rates in the range of – 0.3 to 2.7% of GNP/capita also show low performance of the economies of the region.

Additionally, the region is saddled with a heavy burden of external debt as indicated in Table 3.2-2.

Table 3.2-2. External Debt of the Riparian Countries (1998)

Country	Millions of Dollars	% of GNP
Benin	1,647	46
Burkina Faso	1,399	32
Côte d'Ivoire	14,852	122
Ghana	6,884	55
Mali	3,202	84
Togo	1,448	68
Average	4,905	70

(World Development Report 2000/2001, 2001)

The debt burden ranges from 32% to as high as 122% of the GNP. The average, as well as the median, debt burden for the sub-region is about 70% of the GNP. This poor economic situation can potentially inhibit any meaningful sound environmental development with respect to the exploitation of natural resources for socio-economic development.

Economic activities in the basin are quite similar in all of the countries: crop production, livestock breeding, fishing, lumber, agro-industry, transportation, and tourism. These activities can be grouped under agriculture, industry, manufacturing, and services.

Agriculture includes crop and livestock production, fisheries, and forestry, while industry involves mining and quarrying, electricity supply, and construction; services include transport, storage, communication, wholesale and retail trade, restaurants and hotels, government services, etc. The economic outputs of these activities are shown in Table 3.2-3.

 Table 3.2-3.
 Structure of Economic Output at the National Level

	Gross D	omestic			Val	ue added	as % of	GDP		
	Product Millions of \$		Agriculture		Indu	Industry		cturing	Services	
Country	1990	1999	1990	1999	1990	1999	1990	1999	1990	1999
Benin	1,845	2,402	36	38	13	14	8	8	51	48
Burkina Faso	2,765	2,643	32	32	22	27	16	21	45	41
Côte d'Ivoire	10,796	11,223	32	24	23	24	21	20	44	52
Ghana	5,886	7,606	45	36	17	25	10	9	38	39
Mali	2,421	2,714	46	47	16	17	9	4	39	37
Togo	1,628 1,506		34	43	23	21	10	9	44	36
	=	-	37.8	36.7	19.0	21.3	12.3	11.8	43.5	42.2

(World Development Report 2000/2001)

The table shows economic outputs for the countries as a percentage of GDP in 1990 and 1999. The activity output is shown as a percentage of the GDP. From the table, it can be observed that services and agriculture are most prominent in the sub-region, averaging 42% and 37% of GDP, respectively (1999). Industry follows in third place. The services sector averages 19% and 21% of GDP in 1990 and 1999, respectively. The services sector is dominant in the urban areas, whereas agriculture dominates in the rural areas. It is worth noting that the type or intensity of activities did not change significantly over the 1990 to 1999 period.

3.2.1 Agriculture

Accurate and specific data are not easily available on the economic output of the basin as these data are embedded in the national figures. It may be surmised, however, that agricultural production in the basin, which has a higher rural population than the national averages, will not be less than 40% of the entire economic output of the basin.

To demonstrate the importance of agriculture in the basin, some information from the national reports is presented.

In Ghana, Table 3.2-4 shows the production levels of selected staple crops by regions in the basin.

Table 3.2-4. Production Levels of Selected Crops by Regions in the Volta Basin in Ghana (Tonnes)

Region	Yam	% of National Total	Cassava	% of National Total	Maize	% of National Total	Rice	% of National Total
Upper East	-		-		16,280	1.6	65,379	26.3
Upper West	263,416	7.8	-		56,725	5.6	9,281	3.7
Northern	518,000	15.4	68,500	0.8	81,800	8.1	71,360	28.7
Volta	112,265	3.3	424,350	5.2	48,980	4.8	14,530	5.8
Eastern*	529,014	15.7	767460	9.5	97,014	9.6	2,250	0.9
Ashanti*	186,248	5.5	373,674	4.6	12,530	1.2	706	0.3
Brong Ahafo*	1,000,337	29.7	854,659	10.5	91,985	9.1	32	0.0
Greater* Accra	-		38,603	0.5	2,269	0.2	8,469	3.4
Total in Basin	2,609,280	77.6	2,527,246	31.2	407,583	40.2	172,007	69.1
National Total	3,363,000		8,107,000		1,013,000		249,000	

Source: SRID, MOFA, 2000

From the table, it can be observed that the basin in Ghana produces 78% of the total national output of yams, 31% of cassava, 40% of maize, and 69% of rice.

Table 3.2-5 on the following page shows the statistics of cereal production in two districts of the Volta Basin of Mali. These regions are considered to be the granary of the Mopti region and 85% of the local population is engaged in agricultural production.

^{*}Figures are totals for Districts that fall within the Volta Basin, whether wholly or partially.

Table 3.2-5. Cereal Production in the Mopti Region of Mali (Tonnes)

	_						1		1								
	2000-2001	00069	4650	4150	2426	2000	6324			2000-2001	48945	10500	4150	2050	3335	5880	
	1999-2000	00289	4600		2370	1940	6030				1999-2000	48000	0086	5400	1875	3500	5750
		68400	4300		2320	1940	5975			1998-1999	47500	0086	2600	1800	3500	5850	
	1997-1998 1998-1999	68225	4275		1700	4030	6150			1997-1998	46800	0066	3900	1700	3950	5100	
	1996-1997	65500	4400	350	1950	3380	2670			1996-1997	46900	0066	3800	1500	4100	2650	
	1995-1996	66735	4400	380		4530	5865			1995-1996	45600	9230	3250	1360	4330	4900	
KORO	1994-1995	00829	3760	330		5350			BANKASS	1994-1995	45900	8500	1900	1450	4825	2800	
	1993-1994	00829	3660	360	086	4990	5520			1993-1994	45800	8300	1600	1600	4900	2800	
	1992-1993	66440	3950	270	3640	4264	5750			1992-1993	44300	8100	1050	4000	4850	4800	
	1991-1992	64770	3500	270	3245	4190	5470			1991-1992	42600	0089	275	4200	4650	4750	
	1990-1991	67930		320	1545	5020	1620			1990-1991	48700		170	2490	4900	1760	
	Cereals/Years	Millet	Sorghum	Paddy rice	Niébé	Fonio	Groundnuts			Cereals/Years	Millet	Sorghum	Paddy rice	Niébé	Fonio	Groundnuts	

The production of crops in Côte d'Ivoire is presented in Table 3.2-6.

Table 3.2-6. Crop Production in Côte d'Ivoire (1996)

Produce	Quantity (Tonnes)
Cocoa	816
Coffee	1,099
Cotton	1,511
Cashew nut	12,482
"Roucou"	1,951
Yams	225,703
Maize	14,500
Cassava	42,695
Rice	2,341
Groundnut	4,330

Irrigated land as a percentage of cropland for 1995–97 for Benin, Burkina Faso, Côte d'Ivoire, Ghana, Mali, and Togo are 0.8, 0.7, 1.0, 0.2, 2.1, and 0.3, respectively (World Development Report 2000/2001, 2001). Thus, crop production under irrigation is negligible in the sub-region as most arable farming is predominantly rainfed. With current climate change, rainfall is believed to be becoming more variable and unreliable. Extensive crop farming coupled with variable and unreliable rainfall patterns in a region where poverty is predominant has far-reaching implications on the environment and food security.

3.2.2 Livestock

The rich savannah grassland provides good fodder for livestock production. Animal husbandry data for some of the riparian countries are shown in the following tables.

Table 3.2-7. Livestock Production in Côte d'Ivoire

Type	Cattle	Sheep	Goats	Pig	Poultry	
Number	117,173	253,646	205,199	5,612	1,504,614	

Table 3.2-8. Projected Livestock Production in Togo (1999-2005)

Annual Production	1999	2001	2003	2005
Cattle	299,970	318,239	337,619	340,136
Sheep / Goats	5,158,621	5,472,781	5,806,073	7,292,244
Pigs	408,755	433,648	460,057	464,762
Poultry	1,216,278	12,903,494	13,689,317	16,612,295

Source: Programme de Développement de l'Elevage au Togo/September 1996

Table 3.2-9. Projected Livestock Production in Togo (2010-2025)

Annual Production	2010	2015	2020	2025
Cattle	346,509	353,003	359,684	366,365
Sheep / Goats	12,891,380	17,447,658	28,869,040	40,290,422
Pigs	595,997	639,269	819,759	1,000,249
Poultry	26,949,411	37,188,484	56,985,036	76,781,587

Table 3.2-10. Population of Major Livestock by Region Based on 1996 Livestock Census in Ghana

Dogion	Region Cattle		She	Sheep		Goats		Pigs		Poultry	
Region	No.	%.	%. No. %		No.	%	No.	%	No.	%.	
Upper East	214,717	17.2	211,670	9.1	192,689	7.6	36,767	10.4	811,925	5.6	
Upper West	284,162	22.8	231,819	10.0	542,316	21.4	68,886	19.4	1,005,733	6.9	
Northern	429,460	34.4	339,406	14.6	365,314	14.4	45,727	12.9	1,559,865	10.7	
Volta	112,926	9.1	369,544	15.9	432,025	17.1	47,792	13.5	970,845	6.7	
Brong Ahafo	50,009	4.0	226,074	9.7	233,388	9.2	36,756	10.4	797,146	5.5	
Ashanti	21,668	1.7	240,073	10.4	184,939	7.3	19,019	5.4	2,286,841	15.7	
Eastern	53,918	4.3	226,083	9.8	197,654	7.8	18,972	5.3	826,940	5.7	
Greater Accra	68,098	5.5	114,781	5.0	104,145	4.1	20,657	5.8	5,341,120	36.6	
Western	4,796	0.4	230,379	9.9	153,081	6.0	43,641	12.3	304,110	2.1	
Central	8,107	0.6	128,909	5.6	127,159	5.0	16,461	4.6	684,778	4.7	
National Total	1,247,861	100	2,418,738	100	2,632,710	100	354,678	100	14,589,303	100	

Source: Animal Production Department, MOFA, 2001

Table 3.2-11. Estimates of National Livestock Population in Ghana (1995 – 2000)

Year	Cattle	Sheep	Goats	Pigs	Poultry
1995	1,122,730	2,010,147	2,155,938	365,339	13,082,252
1996	1,247,861	2,418,738	2,532,710	354,678	14,558,970
1997	1,203,132	2,330,386	2,458,307	339,808	15,878,568
1998	1,209,317	2,366,407	2,523,004	325,884	17,281,997
1999	1,215,534	2,402,985	2,589,404	312,531	18,809,469
2000	1,221,783	2,440,128	2,657,551	299,725	20,472,222

Source: Animal Production Department, MOFA, 2001

Livestock	Population	% of National Total
Cattle	1,111,707	89.1
Sheep	1,672,395	69.1
Goats	1,854,749	70.5
Pigs	231,760	65.3
Poultry	5,479,352	37.5

Table 3.2-12. Population of Major Livestock in the Volta Basin in Ghana

Four regions, including the Upper-East, Upper-West, Northern and Volta, which fall exclusively in the basin, account for 83.5%, 57.7%, 64.1%, and 68.8% of cattle, sheep, goats, and pigs, respectively.

3.2.3 Fisheries

Fish production is also an important para-agricultural activity in the basin. In the Oti River in Benin, fish are abundant. Downstream in Togo, fishing is also found to be a secondary activity of the population.

During the drought of the 1970s, fishing gained importance as an economic activity and as a source of food in Burkina Faso. Fishing is done in rivers (Mouhoun, Oti, Kompienga, Comoé, Léraba, Béli, Faga, Garoual, Sirba, and Tapoa) and in reservoirs (Kompienga, Bagré, Sourou, Moussodougou, Zega, Loumbila, and Kanazoé). Families of fish that are exploited include Cichlidae, Centropomidae, Mochokidae, Clariidae, Bagridae, Clatoteidae, Characidae, Mormyridae, and Osteoglossidae. Although this area has not been studied adequately, it is estimated that between 8,000 and 8,500 tons of fish are caught annually at a national level, and that this amount constitutes roughly 60-70% of biological capacity. The fish resources are being modified and threatened by overexploitation in certain areas due to the degradation of waterways, however.

Fish farming and fishing in Côte d'Ivoire experienced a takeoff in 1978 with a fishery development project. A provisioning center of 8 ponds with a capacity of 60,000 alevins per year and 52 fish farming ponds were established. The fish farming activity has strongly regressed since 1993, however, largely due to inadequate water resources and the slowdown in farming.

In Ghana, the Volta Lake created by the Akosombo Dam produced about 87,500 metric tons of fish in 2000. It is stated that the Volta Lake produces about 98% of the inland fresh water fish in Ghana (Braimah, 2001). The increases in fish landings from the Volta Lake in the last half-decade (Table 3.2-13) are the result of deployment of active gear, such as the winch net, with unapproved mesh sizes in the lake. This situation is extremely dangerous for a fishery that is already experiencing over-exploitation. If the current practices are not regulated, the Volta Lake fishery could crash in the near future.

Table 3.2-13. Annual Fish Production in Ghana

Source	1996 1997		1996 1997 1998		1999		2000			
Source	No.	%	No.	%	No.	%	No.	%	No.	%
Marine	378,000	84	377,600	80	336,700	74.3	384,700	83.7	421,320	82.8
Inland	74,000	16	94,400	20	116,200	25.7	75,000	16.3	87,500	17.2
Total	452,000		472,000		452,900		459,700		508,820	

Source: SRID, MOFA, 2001

Prior to the construction of the dam on the Mouhoun in Burkina Faso, fishing in Mali was done using rudimentary equipment and the activity did not provide a significant source of income. When the waters rose, however, several villages moved to the edge of the river and fishing became a more important activity. The industry has since moved from subsistence to commercial.

3.2.4 Forestry

Forests in the basin are cut to provide firewood and charcoal for local populations. Additionally, forests are developed to provide lumber. For example, the forests in the Togo section of the basin provide more than half of the country's production of sawlog (Togo National Report). Forests in the region have been severely overexploited, however, and are threatened.

3.2.5 Industry

While industrial development is not extensive in the region, some industries, including hydropower generation, are important. In Ghana, production of hydropower in the basin for distribution among the neighboring riparian countries is a critical economic activity. The installed capacity of hydroelectric plants at Akosombo and Kpong amounts to 1072 MW. Balgré and Kompienga dams in Burkina Faso generate hydropower with an installed capacity of 14.4 MW and 12.3 MW. In 1996, they produced 72.5 GWh of electrical energy. Some other hydropower schemes are planned in other parts of the basin.

In Burkina Faso, a number of industries are located in the basin that both use large quantities of water and emit waste into waterways. These include agro-processing (breweries, slaughterhouses, and soap factories), chemical (pesticides), and textiles (tanning and sewing).

Industries in the basin in Ghana, with the exception of a few large textile factories located near the dams, are generally small-scale. They typically employ between two and six workers and use local raw materials. Industries in the following categories are scattered throughout the basin in Ghana.

Table 3.2-14. Industry in Ghana

Category	Specific Activities
Agro processing	Cassava processing
	Sheabutter extraction
	Grain milling
	Groundnut oil extraction

Category	Specific Activities		
	Pito brewing		
	Fish smoking		
	Liquor distillery		
	Tobacco curing		
	Bakery		
	Wood carving		
	Charcoal burning		
Wood Based	Carpentry and joinery		
	Charcoal burning		
	Canoe building		
Leather works	Shoemaking		
Leather works	Leather tanning		
Metal	Blacksmithing		
Metal	Vehicle mechanic		
	Mat weaving		
Textile	Straw hat & basket weaving		
	Tailoring, Dressmaking		

3.2.6 Mining

The Volta River Basin is rich in mining resources, such as phosphate, uranium, gold, and iron, but few resources have yet been developed. In Togo, only iron has been exploited and it is generally done artisanally. Small-scale surface mining for gold has developed recently in the Upper East section of the basin in Ghana, with potential environmental effects. Gold is extracted artisanally in several areas of Burkina Faso, including Kaya, Bittou, and Yako. Additionally, several national and foreign mining companies prospect or exploit licenses that were conceded to them in the basin.

3.2.7 Tourism

While there are many natural and cultural attractions in the Volta River Basin, tourism remains underdeveloped. An area that attracts visitors, however, includes the Pendjari National Park of Benin, which receives between 2,000 and 2,500 visitors annually. Côte d'Ivoire also has a number of points of interest, which are primarily located in the northeast. These include the Comoé National Park (the largest of West Africa), although the current condition of the trails and facilities in the park are not conducive to tourists. Additionally, Togo has a number of areas in the basin visited by tourists.

3.3 Analysis of Use of Land and Water Resources and Future Trends

3.3.1 Regional Land and Water Resource Availability

3.3.1.1 Water Resources

Water is available for use from three sources: precipitation, streamflow, and groundwater.

The distribution of precipitation follows the climatic patterns as described in section 2.1.5. Some parts of the basin have a single annual peak of rainfall of short duration, whereas other areas have double maxima. Annual rainfall varies from about 1600 mm to 400 mm across the basin. Rainfall distribution is not uniform throughout the year and, instead, is strongly seasonal. Some of the drier areas in the northern section of the basin receive rainfall during three months of the year, while the other nine months are dry.

Streamflow, or run-off, naturally relates to the magnitudes of rainfall and evapo-transpiration in the locality or the sub-catchment. Rainfall in the upper reaches or higher latitudes of the catchment are low and thus run-off is also limited.

Water resources in general diminish from the southern to the northern part of the basin.

3.3.1.2 Land Resources

As agriculture and animal husbandry are the primary economic activities in the basin, land resources are critical to the basin inhabitants. The resources currently meet these needs, but the growing population pressure that will require additional land, combined with the anthropogenic and climatic threats to land resources detailed in Section 5.1, suggest that this might not always be the case.

Land ownership in the region remains primarily traditional, meaning that lands are often owned or managed by local elders or leaders. As a result, the major institutions involved in land administration are the traditional leaders in some countries. Thus, a significant problem associated with land resources is the institutional and legal framework governing the release of land for use.

Some lands are also preserved as natural habitats for flora and fauna and are unavailable for use; however, illegal exploitation of the land resources has reduced their value.

Additionally, some lands are already degraded to the point of non-productivity. For example, in the Lower Volta Basin, the establishment of the Akosombo Dam has rendered some of the soils in the area more acidic. As a result, the yields from farms in the region have been reduced considerably. The potential of such lands has been reduced and will require remedial measures.

3.3.2 Regional Land and Water Resource Demand for the Present and Future

3.3.2.1 Water Resources

Water resources are needed for various purposes, such as for the production of food, industry and energy production, domestic water supply, sanitation, transportation, as well as for the maintenance of the ecosystem.

Quantities of water needed for domestic and industrial activities, irrigation, and livestock production are referred to as the water demand for the sector. These uses are, in general, indicated as consumptive uses since they are not available for other uses.

Water for hydropower generation is, on the other hand, non-consumptive since the water passing through the turbines can be used for other purposes. However, non-consumptive use such as hydropower generation also has some losses of water through increased evaporation from reservoirs. Both consumptive and non-consumptive uses are relevant for integrated management of the basin.

The basin demand for water is an aggregation of the demands from the riparian countries over a period of time. The country demand, in turn, is dependent on the types of economic activities undertaken, as well as the level of the country's development as more advanced economies will demand more water than less advanced ones. Population is also a factor in determining the quantity of water needed for domestic use.

Projections for water demand are thus based on growth of population and the activities envisaged to be carried out under the country's development plans. The projected water demand outlined in this section was synthesized from country reports.

Table 3.3-1 shows the water demand for domestic and industrial activities. These are projected to increase due to the rapid population increase and envisaged industrial expansion, both of which will require an increased use of water. The domestic/industrial water demand for Benin was, however, very high and may be due to planned economic development activities.

Table 3.3-2 presents water demand data for irrigation in the basin. In Ghana and Benin, the increases expected are quite high. The percentage increases of year 2020 demand over year 2000 are 538% and 706% for Ghana and Benin, respectively. The high projections of water demand for irrigation in the basin stem from the fact that rain-fed agriculture is becoming more precarious and less reliable under climate change and the ensuing variable precipitation. Further, the need to produce adequate food to feed the rising populations is a major concern of the countries in the sub-region.

Table 3.3-3 presents the information on water demand for livestock production. It is observed again that the demand for water needed for livestock will increase by several times by the year 2025 to meet the protein requirements of the basin population and for export.

The information provided in Table 3.3-4 for the total water demand shows drastic increases of 62% to 1221% in year 2020 over year 2000 water demands. The sharp increases are, however, largely driven by the high irrigation water demand projected for the future.

While significantly higher demands have been projected for the near future, current demands are not now being met in most countries. For example, the water resource supply for the Volta Basin in Ghana for 2000 was $245 \times 10^6 \text{m}^3$ (WARM, 1998). This implies that for a demand of about 729 x 10^6m^3 , only 34% was met. The problem of not being able to meet the consumptive water demand depends, to a large extent, upon inadequate infrastructure of water supply systems. This means that there are not sufficient financial resources to store, treat, and distribute water.

Seasonal variations also hinder the ability to supply needed water resources. For example, in the upper reaches of the catchment, such as in Mali and some sections of Burkina Faso, river flows are not year round and some wells and groundwater boreholes go dry during certain months. Thus, water-resources availability becomes a problem.

Hydropower generation is an important economic activity in the basin, especially for Ghana. The power is sold among some of the riparian countries: Togo, Benin, and Burkina Faso. In Ghana, Akosombo and Kpong generate hydropower and the combined capacity of the two schemes is 1060 MW. Water demand for the two for generation is approximately 37.8 billion m³.

Table 3.3-1. Domestic/Industrial Water Demand of the Volta River Basin (x 10⁶m³)

Country	1990	2000	2010	2020	2025
Benin		56	196	336	448
Burkina Faso	67	85	106	132	149
Côte d'Ivoire	-	4	5	12	14
Ghana	82	138	192	272	284
Mali	5	9	13	16	18
Togo	51	68	92	123	145

Table 3.3-2. Irrigation Water Demand of the Volta River Basin (x 10⁶m³)

Country	1990	2000	2010	2020	2025
Benin		152	548	1,225	1,600
Burkina Faso	43	203	384	554	639
Côte d'Ivoire	-	19	57	166	276
Ghana	75	565	1,871	3,605	3,733
Mali	126	180	219	291	311
Togo	43	50	91	133	171

Table 3.3-3. Water Demand for Livestock of the Volta River Basin (x 10⁶m³)

Country	1990	2000	2010	2020	2025
Benin		40	94	133	175
Burkina Faso	37	46	61	78	88
Côte d'Ivoire	-	1	2	3	3
Ghana	18	26	41	63	67
Mali	4	34	74	123	142
Togo	15	19	22	30	36

Côte d'Ivoire

Ghana

Mali

Togo

4,084

1,221

% Increase **Country** 2020/2000 1,694 2,223 Benin Burkina Faso

3,940

2,104

Table 3.3-4. Total Consumptive Water Demand of the Volta River Basin (x 10⁶m³)

3.3.2.2 Land Resources

Information on demand for land resources is inadequate in the basin. Statistics of land use were given, for example, in Togo and out of a basin area of 2,670,000 ha only 428,000 (16%) were put under cultivation in 1995, while an area of 528,420 ha (19%) were under forest reserve. Fertility of the soils was not discussed, but this could be a limiting factor due to the expansion of agricultural lands. For the Volta Basin in Burkina Faso, 3,905,500 ha, representing 22.5% of the basin area is under cultivation. It was indicated that land availability in that area for farming is becoming limited but is not yet in a crisis situation. Throughout the basin, the loss of soil fertility due to erosion, over-use, over-use of manure, and uncontrolled bushfires were identified as problematic issues.

Farming practices could determine the size of land needed for future activities. With the increase in population, the available data and information suggest that demand for land for farming will increase with the view to achieving food self-sufficiency in the basin, as well as increasing food exports. Population pressure has not only expanded pasturage, but also reduced its quality due to reduced crop rotation and not allowing sufficient time for croplands to lie fallow to regenerate essential nutrients.

4.0 Legal and Regulatory Setting

Institutional structures and legal frameworks have been established to some degree in the riparian countries for environmental management, as documented in the various country reports. A summary of the various national institutional structures and legal frameworks is presented in tables below. The institutions charged with transboundary water resources issues are then discussed in greater detail. A short summary of legal and institutional constraints follows.

4.1 Benin

Benin has developed a number of laws and institutions to address the environmental impacts of activities in the country, which are outlined in the following table.

Table 4.1-1. Ministries and Departments for Managing Land and Water Resources in Benin

Ministry	Departments	Responsibilities
Ministry of Environment,	Environment, Sanitation,	Management of the
Settlements, and Urban	and Urban Roads,	Environment
Development	Administration of	
	Territories	
Ministry of Agriculture,	Rural Development, Forest	Management of Natural
Livestock, and Fishing	and Natural	Resources, Water, and
	Resources, Agriculture,	Soils
	Fishing, Livestock	
Ministry of Mines, Energy, and	Mining, Beninois Society	Management of Mineral
Hydraulics	of Electricity and Water,	Resources, Management
	Hydraulics	and Distribution of Water
		Resources at the National
		Level
Ministry of State in Charge of	-	Identification of projects
Coordination of Government Act,		and programmes that will
Forecasting, and		have positive impacts on
Development		the environment. Follow-
		up of projects and
		programmes and their
		actual impacts on the land,
		and in particular the
No. 1	D (CF)	environment
Ministry of Interior and	Department of Territorial	Environmental issues
Security and Decentralization	Administration;	
	Department of Local	
	Community;	
	National Commission of	
	State Affairs; Department	
	of Prevention and Soil	
	Protection	

Ministry	Departments	Responsibilities
Ministry of Law and Justice and	Department of Law and	Support of the legal
Human Rights	Codification	framework
Ministry of Finance and	-	Development of policies
Economy		for improving the
		environment, e.g., tax
		incentives
Ministry of Public Health	Department of Hygiene and	Implementation of
	Sanitation	national policies in matters
		of hygiene and health
Ministry of Higher Education and	National University of	Concern about
Scientific Research	Benin; Committee of Man	environmental policies
	and Biosphere; Beninois	
	National	
	Commission of UNESCO;	
	Beninois Center of	
	Scientific	
	Research and Technique	

Apart from the Ministries having some roles in managing water and land resources, the Beninois government has put in place measures that give roles to the local communities concerning sanitation, public health, and roads.

Several legislative texts have been passed for rational management of the natural resources of the country. Some of these include:

- 1. Decree No. 82-435; December 30, 1982 against bushfires and setting fires to plantations.
- 2. The Law No. 87-016; Water Code.
- 3. The Law No. 98-030; February 12, 1999 on legal framework for the environment of the republic of Benin.

4.2 Burkina Faso

The overall vision of the country's framework for managing natural resources, expressed in the document "Policies and Strategies in Water Matters" adopted by the Burkinabe government in 1998, is of sustainable human development. This means providing economic security, health, food security, and a sound environment, among other things. The following laws are in existence for the management of the environment and land resources:

- 1. Act No. 005/97/ADP
- 2. Act No. 0014/96/ADP of 23 May 1996

Table 4.2-1 gives the responsibilities of the various government ministries and departments associated with the management of land and water resources in Burkina Faso.

Table 4.2-1. Departments for Managing Land and Water Resources in Burkina Faso

Department	Responsibilities
Foreign Affairs	To implement framework of
	agreements of international
	cooperation
Administration of Territories/Lands	Land administration
Energy and Mines	Production of hydropower and
	utilization of mineral resources
Tertiary and Secondary Education and	Education and training
Scientific Research	
Public Works, Settlements and Urban	Road infrastructure and urban
Development	sanitation
Agriculture	Enhance irrigation development
Animal Resources	Management of pastoral zones
Health	Public Health
Transport and Tourism	Collection of climatological data
Social Action and the Family	Management of risk linked to water
Authorities for managing valleys	AMVS, MOB

Other actors associated with the land and water resources management include NGOs, the private sector, and development partners.

Some difficulties encountered in institutional management include sectoral management of natural resources and inadequate management of human and financial resources.

4.3 Côte d'Ivoire

In Côte d'Ivoire, numerous institutions are charged with the responsibility of managing and using water resources. This situation has led to fragmentation and dispersion of functions among the institutions.

The functions of main actors in water resources are divided into two main groups: managers and users. The law that created this division was Law No. 98 - 755. There are two codes regulating, protecting, and guiding the use of water: environment and water codes.

The ministry with overall responsibility for managing water resources is the Ministry of Water and Forests. It is the authority in charge of policies for managing water resources. Additional ministries include:

Table 4.3-1. Ministries and Their Responsibilities in Côte d'Ivoire

Ministry	Responsibilities
Ministry of Water and Forests	Management of water resources
Ministry of Economic Infrastructure	Provision of potable water
Ministry of Agriculture and Animal	Agropastoral and fishing

Ministry	Responsibilities
Resources	
Ministry of Mines and Energy	Generation of hydroelectricity
Ministry of Transport	River and maritime transport
Ministry of Construction and Urban	Sanitation
Development	
Ministry of Environment and Life	Protection of water
Ministry of Economy and Finances	Financing of water projects
Ministry of Planning and Development	Scheduling of projects
Ministry of Public Health	Protection against diseases associated with
	water
Ministry of Industry	Industry
Ministry of Tourism	Tourism
Ministry of Interior and	
Decentralisation	

Ministries in charge of management and use of land resources are given in Table 4.3-2.

Table 4.3-2. Ministries for the Management and Use of Land Resources in Côte d'Ivoire

Ministry	Responsibilities
Ministries of Water and Forests	Protection of soils and fight against
	desertification
Ministry of Environment and Life	Protection of Ecosystems
Ministry of Construction and Urban	Management of urban areas
Development	
Ministry of Agriculture and Animal	Agricultural development and management of
Resources	rural areas
Ministry of Mines and Energy	Mineral exploitation

A legal framework that came into force in December 1998, the Rural Land Code, allows for the registration and security of rural lands.

4.4 Ghana

Acts establishing new institutions and strengthening existing ones for managing water resources in Ghana, and in particular the Volta Basin, are as follows:

- Act 46 of 1961 (Volta River Development Act) sets up the Volta River Authority (VRA). The VRA has the mandate to plan, execute and manage development of the Volta River. The primary function of the VRA is to generate power for the country's industrialization.
- Act 490 of 1994 establishes the Environmental Protection Agency.
- Act 522 of 1996 establishes the Water Resources Commission.
- Act 462 of 1993 establishes the District Assemblies.

Land ownership is basically traditional, except in areas demarcated and controlled by government agencies, such as the Volta River Authority and Departments of Forestry and Wildlife. Families and individuals have access to and control of resources through birth.

Government departments and agencies charged with responsibilities of usage or management of water resources are presented in Table 4.4-1.

Table 4.4-1. Ministries and Departments Responsible for Water Resources Development and Utilization in Ghana

Ministry	Department/Institutions	Responsibilities
Ministry of Works and	Water Resources *	Planning and regulation of
Housing (MWH)	Commission	the development and use of
		freshwater resources in
		Ghana
Ministry of Environment	Environmental Protection	Management of the country's
and Science (MES)	Agency (EPA) *	environment, collaborating
		with relevant state
		institutions and international
		bodies in ensuring
		sustainable development of
		the country's natural
		resources
Ministry of Lands and	Forestry Commission *	Control and planning of
Forestry		forestry resources
Ministry of Mines	Mineral Commission*	Granting of mining rights
	Public Utilities Regulatory	Regulate the supply,
	Commission *	transmission, and
		distribution of treated water
Ministry of Energy (ME)	Volta River Authority	Plan, execute and manage the
	(VRA) **	development of the Volta
		River for hydropower
		generation
Ministry of Food and	Irrigation Development	Development of irrigation
Agriculture	Authority **	in the country
Ministry of Works and	Ghana Water Company Ltd. **	Provision of potable water
Housing		for urban settlement
Ministry of Works and	Community Water and	Provision of potable water
Housing	Sanitation **	for rural communities
Ministry of Roads and	Meteorological Services	Assessment of
Transport	Department ***	Atmospheric Water
		Resources
Ministry of Works and	Hydrological Services	Collection of hydrological
Housing	Division ***	data
Ministry of Environment	Water Research Institute	Assessment of surface and

Ministry	Department/Institutions	Responsibilities
and Science	of CSIR ***	groundwater
		resources in quantity
		and quality.

- Organization involved primarily in the regulation of the environment and natural resources.
- ** Organization involved mainly in the development and use of water resources.
- *** Organization involved mainly in the data collection and processing of data/information for water resources management.

There are two existing laws relating to land management in Ghana. These are:

- Land Planning and Soil Conservation (Amendment Act 1975 and Land Planning and Soil Conservation Ordinance, 1953).
- Control of Bushfire Law PNDCL 46.

State agencies that have key responsibilities in land administration in the country are:

- Land Commission established by Act 483 of 1994
- Administrator of School Lands
- Land Valuation Board
- Survey Department
- Land Title Registry
- Town and Country Planning Departments

4.5 Mali

In Mali, the water sector is under the Ministry of Mines, Energy, and Water. Its function is carried out by the National Department of Hydraulics, which was established by the law No. 99-023 of June 11, 1999.

The functions of the department, among other things, include the assessment of potential water resources in the country, supervision of works and appraisal of projects in the water sector, and promotion of sub-regional cooperation in the domain of water resources management.

A number of departments are also involved in the management of water resources. To avoid duplication and harmonize activities, a Committee of Interministerial Coordination of Water Sector and Sanitation was established by decree No. 95-447/PM-RM. The composition of the Committee reflects the ministries involved in water issues:

- The Ministry in Charge of Hydraulics
- The Ministry in Charge of Planning
- The Ministry in Charge of International Cooperation
- The Ministry in Charge of Public Health
- The Ministry in Charge of Agriculture
- The Ministry in Charge of Livestock

- The Ministry in Charge of Environment
- The Ministry in Charge of Territorial Administration
- The Ministry in Charge of Finances
- The Ministry in Charge of Industry
- The Ministry in Charge of Cottage Industry

The Ministry in Charge of the Environment is responsible for all issues affecting the environment. However, the management of the environment is shared among ministerial departments, which include: Rural Development, Health, Hydraulics, Transport, Urban Development, Industries, Education, Public Works, and Territorial Administration.

A number of laws regulate economic and social activity in order to protect the environment. The Preamble to the Malian Constitution states that the people of Mali must insure the cultural inheritance and environmental protection. Some of the laws and regulations governing the water sector in Mali include the (i) The Water Code, (ii) National Policy on Water, (iii) The Code on Decentralised Territorial Communities, and (iv) National Strategy on Development of Potable Water Supply and Sanitation. Other laws governing the environmental sector include Law No. 91-047/an-rm and the Law No. 89-6/an-rm. Other laws govern land ownership and the management of forest resources.

4.6 Togo

In Togo, a number of institutions are involved in the management of water and soils. The various ministries and departments involved are presented in Table 4.6-1.

Table 4.6-1. Ministries, Departments, and Institutions Responsible for the Management of Water and Soils in Togo

Ministry	Department/Institution	Responsibility
Ministry of Equipment,	General Department of	Implementation of
Mines, and Hydraulic	Hydraulics	programmes, formulation of
Resources		laws and regulations with
		respect to water resources and
		sanitation
Ministry of Public	Division of Public Health and	Public hygiene and sanitation
Health	Sanitary Engineering	
Ministry of Public	National Institute of	Analysis of water
Health	Hygiene	
Ministry of Agriculture,	Department of Managing	Management of surface
Animal Husbandry, and	Rural Equipment	water, Agro land laws
Fishing		
Ministry of Environment and	Department of General	Control of withdrawal of
Forest Resources	Ecology and Rehabilitation of	water from water courses,
	the Environment	aquifers, lagoons, and the sea
		for industrial and agricultural
		purposes

Ministry	Department/Institution	Responsibility
Ministry of Agriculture,	Togolese Institute of	Conservation, studies, and
Animal Husbandry, and	Agricultural Research (ITRA)	mapping out of soil types
Fishing		
Ministry of Planning and	Department of Urban	Control of the management of
Management of Territories,	Development and Habitat	urban lands
Habitat, and Urban		
Development		
Ministry of National		
Education, University of		
Lome		
Ministry of Cooperation and		
Foreign Affairs		

The legal framework governing the management of land and water resources is the Code for the Environment, the decree of 5 February 1933, and Code for Water, which is to be finalized under the management of water resources, and the Mining Code.

4.7 Overview of national institutional and legal framework for integrated management

In the riparian countries, many institutions are charged with the responsibilities of managing water and soil resources. This results in the overlapping of responsibilities and difficulties in coordination. Coordination of activities among the institutions was found to be generally weak, and in some cases is only on an *ad hoc* basis for crisis situations. In order for the management of water and soil resources to be effective, it should be integrated at the local and national level, with emphasis on intersectoral coordination.

The effectiveness of the laws governing resources poses another problem as the laws and regulations established for the management of water and soil resources appear to be weak and ineffective. In some instances, the laws are adequate but they are not adhered to or enforced either due to lack of institutional capacity or political commitment. The knowledge base of the state of natural resources, rate of depletion, and consequent future impact is poor, and probably contributes to the weak political commitment on the parts of governments and general apathy on the part of the populace.

4.7.1 Regional Coordination

Several initiatives have been undertaken at the regional level to manage water resources. One such process initiated by the Government of Burkina Faso, with the support of DANIDA (Danish International Development Agency), brought together official delegations from 16 West African countries to form the West African Regional Action Plan for Integrated Water Resources Management (WARAP – IWRM). Begun in 1997, this regional cooperation arrangement within the Economic Community of West Africa States (ECOWAS) has proposed the establishment of a regional structure for coordination and monitoring of the West African Regional Initiatives for Integrated Water Resources Management. Some of the IWRM country initiatives identified for support include:

- GIRE (IWRM) in Burkina Faso
- Water resources management in Benin
- WRIS project for water resources monitoring in Ghana
- Establishing the Water Resources Commission in Ghana
- The sub-regional action plan for combating desertification adopted in 1999 by the environment ministers

Another regional cooperation effort for integrated management of water resources is being developed by the Global Water Partnership and its technical group, the West African Technical Advisory Committee (GWP/WATAC). Their aim is to prepare regional Programmes of Action to implement the West African Water Vision for the twenty-first century.

A sub-regional initiative, Comité Permanent Inter Etats de Lutte Contre la Sécheresse (CILSS), limited to the Sahel region, considers how to fight drought and desertification with the view to promoting food self-sufficiency in the region.

Green Cross International, with its sub-regional head in Burkina Faso, is also undertaking a basin-wide initiative with the objective to develop basin principles, agreements, and management policies in order to promote peace.

Other initiatives in the region include:

- GLOWA Volta Project on Integrated Assessment of Feedback Mechanism Between Climate Land Use, and Hydrology
- World Bank
- Agence Française de Développement
- West and Central Africa Action Plan for Abidjan Convention (WACAF)
- Land-Ocean Interactions in the Coastal Zones (LOICZ Afribasins project)
- Center for Africa Wetlands (CAW)

Two other regional initiatives have direct bearing on the Volta River Basin environment. The New Partnership for Africa's Development (NEPAD) is a comprehensive integrated framework for the socio-economic development of Africa, and contains a strong environmental component. Additionally, two basin countries (Côte d'Ivoire and Ghana) participate in the African Process. Implemented through a GEF Medium Sized Project by UNEP, the African Process has developed a series of concrete projects that effectively address problems identified as having adverse impacts on the sustainable development of the marine and coastal environment in sub-Saharan Africa. This TDA and the ensuing Strategic Action Programme draw upon the interventions developed under these two programs.

Bilateral cooperation also exists among the riparian countries for mitigating some environmental issues and problems. Such cooperation efforts include the Burkina Faso – Ghana Joint Committee for managing the water resources of the Volta Basin; Burkina Faso – Côte d'Ivoire Committee for the development of programmes for integrated management of water and cooperation in matters of the environment and forest, etc. Table 4.7-1 provides details of some of the existing bilateral cooperation efforts.

Table 4.7-1. Bilateral Cooperation Among Riparian Countries

Countries	Areas of Cooperation
	Demarcation of borders
	 Cooperation in matters of the environment and forest
Burkina Faso - Côte d'Ivoire	Harmonization of geological cartography of border zones
	Development of programmes of integrated management of
	water resources
	Transhumance and sanitation issues
	 Finalization of border demarcation
	 Fight against epidemics
Burkina Faso - Ghana	Pipeline project
	Creation of joint commission on the management of water
	in the Volta Basin
	The dam project of Noumbiel
	 Rehabilitation of transnational highways
Burkina Faso - Benin	 Transhumance and sanitary issues
	Poaching
	 Transhumance and sanitary issues
Burkina Faso - Togo	Demarcation of tripartite boundary
	 Exchange of experience in matters of soil and water
	Fight against bushfires
Burkina Faso - Mali	Protection of elephants of Gourma and the management of
	their movement
	 Fight against desertification
	• Roads

Regional institutions, such as the Economic Community of West African States (ECOWAS) and the Economic and Monetary Union of West Africa (UEMOA), all have within their purview the promotion of the integrated management of the natural resources of the region for social and economic development. At the moment, though, a coordinated framework for holistic management of the natural resources (water and land resources) and the ecosystem of the Volta Basin for sustainable development does not exist.

4.7.2 International Cooperation

The riparian countries are also party to a number of international agreements that are relevant to the protection of the environment in the Volta River Basin. All six of the Volta countries are parties to the conventions listed in the table on the next page (Table 4.7-2).

Additionally, Côte d'Ivoire, Ghana and Togo are parties to Tropical Timber Agreement 83 and Tropical Timber Agreement 94. Benin, Mali, and Togo are parties to the Convention on Conservation of Migratory Species. Finally, all of the riparian countries except Togo and Ghana are parties to the Basel Convention on Hazardous Waste.

None of the countries, however, is party to the Convention on Environmental Impact Assessment in a Transboundary Context (Espoo Convention).

Table 4.7-2. Dates of Ratification of Major International Environmental Conventions

CBD	Biological Diversity	Ramsar	Climate Change	Montreal Protocol	CITES	World Heritage	Desertification
Benin	30/06/94	24/05/00**	30/06/94	01/07/93*	28/02/84*	14/06/82	29/08/96
Burkina Faso	02/09/93	27/10/90**	02/09/93	20/07/89	13/10/89*	02/04/87	26/01/96
Côte d'Ivoire	29/11/94	27/06/96**	29/11/94	05/04/93*	21/11/94*	09/01/81	04/03/97
Ghana	29/08/94	22/06/88**	06/09/95	24/07/89	14/11/75	04/07/75	27/12/96
Mali	29/03/95	25/09/87**	28/12/94	28/10/94*	18/07/94*	05/04/77***	31/10/95
Togo	04/10/94*	04/11/95**	08/03/95	25/02/91	23/10/78	15/04/98***	04/10/95***

^{*} accession

^{**} entry into force

^{***} acceptance

5.0 Major Perceived Problems and Issues

The identification of the major perceived¹ problems and issues (MPPI) is a first step in the TDA process and it constitutes the justification for the subsequent in-depth analyses. The significance of the perceived issues and problems should be substantiated on scientific, environmental, economic, social, and cultural grounds. The MPPIs should represent the perceptions of the scientific and expert community on the priority environmental issues of the region. The experts may come from the scientific community, the NGO community, government, and other stakeholder groups.

This section of the TDA analyzes the MPPIs to identify the technical basis supporting or refuting each MPPI as a priority issue in the Volta River Basin. The intent is to provide a technical rationale for prioritizing the MPPIs, to help guide the direction of future interventions to improve the Volta River Basin environment. It will be of no use to identify major intervention efforts for an MPPI if the technical basis supporting its priority is missing. In such a case, either the MPPI can be dismissed as a non-priority issue, or just as importantly, gaps in knowledge can be identified, and filling the gaps can become the next step towards addressing that particular MPPI.

This section, therefore, relies on the literature generated in the national reports, to determine the technical basis for each MPPI. The major sources of information are listed within each individual section as well as in the References accompanying this TDA. Given the limited size of this TDA, not all information available in the region can be included in this section.

The following list of major perceived problems and issues was finalized at the second regional meeting of the national coordinators. The National Coordinators prioritized the MPPIs as is indicated in the following table. A summary analysis of each MPPI follows.

Table 5.0-1. Analysis of Prioritized Land and Water Issues

Problem/Issue	Benin	Burkina Faso	Côte d'Ivoire	Ghana	Mali	Togo	Basin Average	Rank
Land Degradation	8.5	7.5	8.5	8	10	9	8.6	1
Flooding	5.5	6	4.5	5	10	7	6.3	6
Water Scarcity	8.5	9.5	8	7	9	9	8.5	2
Growth of Aquatic Weeds	5.5	6	5	7	7	7	6.3	7
Loss of Biodiversity	7.5	7.5	8	7	9	8	7.8	4
Water Quality Degradation	6	8	7.5	6	9	8	7.4	5
Water-Borne Diseases	8	8.5	8	7	9	8	8.1	3
Coastal Erosion	6	-	-	5	_	6	5.7	8

¹ "Perceived" is used to include issues which may not have been identified or proved to be major problems as yet due to data gaps or lack of analysis or which are expected to lead to major problems in the future under prevailing conditions.

The regional prioritization indicates that land degradation, water shortage, water borne diseases and loss of biodiversity are of great concern to the riparian countries. Water quality degradation, waterweed infestation, flooding and coastal erosion are also of concern, but to a lesser degree.

Additionally, two emerging problems and issues were identified: urbanization and an increase in industrial and mining activities.

Below, each of these problems and issues is addressed from a status perspective. This is followed by a causal chain analysis that determines the primary, secondary and root causes for the problems/issues. This TDA attempts to clarify the linkages between root causes and perceived problems, to encourage interventions at this more sustainable level. Fortunately, root causes are common to a number of different perceived problems and issues, so addressing a few key root causes may have positive effects on several problems and issues (Table 5.0-2).

Table 5.0-2. Root Causes and Major Perceived Problems and Issues

Root Causes				Perceive	d Problems			
	MPPI 1	MPPI 2	MPPI 3	MPPI 4	MPPI 5	MPPI 6	MPPI 7	MPPI 8
	Land Degradation	Water Scarcity	Loss of Biodiversity	Flooding	Water-Borne Diseases	Growth of Aquatic Weeds	Coastal Erosion	Water Quality Degradation
Insufficient scientific capacity	1		√	√	√		√	
Low government priority on environment	1	√	√	\checkmark	√		√	
Abuse of power	√	√	V	√	V		√	√
Poverty	√	√	V	√	√	√	√	√
Insufficient knowledge / understanding	٧	√		√	√	√		1
Population pressure	1			√				√
Inadequate legal / regulatory basis	4	4	7	√	√	√		1
Inadequate technical infrastructure	4		7	√	√	√		
Insufficient demonstration projects	4	√		√	√		√	√
Inadequate intersectoral coordination	4	4			√			1
Insufficient economic incentives	4	V	7	√	√	√		1
Inadequate political will	√		V	√	√	√	√	√
Inadequate water basin management	4							
Insufficient regional agreements		V		√		√		1
Drought		√						
Inadequate human capacity			V					
Inadequate institutions	V	√	V	√		√		√
Inadequate technology		√	√		<u>√</u>			
Insufficient government power	√	√	√					√
Inadequate training					√			√

5.1 Land Degradation

a. <u>Status of the problem/issue</u>

The problem of land degradation in the basin encompasses soil degradation, intense erosion and desertification. As discussed in Section 3 above, the basin's population is heavily dependent upon the land resources of the region for subsistence agriculture and livestock breeding. The increasing demographic pressures have resulted in the overuse and misuse of land resources. Soil degradation, erosion, and desertification processes manifest themselves in low agricultural productivity, destruction of the soil's natural productive capacity, compacting of the soil, degradation of water quality, and loss or reduction in vegetation cover. The increased mobility of sediments also affects reservoir capacities and their useful lives.

Farming and animal husbandry are significant contributors to land degradation in the basin. Agricultural practices in the basin have in the past included crop rotation and leaving fields fallow for a period of time. With rising population, however, the fallow periods have been reduced and crop rotation declined, leading to the loss of soil fertility and less food production per unit area of cultivated land. Increasing livestock production has resulted in the loosening of soils and the degradation of vegetation, both of which exacerbate erosion.

Increased exploitation of forested areas is also a significant contributor to soil degradation and erosion. Forested areas are cut to provide additional lands for agriculture and animal husbandry, and to provide fuel. Additionally, timber resources are over-exploited in many parts of the basin. This is done to meet rising demands for foreign exchange, as well as to meet increasing domestic needs. Unfortunately, the timber exploited is not processed for higher value and thus more volume of timber is required to be exported for adequate foreign exchange receipts for the countries' socio-economic development. In the long-term, these practices are not sustainable and have detrimental effects on both land and water resources in the region.

See Figure 5.1-1 in Appendix D for a map of areas experiencing bushfires, and Figure 5.1-2 in Appendix D for a map of areas experiencing land degradation in the basin.

b. Transboundary elements

The problem of land degradation in the region has both transboundary causes and effects.

Transhumance, defined as the movement of cattle, sheep, and people across national boundaries, is common within the basin. This phenomenon is usually accompanied by reckless destruction of vegetation, watering sources, etc. The situation also creates social tension and disruption of socio-economic activities, sometimes proving fatal.

Bushfires have no respect for national boundaries and can move from one country to another country in the basin. This phenomenon of bushfire across frontiers does happen in the basin and constitutes a transboundary cause. While controlled bushfires are used to enhance the fertility of agricultural lands, many of the bushfires intentionally or unintentionally occurring in the region can quickly get out of control and burn large areas.

Deforestation occurs across frontiers, particularly where transhumance is a major problem as in the basin. The animals being moved are fed on leaves of trees illegally cut down by the herdsmen. Additionally, the pounding of the soils by the hooves of the animals renders the soil loose for erosion. Deforestation also occurs across borders when there are inadequate laws in neighboring countries. For example, people from Burkina Faso travel to Mali because the laws are less strict there.

Population pressures in countries with a weak economic base, as in the basin, induce unsustainable use of forest and land resources. The easy movement of people across national boundaries in the sub-region under the ECOWAS protocol makes population pressure a transboundary cause of the above-mentioned environmental problems in the basin.

The transboundary nature of the effects of soil degradation and erosion arise mainly in the sediment transport and degradation of water quality. Due to erosion occurring upstream, sediments are filling river channels and reservoirs, and decreasing water quality. Additionally, the transhumance of livestock occurs when new pastures must be found due to land degradation.

c. Environmental impacts

Major environmental impacts of land degradation include:

- High concentration of suspended solids
- Siltation of waterways and reservoirs
- Increased stormwater run-off
- Reduced water infiltration into soil and aquifers
- Degradation of water quality from increased use and run-off of fertilizers
- Loss of habitats and biodiversity
- Desertification
- Reduction of soil productivity, reduced animal and crop production

d. <u>Socio-economic impacts</u>

Soil degradation, intense erosion and desertification have significant socio-economic impacts in the basin. Some of these include:

- Reduction in water for irrigation and human needs
- Reduction in productivity of agricultural lands
- Reduction in productivity of pasture lands
- Decreased availability of agricultural and pasture lands
- Decreased forestry resources
- Loss of medicinal plants
- Increased competition over land resources
- Migration of populations to find fertile lands
- Decreased food security and ensuing effects on human health
- Reduction in hydroelectric power capabilities
- Increased poverty and disease

Socio-economic impacts related to land degradation are extensive, but difficult to assess. Land degradation, however, has serious consequences on the ability to produce food in the region, which in turn has serious consequences on human health and security.

e. Causal chain analysis

See Appendix B.

Major root causes include:

- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Poverty
- Insufficient knowledge/understanding
- Inadequate institutions
- Population pressure
- Inadequate legal/regulatory basis
- Inadequate technical infrastructure
- Insufficient demonstration projects
- Inadequate intersectoral coordination
- Insufficient economic incentives
- Inadequate political will
- Inadequate water basin management
- Insufficient government power

f. Sectors and stakeholders

Some of the stakeholders in the region include:

- Subsistence farmers in the basin
- Population dependent on forestry resources
- Basin population engaged in animal husbandry
- Hydroelectric power authorities and users
- Agencies and institutions responsible for environmental protection
- Companies and basin population engaged in mining activities

g. Supporting Data

Benin

Only a small amount of land is suitable for agriculture, livestock, and for dwellings in the Volta Basin of Benin. As a result, competition exists over these finite resources and the region is experiencing significant demographic pressure. This land pressure is also hindering economic development in the region.

The majority of land in the basin is owned and is passed down through families, rather than sold to outsiders. Additionally, communes remain under the control of managers who determine how lands are divided. Thus, the land tenure system remains somewhat traditional as local leaders have significant control.

Land resources in the basin are seriously threatened by anthropogenic activities, and this in turn threatens waterways. The overexploitation of the vegetation occurs as a result of overgrazing of livestock caused by the increasing density of the zone's population. The abusive use of artificial fertilizers and pesticides, the reduction of the duration of fallow periods, and other poor agricultural practices scour the land and deplete the soil's minerals. Bushfires accompanied by hard rains and strong winds further accentuate erosion and add to the sedimentation of waterways. Further, the destruction of forests and the deforestation of riverbanks exacerbate the degradation of the land and threaten the Oti River.

Table 5.1-1. Characteristics of the Zones

Agro Zones	Agro Zones Ecological Practices of Agricultural Systems		Causes
West AtacoraCotton	 Burning of biomass Farming of hollows No use of mineral manure Food crops: 	 Degradation of the soils and vegetation cover Food security No market for 	 Farming practices Demographic pressure Ferruginous soils with inadequate
Oti National Park	sorghum and millet, niébé, groundnut, fonio, voandzou, yam, maize, and rice Breeding: system of breeding based on transhumance and changing pastures	groundnut and rice Conflicts between livestock breeders and farmers	water and poor fertility except in the hollows • Lack of water sources and pasture

Burkina Faso

Land in Burkina Faso is threatened by agricultural practices, deforestation, and, in some areas, by mining activities.

In the Mouhoun Basin, land tenure is based on social stratification. It is also based on the right of collective appropriation distributed between the founders of a village and the right of temporary or permanent use of the land allotted to an individual. Individual appropriation does not exist, however, and land rights can only remain within the social group.

In the Nakanbé Basin, land tenure is related to the existing structure. The area is occupied primarily by animal herders who require a large amount of land for pasture, but the land is not used intensively. The land is collectively owned by the group, and they do not have the right to refuse an outsider use of the land if they have valid reason.

Forested areas in Burkina Faso are shrinking significantly as population pressure in the region increases. In the National Action Plan for the Fight Against Desertification (1999), it is noted that forested areas decreased by 1.26 million hectares between 1980 and 1992.

In short, the occupied surfaces in the basin are:

agriculture: 3,000,000 hectares
water reserves: 83,000 hectares
human habitats: (not estimated)

• roads: 34,000 hectares

classified forests: 788,500 hectaresFor a total of: 3,905,500 hectares.

This surface represents 22.5% of the total surface of the basin.

Côte d'Ivoire

The rural areas in the basin tend to follow the traditional system of tend tenure. At the village level, each "great family" has a field on which the members cultivate. The appropriation of the ground is thus collective, but its exploitation is individual.

Today, land and water resources are subjected to the modern system of land tenure defined by the laws of the Rural Land Code and Water Code promulgated in December 1998. These laws aim to protect the resources from overexploitation.

As in the rest of the basin, agriculture is the dominant economic activity and a significant contributor to land degradation in the Volta Basin of Côte d'Ivoire. Cotton is a main crop in the area, as well as anacarde, corn, sorghum, rice, and groundnuts.

The area is also used as pastureland to a significant extent. Herders come from Mali and Burkina Faso to use lands in Côte d'Ivoire.

Bushfires are used extensively in the region in hunting, managing pastures, preparing agricultural lands, and for other purposes. Uncontrolled bushfires contribute to land degradation.

The lands in the basin are occupied approximately in the following manner:

- 3% Infrastructure, urban areas, water, and rocky zones
- 12% State-owned land: national parks and reserves
- 75% Rural areas (50% savannah and forest, 25% cultivated)

Ghana

Land ownership within the basin is basically traditional except for areas demarcated for control by the government agencies, such as the Volta River Authority, as well as forest reserves, wildlife, and national parks. The details of traditional ownership vary from place to place. As the system vests all resources under the control of the traditional authorities. Families and individuals have both access and control of resources through birth into a particular community

or after payment of certain amounts either in kind or cash (Nyankpala Agricultural Research Station (NAES), 1989) In the northern sector of the Volta Basin, usufruct rights to land might not necessarily include rights to economic trees like the dawadawa and shea trees (NAES, 1989). While individuals and families might own lands along riverbanks, the rivers always remain communal or public property and are used as such.

Agriculture is the dominant economic activity within the Volta River Basin. As in other areas of the basin, soil is being rapidly degraded as a result of shortened fallow periods. This is especially pronounced in the northern parts of the basin

Environmental problems arising from livestock production are becoming sources of great concern. The maintenance of large herds of livestock has tended to exceed the carrying capacity of the ecosystem, particularly in the northern part of the basin where mean annual rainfall is about 1000-1200 mm. During the dry season of November to April, large herds of cattle cross from the neighboring countries to graze on the limited fodder available. This severely exposes the soil to erosion, and watersheds to rapid evaporation. The prolonged exposure of the soil renders it susceptible to erosion and reduces its regenerative capacity. In the northern parts of the basin, large tracts of arable land have become infertile and crop yields have declined tremendously.

Table 5.1-2. Erosion Hazards of the Volta Basin in Ghana

Volta Basin System	Erosion Hazard
Black Volta	 Northern Section: slight to moderate sheet erosion. South-western Section: A combination of moderate to severe sheet and gully erosion but more of the latter with areas of very severe sheet and gully erosion. SE Section: A combination of moderate to severe sheet and gully erosion but more of the latter.
White Volta	Same as in the Black Volta Basin
Daka	• Combination of sheet and gully erosion but more of the former.
Oti	• Combination of moderate to severe sheet and gully erosion but more of the latter, especially within the central and southern sections
Lower Volta	 NS – Combination of moderate to severe sheet and gully erosion, especially the southern parts. The extreme northern part is however subject to slight sheet erosion. CS – Moderate to severe sheet and gully erosion but more of the latter. SS – Slight to moderate sheet erosion within the savannah areas and severe to very severe gully erosion within the forest and highland areas. ES – Severe to very severe sheet and gully erosion but more of the latter.

As increasing populations look for additional lands to farm, deforestation often occurs. Although figures are not known for the Volta basin, nationally deforestation occurs at a rate of

2.5-5% annually in areas that are not forest reserves. Within forest reserves, deforestation occurs annually at a rate of 1.3%.

Bush burning, used to clear land for agricultural purposes, hunting, creating fire belts at the onset of the dry season, and inducing rapid re-growth of rangeland during the dry season, often results in enormous damage to vegetation, wildlife, and properties because they typically are not controlled. The risk of bushfires are highest on the grazing lands in the savannah zones of the basin where as many as 120 to 150 outbreaks can occur within a single year. Along the border areas of the savannah zone, particularly in the Oti, White Volta, and Daka Basins, the problem of bushfires is especially severe, probably as a result of the association with transhumance.

Urbanization in Ghana is another cause of land degradation in several areas within the basin that are becoming population nodes as people migrate from the rural areas to urban centres in search of a better livelihood and to escape tribal conflicts. Settlement growth in areas of the basin considered to be potential biodiversity conservation priority areas, particularly in the White Volta and Lower Volta Basin, is of great concern as important habitat is lost. Although no population statistics are available, however, it is believed that the population in designated protected areas within the basin has not changed significantly over the past decade.

Another problem associated with rapid urbanization is that infrastructure development often lags behind population growth resulting in the development of poor sanitation situations that adversely affect surface water resources. A report by EPA (2001) shows that surface water resources close to urban centres have exceptionally high fecal coliform counts.

Mining is a final cause of land degradation. Several small-scale artisanal groups carry out gold mining in areas underlain by the Birimian formation with little regard for environmental protection. As a result, their operations have led to serious degradation of the land in portions of the Black Volta and White Volta Basin. Limestone mining in the Black Volta basin and in the Lower Volta is also causing damage to land.

White Volta Basin

Predominant land use is extensive land cultivation two-to-six miles from the village on upland areas (NAES, 1993), with widespread grazing of large numbers of cattle and other livestock up to 100 cattle/km² (FAO, 1991); and compound cropping (home gardening) around the house (Wills, 1962; Adu, 1967: USAID/ADB, 1979; FAO, 1963; NAES, 1993). Estimates of land use and land cover in 1989 showed that about 50% of the land in the northeast and northern parts of the basin were in the compound and bush fallow cultivation cycle (IFAD, 1990). Farm sizes are usually less than 3 acres. Grazing lands including those obtainable under natural condition are generally poor. Annual bush burning further reduces the quality and quantity of fodder.

Extensive valley bottoms in many parts of the basin, particularly in the guinea savannah areas, have in recent years been cultivated for rice under rain-fed conditions. In the north and northeast, the best agricultural soils are derived from granites, sandstones, and greenstones. These areas remain the most densely populated.

A long period of overcrowding in the upland areas away from the valley bottoms, which had been infested with the *Onchocerciasis simulium* vector, and the intensive cultivation and grazing without proper management practices have led to widespread soil erosion and loss of fertility of the upland soils (Hunter, 1967, Samba, 1994). Outcrops of rocks, iron pan soils, as well as the scarps are usually avoided by farmers and may be uninhabited or only sparsely inhabited. Fuelwood and other wild produce gathering is widespread.

Urban land use is small and most intensive in such centres as Bolgatanga, Bawku, Wa, Navrongo, Tamale, and Tumu. Due to the decentralisation of administration to the district level, urban type land use is becoming important in some of the district capitals, especially those along major trunk roads (Walewale).

Black Volta Basin

The major land use is agriculture with food crop cultivation under extensive bush fallow. The major food crops include yam, cassava, maize, sorghum, millet, groundnuts, and beans. Animal grazing on the free range is a significant activity. Animal numbers are large in the northern and middle parts of the basin in Ghana.

In the northwest of the basin, particularly the Lawra district, lands are highly degraded both in terms of physical status and fertility levels and can hardly support meaningful crop cultivation. Vegetation has also been degraded due to the incidence of annual bushfires. This has led to seasonal human migration and great reduction in the number of livestock.

Lower Volta Basin

Current land use is short bush fallow cultivation along the immediate banks of the river, and less intensive bush fallow cultivation elsewhere. Animal grazing is common while the lakeshores are extensively settled by fishing families. Charcoal burning involving the cutting of wood has become an extensive economic activity in the southern dry forest and transitional environments (e.g., various parts of the Afram sub-basin.)

The Afram plains and other areas in the south have been the focus of increasing settlement and agricultural development since the 1960s, having been generally thinly populated in the past as part of the empty "middle belt" (Dickson and Benneh, 1987). The forest and transitional areas are intensively farmed with cocoa, coffee, plantain, cocoyam, cassava, oil palm, and maize on small bush fallow plots. A large modern commercial farm at Ejura specialises in maize production. Some timber extraction takes place in these areas.

Recent developments, particularly below the Akosombo Dam, include irrigated rice, sugar, and vegetable cultivation in the areas immediately adjoining the Volta River. The construction of the Akosombo Dam has reduced the annual flooding in the Lower Volta lands.

The areas around the coastal lagoons, such as the Songhor, are used for salt mining. Urban land use is limited to a few towns including Kpandu, Kwamekrom, Akuse Sogakpe, and Ada-Foah.

Oti Basin

Current land use and land cover are extensive bush fallow cultivation and grazing with tree savannah regrowth and small patches of reserved forest areas on the hills in the southeast. The main crops that are grown in the basin include yams, guinea corn, maize, rice, millet, and groundnuts.

Fishing is common along the river while grazing, as in other parts of the savannah, is commonly practiced. Settlements within the basin are small.

Daka Basin

The predominant land use is bush fallow cultivation of yams, maize, and guinea corn with free grazing animals. A recent land use problem within the greater part of the Volta basin especially in Black Volta, White Volta, Afram, Dakar, and Oti sub-basins is the activity of alien herdsmen who graze their large herds of cattle indiscriminately, leading to widespread destruction of vegetation and even crop farms. In some cases bushfires are set to hasten to re-growth of fresh vegetation leading to high rates of soil erosion and loss of soil productivity.

Mali

Land in Mali officially belongs to the state. This ownership, however, does not preclude the traditional authority, which manages land ownership according to the following criteria:

- The water and land belong to the head of the land (first occupants and their descendants). This title can be passed down through the family.
- These grounds can then be yielded, lent, pawned or sold to a third party.
- Village leaders play an important role in resolving land disputes.

Approximately 80% of the land in the basin is used for agriculture, livestock, or dwellings. The high population density in the region places enormous pressure on the land. There is competition between the livestock breeders and the farmers for scarce land and water resources. Resulting in part from the increasing population pressure on the land, agricultural practices are not sustainable. Lands are no longer allowed to lie fallow for a sufficient amount of time before they are replanted.

The basin of the Sourou River is considered to be the granary of the country, but poor agricultural practices have steadily degraded the land. The lands are now no longer very fertile and are prone to wind erosion. The degradation of the soil in Mali has resulted in a decline in production from 4 to 20% in the sahel zone and 8 to 20% in the soudan zone.

There is a great deal of competition for resources between those engaged in agriculture and those raising livestock. The droughts in the northern region of Mali have resulted in livestock herders migrating into the Sourou region to find water. This transhumance results in significant destruction of the forests of Samori.

Togo

In Togo, the land resources are governed by a combination of local and tribal leaders and the national government.

Degradation of the land in Togo results from a variety of factors. First, trees are harvested at an unsustainable rate in some areas as the demand for wood has increased. This increases erosion and desertification as the land cover is removed. Second, poor agricultural practices, such as the misuse or overuse of pesticides and fertilizers, have damaged soil resources. Finally, overgrazing of the land further exacerbates the problems of erosion and desertification.

Forest resources in Togo have experienced extensive degradation in recent decades due to population increase, unsustainable cutting of trees for firewood and charcoal, unsustainable cutting of sawlogs, clearing for agricultural use, and bushfires. The forests of the Volta Basin provide more than half of the national production of sawlog, and during the political crisis of the 1990s, much illegal cutting of forests took place. At the national level, it is estimated that forest cover is degraded at the rate of 15,000 ha/year.

While there are significant protected areas in Togo, these have been threatened by encroachment from those populations living around the reserves. In 1992, a national commission was formed to examine the areas facing the greatest threats, which suggested turning towards participatory management of protected areas.

Since 1970 when coffee and cacao trees and cotton production were introduced into the region, vegetation cover in the region has changed. During that period, there was significant immigration into the region as people came to grow these products. Considerable amounts of land were cleared in order to make way for agriculture and livestock production. The agricultural practices, including shortened fallow periods, used in the region often result in land degradation. The following graph shows that the areas under cultivation will continue to increase over the next decade:

Table 5.1-3. Rate of Occupation of Cultivable Land in the Basin in Togo (1,708,800 ha)

Years	Cultivable Area (ha)	Cultivated Area (ha)	Rate in %
1990	1,456,188	264,030	15.45
2000	1,291,759	434,014	25.39
2010	1,087,310	646,784	37.85
2020	782,632	963,862	56.4
2025	578,179	1,176, 637	68.85

Source : Projection à partir des données des Recensements Nationaux de l'Agriculture (1972, 1982, 1996 – DESA)

Livestock are also taking a significant toll on soil productivity in the region. Although there are little data on the specific effects of livestock, it is clear that they are negatively influencing the area.

The areas that have experienced the most severe degradation include the Savannah and Kara region. The areas of Plateau (Danyi), the Central region (Fazao), Kara (Kantè), and Savannah (Dapaong) have experienced strong degradation. The areas of Plateau (Danyi), Power Station, and of Kara experienced average degradation. The zones with weak degradation extend around

the Togo Mountains, in the Plateau area (Danyi and Wawa), in the Savannah area (Mandouri), and Kara (National Park of Kéran).

Table 5.1-4.	Evolution of Various	Vegetation Forn	nations in Tog	o (1979-1991)
		, 0500000000000000000000000000000000000		· (

Vogototion	Area (Variation in % of	
Vegetation	1979	1991	the area
- Dense forests	2931	1264	- 56 %
- Mountainous forests	863	525	- 39 %
- Dry dense forests	677	315	- 53 %
- Regrown forests	1159	615	- 47 %
- Savannahs with trees	12922	6048	- 53 %
- Shrub savannahs	5138	2720	- 47 %
- Agriculture zones and others	1840	1944	+ 5,6 %

In the area of strongly degraded savannah, the soil erosion was evaluated in 1969 to be between 1,500 and 2,000 tons per km² annually. The prefecture of Oti has records from the same time period showing from 600 to 1,500 tons per km². These figures can be multiplied by as much as four or six times to account for the current level of degradation (Kpongou, 1994).

The zones with weaker degradation are currently threatened by the phenomenon of savannisation and from impoverishment of the soil due to the disappearance of forests.

h. Data and information gaps

While the causes and effects of land degradation have been described well, supporting data has been provided only sporadically and will need to be augmented in the Final TDA. For many countries, information has not been provided on the areas that are experiencing the most severe degradation, the amount of soil lost to erosion annually, and rates of deforestation and desertification. Nor has a quantification of the loss of productivity of lands been provided for all countries. Additionally, information on demand for land resources in the future has not been given, except in the case of Togo.

5.2 Water Scarcity

a. <u>Status of the problem/issue</u>

As is outlined in the Water Demand Section above, the water resources in the basin do not currently meet the needs of the population. As the basin population may increase by as much as 80% over the next 25 years, water resources are going to become even more scarce. This scarcity is likely to be even further exacerbated by decreased availability of water resources due to climatic and anthropogenic factors.

Changes in the region's climate, largely perceived to result from the emission of greenhouse gases and changes in the hydrological cycle caused by other anthropogenic factors, have and will continue to play a critical role in determining the availability of water resources in the region. Water scarcity arises largely as a result of diminishing precipitation, reduction in river flows, falling water tables, and an increase in the amount of evapotranspiration. Over the past two

decades the basin has seen a reduction in the amount of precipitation and river flows (Gyau-Boakye and Tumbulto, 2000). Lowering of the water tables has also been observed in large parts of the basin. Evidence of a rise in temperatures in the White Volta Basin over a thirty-year period has emerged during a study of climate change impact on water resources (Opoku-Ankomah, 2000).

Human activity in the region also plays a critical role in the availability of water resources. For example, the removal of vegetative cover from land surfaces can reduce infiltration of rainwater to recharge the aquifer system. Thus, stormwater peaks are enhanced while low flows or dry season flows are much reduced. This latter situation can create problems of water scarcity for those who depend on such water resources (i.e., instream flows without adequate storage). Massive deforestation has occurred in the basin and if appropriate measures such as aforestation are not embarked upon, the situation will create drying up of streams and rivers; the use of water resources will therefore not be sustainable.

Reservoirs with large surface areas and shallow depths created for irrigation or hydropower generation have the potential to lose a large amount of water to evaporation. A number of small reservoirs, whose precise number and areas are unknown (more than 400 exist in Burkina Faso alone), have been created in the basin and their losses of water to evaporation cannot be accurately estimated. Continuing construction of these reservoirs into the future without adequate planning and control will lead to the unsustainable use of surface water resources in the basin.

The overuse and misuse of water resources in the region also decreases the availability of water. In the water resources sector, an aspect of over-exploitation in the basin occurs through the excessive pumping of groundwater without due regard to the recharge characteristics of the aquifer system. This situation leads to lack of water during the dry season when water availability is scarce as in the drier parts of the basin in or near the Sahel Zone. Groundwater over-exploitation can lead to saltwater intrusion in the southern parts of the basin near the Gulf of Guinea Coast.

The inefficient use of water resources in the region has exacerbated the problem of scarcity. For example, flooding is the most common irrigation practice in the basin. This approach is very inefficient, however, as it results in water losses through evaporation and deep seepage. More efficient types, such as sprinklers and drip irrigation, may have to be introduced to cut down the water usage.

Water supply systems for domestic and industrial uses have large transmission losses due to leakages, which could be as high as 50%. The expansion of water supply systems for domestic/industrial use does not always match the water demands. The limitation in expansion is due to unavailable financial resources.

While each of the countries forecasts increased demand for water over the next decades, the trends in water use pattern among some of the riparian countries are quite different. For example, there has been a rapid expansion of irrigation in the last 15 years in Burkina Faso of about 934%, while Ghana only experienced an expansion of 95% (Andreini et al., 2002). Ghana,

on the other hand, plans to expand its hydropower generation by constructing the Bui Dam. Thus Burkina Faso, an upstream, agriculturally-oriented country hopes to develop the country's irrigation potential while Ghana, downstream, aims to develop use of hydropower. The trends in water use patterns can potentially generate conflict if the resources are not managed in an integrated fashion.

Please see Figure 5.2-1 in Appendix D for a map of areas showing water shortages in the Volta River Basin.

b. Transboundary elements

Many of the causes and effects of water scarcity are transboundary in nature as water resources are shared among the six countries in the Volta River Basin.

The emission of greenhouse gases in the riparian countries of the basin will be far less than the carbon sinks. Thus the cause of climate change to water scarcity may come completely from outside the basin.

The drying up of streams in the upper sub-catchment of the basin can induce drying up or reduction of flows in the downstream rivers in other countries. Streams upstream can dry up as a result of human induced actions such as deforestation of the headwaters and the forest gallery along the river channels. Thus, altering land surfaces and stream flows in such a way that results in the drying up of streams is a transboundary issue.

Changes of land cover and poor precipitation reduce recharge of aquifer systems. In the basin, some of the scarce aquifers are shared among the riparian countries and human activities in the recharge zone can be a transboundary problem. Also, over-exploitation of groundwater resources through poor water resources development and planning can also create transboundary causes to water scarcity.

Impoundments and reservoirs lose water through evaporation; the larger the surface area of the reservoir, the greater the evaporation. Reservoir systems constructed with large surface areas and shallow depths because of lack of suitable topography can potentially lose large amounts of water and create water deficits downstream.

The effects of water scarcity can also be of a transboundary nature. When there is inadequate water for hydroelectric generation, electricity cannot be exported to those countries in need in the basin, resulting in economic loss. Inadequate water supplies for people and livestock can induce migration across boundaries in search of water resources.

c. Environmental impacts

Major environmental impacts of water scarcity include:

- Loss of biodiversity, including modification or destruction of habitats
- Loss of productivity of soils
- Reduction of fisheries resources
- Reduction in groundwater

d. Socio-economic impacts

The socio-economic impacts of water scarcity are immense. Some of these include:

- Reduction in agricultural production
- Shortage of drinking water
- Increased cost of alternative water supplies
- Decline in drinking water quality
- Effects on human health
- Decrease in forestry resources
- Decrease in animal husbandry
- Reduction in hydroelectric generation
- Increased costs of electricity
- Migration/transhumance
- Increased poverty and disease

The effects and symptoms of this water scarcity are the drying up of rivers that had hitherto been perennial during the dry seasons, women and children walking long distances to fetch water, and people using polluted sources. Other major effects on some of the economies could be reduction in hydropower generation with resultant power curtailment for industrial activities.

e. <u>Causal chain analysis</u>

See Appendix B.

Major root causes include:

- Inadequate technology
- Drought
- Low government priority on environment
- Abuse of power
- Poverty
- Insufficient demonstration projects
- Inadequate legal/regulatory basis
- Insufficient economic incentives
- Inadequate intersectoral coordination
- Insufficient regional agreements
- Insufficient knowledge/understanding
- Inadequate institutions
- Insufficient government power

f. Sectors and stakeholders

Some stakeholders include:

- Population of the basin dependent on water resources for drinking water, agriculture, and animal husbandry
- Population of the basin dependent on forestry resources
- Hydroelectric energy authorities and users
- Government institutions and authorities responsible for water management

g. Supporting data

Benin

The average annual rainfall in the Oti River Basin in Benin is approximately 1100 mm. In normal years, flows are around 58.6 m^3/s , which is equivalent to an annual flow volume of approximately 1.85 x 10^9m^3 .

Estimation of groundwater resources in the Oti Basin is difficult since these resources are almost inseparable from the groundwater resources of the Niger basin in Benin. The two basins together have a potential recharge of about $2.5 \times 10^9 \text{m}^3$ per year.

Burkina Faso

The Volta Basin in Burkina Faso is comprised of two main sub-basins: Mouhoun (Black Volta) and Nakanbé (White Volta). Mean annual rainfall in the sub-basins varies from approximately 900 mm to less than 600 mm. Over the past forty years, the precipitation patterns have been of increased dryness, especially between 1970 and 1980. While rainfall increased between 1985 and 1995, the last decades are still marked by the following trends: decrease in river flow, decreased availability of groundwater, the drying up of source waters, and degradation of vegetation cover.

The surface water resources of the basin are made up of stream flows and water in reservoirs. Table 5.2-1 illustrates the distribution of the available surface water resources.

Table 5.2-1. Potential Surface Water Resources of the Volta Basin in Burkina Faso

Sub-basin	Annual Flow Volume (x 10 ⁹ m ³)	Volume in Reservoirs (x 10 ⁹ m³)	Potential in the Basin (x 10 ⁹ m ³)
Mouhoun (Black Volta	2.64	0.29	2.75
Nakambé (White Volta)	2.44	2.20	3.32
Total	5.08	2.49	6.07

Source: Etat des lieux des resources en eau et de leur cadre de gestion

The estimation of groundwater resources is not very accurate due to the unavailability of data. The total adopted value for the entire basin in Burkina Faso is approximately $20.8 \times 10^9 \,\mathrm{m}^3$.

The document on Strategies with Regard to Water evaluated the theoretical availability of the renewable resources to be $1,750 \text{ m}^3/\text{yr/person}$ for the entire country, with the threshold of shortage usually fixed at $1,000 \text{ m}^3/\text{yr/person}$.

In the Volta Basin, according to new estimates, however, there will be available only 3.25 billion m^3 in a typical year and 1.54 billion m^3 in a dry year for a population of 8 million persons, which gives 406 m^3 /yr/person and 193 m^3 /yr/person, respectively. This volume is indicative of severe water shortages.

Côte d'Ivoire

The lack of hydrometeorological, hydrogeologic, hydroclimatic, water quality, and sediment transport data for the Black Volta Basin makes it difficult to accurately evaluate the surface and subsoil waters in the area.

Surface water resources

Average annual rainfall over the basin is approximately 1000 mm. The surface water resources derived from the Black Volta are about $0.788 \times 10^9 \text{m}^3/\text{yr}$.

There are 43 dams established in the basin, with a storage capacity of 3 million m³.

Groundwater resources

From drilling undertaken in the basin, the following estimates have been given for the availability of groundwater resources:

- The chances of success for achieving a flow of 0.7m³/h is between 65 and 80% for a depth for a depth of 65 to 45 meters.
- The potential flow lies between 2 and 5 m³/h for the withdrawal zone of 21 meters.
- The index of contribution: annual average effective rain is 150 to 325 mm/yr (Peff), providing the local reserve between 150 and 225 million m³/km².

With regard to the replenishment of the underground layer, the results of the study made by F. Lelong in 1966 show replenishment expressed as a percentage for:

- Annual rainfall of 1,200 mm: 24% of this replenishes the groundwater layer.
- Annual rainfall of 1,000 mm: 17% of this replenishes the groundwater layer.

In short, the water resources are estimated to be:

- Annual average rainfall: 1000 mm; or 12,500,000,000 m³
- Annual historical river discharge: 63 mm; or 787,500,000 m³
- Recharge of the groundwater: 170 mm; or 2,125,000,000 m³
- Total available: 2,912,500,000 m³

This is far short of projected increased demand over the next several decades, indicating that there will be an increased scarcity of water.

Ghana

All the tributaries of the Volta River enter Ghana and converge in the Lower Volta Basin. Rainfall in the basin varies from approximately 1000 mm to 1600 mm.

The surface water resources received annually from outside and within the country are shown in Table 5.2-2.

Table 5.2-2. Water Resources of the Volta River in Ghana

	River	Mean Flows (m³/s)	Mean Annual Flow (x 10 ⁹ m ³)
Water resources that	White Volta	110.7	3.49
originate from outside	Black Volta	103.75	3.27
the country	Oti	276.4	8.72
	SUB-TOTAL	490.85	15.49
	White Volta	192.57	6.08
Water resources from	Black Volta	139.55	4.40
within the country	Oti	89.1	2.81
	Lower Volta	289	9.12
	SUB-TOTAL	710.22	22.41
	TOTAL FLOW	1,201.07	37.90

Source: (Opoku-Ankomah, 1998)

The flows into the Lower Volta were based on specific yield of the catchment and may not be very accurate. Approximately 54% of the flows of the transboundary tributary originate from outside the country. An earlier estimation by Nathan Consortium (1970) puts this figure around 70%. This may be explained by the reduction of rainfall magnitudes in the Sahel in the high latitudes of West Africa since the 1970s (Nicholson, 1983). Further, in the case of the Oti River, approximately 76% of the water resources originate from outside the country. The total mean annual flow of the entire river system is estimated to be 37.9 billion m³.

The groundwater resources, as in the rest of the basin, are controlled by secondary porosities. Aquifers are semi-confined or confined. Yields from boreholes in the country are from about $0.1 \, \text{m}^3/\text{h}$ to $36 \, \text{m}^3/\text{h}$.

The minimum recharge for the sub-basins within the Volta Basin and replenishable groundwater capacities are presented in Table 5.2-3.

Table 5.2-3. Minimum Recharge and Replenishable Groundwater Capacities

Sub-Basin	Minimum Recharge (mm)	Replenishable Groundwater Capacities (x 10 ⁹ m ³)
White Volta	151	6.6
Black Volta	205	3.4
Oti	175	3.7
Lower Volta	205	8.2

Interpretation of the information given in the foregoing discussion as to water resources availability should be handled with care as the figures given are annual figures and do not reveal

the seasonal deficits in water resources in the basin. Most riparian countries have deficits of runoff during the greater part of the year. Inter-annual variations of rainfall and run-off are characterized by severe droughts and water shortages.

Mali

Very little data are available on water resources in Mali. Water has been in such short supply in the region that the first priority has been to provide water to the inhabitants, while research was overlooked.

The Sourou River is the main source of surface water in the region. Annual rainfall is approximately 400 mm and surface flows are only ephemeral as streams dry up after 3 to 5 months of the rainfall season. Discharge measurements are limited and available data could not allow for quantitative assessment of surface water resources. However, about 52% of the villages in the region depend on surface water (i.e., streams, lakes, ponds, etc.) for short periods.

The level of water of the Sourou River in Mali increased significantly after a dam was constructed in Burkina Faso in 1989. The valley of Sourou now forms the northern end of the reservoir created by the dam.

The only other sources of surface water are small temporary ponds that appear in Seno during the winter. There are 12 ponds in the southern zone (Dioura) and 9 others in the District of Bankass. They dry up, however, after 3 to 5 months.

The chemical and bacteriological quality of the surface water is generally bad, in large part due to fecal contamination. The polluted water is a source of water-borne diseases.

While those living near surface water resources must depend on groundwater during the dry season, a significant amount of the population must depend on groundwater year-round as they live far from the Sourou River. The depth of the groundwater is estimated to be between 35 and 85m in Seno and 35 and 65m in Samori (PIRT, 1983). Thus, building a reliable well is difficult and expensive.

The number of wells in the region are:

Bankass

343 traditional wells30 improved wells46 truck farming traditional wells

Koro

633 traditional wells 68 improved wells 154 truck farming traditional wells. Nitrates are frequently found in subsoil waters, but at levels below WHO standards for water consumption. Iron has been found at levels above WHO standards. In general, water quality is neutral to basic.

Togo

Togo's water shortage is projected to be exacerbated by the effects of climate change. It is estimated that by 2025, average monthly temperatures will rise from South to North 0.48 to 0.58%, which is 0.8 to 1° C over 1995 levels. Precipitation is expected to decrease 0.1 to 0.3%.

The northern section of the basin receives between 1000 and 1200 mm of rainfall annually, while the southwest region receives from 1000 to 1500 mm per year.

Surface water resources estimated for the basin are about $4.71 \times 10^9 \text{m}^3$ per year. Most streams dry up during the dry seasons due to high evapo-transpiration. In the northern part of the basin, the Oti, enlarged by its tributaries, and Mô exceed $100 \text{ m}^3/\text{s}$ in the Savannah region and $100 \text{ to } 300 \text{ m}^3/\text{s}$ in the area of Kara. The extreme variability of the flows between the wet and dry seasons makes depending on the surface water for irrigation difficult. In the southwestern section of the basin, the Menou, Wawa, and Danyi have much smaller flows of between 1 and 6 m^3/s , but these are perennial flows as the climate is wetter.

The groundwater resources are estimated to be $4.38 \times 10^9 \text{m}^3$ per year. Groundwater, as in the rest of the basin, is found in discontinuous aquifers.

h. Data and information gaps

Although there are a number of international projects to evaluate the region's water resources underway, such as the DHI Water and Environment projects, the information on this topic provided by some countries was insufficient. While information on projected demand for water is quite extensive, data on currently available surface and groundwater resources are not as comprehensive. In particular, the Final TDA will need to include additional data on groundwater resources and more extensive data on which areas are experiencing shortages.

5.3 Loss of Biodiversity

a. Status of the problem/issue

The Volta River Basin has a globally significant biodiversity and diverse habitats that are threatened by anthropogenic sources. Perhaps the greatest threat comes from the clearing of land for farming and animal husbandry, as well as from forestry practices. Some farmers use bushfires for land preparation, re-growth of vegetation for cattle grazing, and for hunting purposes, etc., at the expense of the environment. This practice enhances the destruction of habitats, loss of biodiversity, as well as deterioration of biotic resources.

Further, the creation of dams or impoundments can alter hydrological regimes of rivers and streams, and thus alter habitats. Downstream sections of a river below a dam that had been flooded occasionally could completely lose these floodwaters, resulting in the curtailment of growth of organisms associated with these events.

Unsustainable fishing practices in the region result in a reduction in the fisheries. In some areas, destructive fishing gear has been introduced. An interim inventory of biodiversity points to the loss of some fishery species in the basin. This situation is a threat to the food security of the region. Additionally, exotic species have been introduced through fishing practices and as ornamental plants and have caused the destruction of biodiversity.

Excessive hunting and poaching of wildlife in protected areas also occurs and has pushed some species to the brink of extinction. The strengthening of national institutions charged with the responsibility of managing these resources and the enforcement of existing rules and regulations for managing wildlife are required to halt the unsustainable exploitation of these natural resources.

See Figure 5.3-1 in Appendix D for a map of the areas experiencing biodiversity loss in the Volta River Basin.

b. Transboundary elements

The loss of biodiversity and destruction of habitats has transboundary causes and effects. Some of these include:

- Destruction of habitats through bushfires and deforestation occur across borders
- Some forest reserves and protected areas are located at country borders and are vulnerable to poaching and other cross border activities
- Damming of rivers upstream affects the freshwater quality and resources downstream
- Damming of rivers upstream affects the floodplain downstream
- Damming of rivers alters the sediment balance
- Damage to transboundary ecosystems

c. Environmental impacts

Some of the environmental effects of the destruction of habitats and the loss of biodiversity include:

- Loss of natural productivity
- Reduction of fish stocks and other species
- Loss of globally significant biodiversity
- Degradation of forest ecosystems
- Degradation of river ecosystems
- Changes to the hydrological regimes
- Increased delta and coastal erosion

d. <u>Socio-economic impacts</u>

The destruction of habitats by a rapidly expanding basin population leads to a reduction in biotic resources and threatened food security. Some of the socio-economic impacts include:

- Reduction in income from fisheries and hunting
- Changes in employment
- Loss of aesthetic value
- Loss of income from tourism industry
- Loss of cultural heritage

• Loss of use of medicinal plants

e. Causal chain analysis

See Appendix B.

Major root causes include:

- Inadequate national and regional legal/regulatory basis
- Poverty
- Inadequate technical infrastructure
- Inadequate political will
- Inadequate human capacity
- Inadequate institutions
- Inadequate scientific capacity
- Low government priority on environment
- Abuse of power
- Insufficient economic incentives
- Insufficient government power

f. Sectors and stakeholders

Some of the stakeholders associated with the destruction of habitats and loss of biodiversity include:

- Basin population engaged in farming and animal husbandry
- Basin population engaged in fishing
- Institutions responsible for managing protected areas
- Tourism industry
- Hydroelectric power authorities

g. Supporting Data

Benin

Poaching is prevalent in Benin's protected areas. During the dry season, fauna gather in the vicinity of the Oti River. Poachers from Benin, Ghana, and Burkina Faso take advantage of this situation by camping on the banks of the river and then easily preying on the large wild animals.

The poaching in the reserves and parks constitutes the principal problem of the Oti National Park. The park's perimeter is not well controlled in part because the park borders both Burkina Faso and Togo. These zones facilitate the penetration of the park by poachers, resulting in the removal of many species. When park inspections occur, confrontations often take place between poachers and foresters. This results in the loss of human life and the reduction in tourist income.

The fundamental problem now lies in the manner of reconciling the respect of the integrity of the protected areas and the increasing pressure exerted on them. Several aspects must be considered with regard to the impacts on the protected areas. These areas face both internal pressures from the visitors to the parks who do sport hunting and often leave garbage behind, and external pressures from the neighboring populations.

Other threats to habitats and biodiversity in Benin include damage from the practice of bushfires, clearing of the land, and the removal of trees. Additionally, human activities threaten the river ecosystems from the use of artificial fertilizers on farmland that run-off into the waterways.

Burkina Faso

As Table 5.3-1 shows, there are a number of threatened and vulnerable species in Burkina Faso. The results show that the mammal Oryx has disappeared from that country. The ostrich is also near disappearance.

Table 5.3-1. Status of Species in Burkina Faso

Туре	Extinct	On the Way to Disappearance	Threatened	Vulnerable	Total
Mammal	Oryx		PantherCheetahElephant	DamalisqueGazelle rufifronGazelle dorcasLycaon	10
Birds		• Ostrich	 Calao d'abyssini 	Grue couronnée	3
Reptiles			CrocodilePython		2
Fish				• Protoptère (anguille)	1
Woody Plants		• Celtis integrifoli a Adenium obesum	 Acacia senegal Dalbergia melanoxyl on Pterocarpus lucens Vitex doniana Ximenia americana 	 Adansonia digitata Bombax costatum Ceiba pentandra Anogeissus leiocarpus Khaya senegalensis Prosopis africana Parkia biglobosa Butyrospermum Paradoxum 	15

Source: National Monograph on biological diversity

Threats to biodiversity can be categorized as climatic and anthropogenic. The table below outlines some of these threats.

Table 5.3-2. Specific Threats to Biodiversity

Threats to Flora	Threats to Fauna
Overexploitation of vegetation	Poaching, as well as the insecurity of the agents of the protection of fauna
Overgrazing and trampling of the herbaceous layer by cattle	Overexploitation of resources by hunting and halieutics
Uncontrolled agro-pastoral practices	Genetic erosion through the abandonment of local breeds
Introduction of invasive species, which prevent the development of other species in the long run (water hyacinth)	Adoption of new breeds of larger size (sheep, goats, hens) to the detriment of local breeds
The itinerant culture that results in clearing new lands when old ones become less productive	The absence of domestic animal gene banks
Water pollution from pesticides that kill certain aquatic plants	Repression or disappearance of water fauna due to the reduction in the quantity of water
The excessive cutting of wood	Destruction of habitats
Genetic erosion following the abandonment of local varieties	Changing of the water levels, siltation
Changing of the water levels, siltation	Water pollution following the use of pesticides resulting in the death of certain aquatic species

Côte d'Ivoire

The Comoé National Park has seen significant biodiversity loss in recent decades, as is outlined in Table 5.3-2. The species that were the most widespread in the beginning experienced the most significant reductions, some greater than 90%. Some species such as the Cobe de Buffon and the Guib are water dependent and remain close to waterways. This has made them vulnerable to poachers who would usually set up camp at the edge of a river.

The majority of the species experienced losses greater than 75% in only 20 years. The Bubale, Hippotraque and Buffalo proved to be the exception, however. Their ability to survive could be related to the fact that they are less dependent on water than other species and this allowed them to better escape poachers.

Table 5.3-3. Estimation of the Population Change of the Ungulates in the Comoé National Park from 1978-1998 (according to Fischer, 1999)

Species		Variation				
Species	1978 1987 1995		1995	1998	1998/1978	
Cobe de Buffon	50,000	55,700	9,400	4,400	-91%	
Ourébi	26,000	31,000	4,300	2,200	-92%	
Bubale	13,000	18,300	5,400	5,200	-60%	
Céphalophe à flancs roux	15,000	5,500	5,200	1,600	-89%	
Guib harnaché	10,000	3,100	2,600	900	-91%	

Species		Variation			
Species	1978	1987	1995	1998	1998/1978
Céphalophe bleu	6,000	900 ?	2,300	500	-92%
Phacochère	4,900	5,200	2,500	700	-86%
Céphalophe de Grimm	3,600	4,000	1,000	300	-92%
Buffalo	3,000	900 ?	8,200	4,600	+53%
Hippotrague	1,700	1,100	1,200	500	-71%
Cobe defassa	1,200	900	400	300	-75%
Total 11 species	134,400	126,600	42,500	21,200	-84%
Density per km ²	11.7	11.0	3.7	1.8	

[&]quot;Plan of installation of the National Park of Comoé and of development of its periphery 2002-2011".

Ghana

Several areas within the basin are becoming population nodes as people migrate from the rural areas to urban centres in search of a better livelihood and to escape tribal conflicts. The growth of settlements in areas of the basin, which are considered potential biodiversity conservation priority areas, particularly in the White Volta and Lower Volta basin, is of great concern. As a result of urban growth, habitats that could serve to conserve wildlife of international significance are being lost and this is leading to the decimation of biodiversity. Probably the greatest threat to biodiversity is water pollution arising from the urban wastewater. Most urban areas close to wetlands and discharge untreated or poorly treated domestic waste into these wetlands, thereby harming aquatic biodiversity. Interestingly, populations in areas within the basin that have been designated as protected areas have not experienced any significant change over the past decade.

Mali

In Seno, more than 90% of the lands are occupied by settlements or agriculture, leaving little room for biodiversity. Vegetation is sparse and reproduces with difficulty. Fauna are rare and are rapidly disappearing due to habitat loss and poaching. Aquatic species do not flourish due to the temporary nature of the surface water.

In Samori, however, there is strong biological diversity. The vast forests support a great many flora species. Avifauna dominates the forests, especially guinea fowls and ducks. Additionally, gazelles, hyenas, jackals, and hares can be found in the region. The Sourou River supports several fish species and is important habitat for hippopotamuses.

Togo

The uncontrolled practice of bushfires, deforestation, pollution, poaching, and the variations of river flows are resulting in the degradation of habitat and loss of biodiversity in Togo. Political and social upheaval in the early 1990s resulted in the invasion of national parks and reserves by neighboring populations. This caused significant destruction of the country's biodiversity.

h. Data and information gaps

Significant information, much of which can be found in Section 2.3, was provided on the endangered species in the basin, particularly terrestrial fauna. Little information was provided on aquatic species, however. Additionally, wetlands and aquatic habitats were either not discussed or were not elaborated upon. These areas will need to be expanded in the Final TDA.

5.4 Flooding

a. <u>Status of the problem/issue</u>

Flooding is another problem observed in the Volta River Basin. Extremely high rainfall rates and the creation of uncoordinated dams without appropriate management practices are normally blamed for the flooding. Land-use conversions can also exacerbate the problem. Soils with significantly reduced vegetation cover that are exposed to atmospheric elements have little infiltration capacities to reduce stormwater run-off. These floods affect the environment of the basin, but also cause significant loss of human life and economic loss.

See Figure 5.4-1 in Appendix D for a map of areas in the basin prone to flooding.

b. Transboundary elements

Flooding has a transboundary cause in the basin as it results from uncontrolled dam releases from the upper part of the basin, e.g., from Burkina Faso to Ghana on the White Volta, from Burkina Faso to Togo on the Oualé, and also from Burkina Faso to Mali on the Sorou River as the backwater effect from the management of the Léry dam.

Flooding also causes transboundary migration of people escaping rising waters.

c. <u>Environmental impacts</u>

Some of the environmental impacts of flooding include:

- Inundation of lands
- Erosion
- Loss of habitat
- Degradation of water quality

d. <u>Socio-economic impacts</u>

Where unforeseen flooding occurs, the socio-economic impacts can be devastating. Some of the impacts that have been observed in parts of the basin are:

- Loss of human life
- Loss of infrastructure
- Water-borne diseases
- Effects on human health
- Loss of agricultural productivity
- Migration
- Disruption of transportation infrastructure
- Increased poverty

e. <u>Causal chain analysis</u>

See Appendix B.

Major root causes include:

- Insufficient regional agreements on water
- Insufficient scientific capacity
- Low government priority on environment

- Abuse of power
- Poverty
- Insufficient economic incentives
- Inadequate technical infrastructure
- Insufficient knowledge/understanding
- Inadequate legal/regulatory basis
- Inadequate political will
- Inadequate institutions
- Insufficient government power
- Insufficient demonstration projects

f. Sectors and stakeholders

Some of the stakeholders include:

- Hydroelectric dam authorities
- Residents of the affected area

g. Supporting Data

Benin

The surface water causes the scouring of the lands already weakened by harmful cultivation methods (bushfire, misuse of manure, etc.) and collects in areas to form great marshy zones. These "dead" zones (Béréna in Wama language) serve as true obstacles to accessing neighboring areas and make roads impassable from July to October.

Additionally, these marshy zones are larval lodgings of various insects causing diseases such as malaria, river blindness, and diarrhea.

The large number of temporary rivers in the basin makes the practice of cultivating riverbeds possible. This is dangerous, however, as floods can come quickly from upstream. Lives and harvests have been lost as result of these practices.

Burkina Faso

Flooding occurs often in Burkina Faso. In recent years, the worst floods were experienced I 1988, 1992, 1994, and 1999. Only the provinces of Zondoma on Nakanbé are spared floods.

Table 5.4-1 Localization and Assessment of Floods In Burkina Faso

Year	Provinces	Localities	Persons Affected	Loss / Damage
	Bam	Sect. 4 and 6	966	
	Comoe	T.Dassouri	993	
		Banfora	1,192	
1000		Satiri	11,223	Houses Fields and Doultmy
1988 Kadiogo	Sect.8,17,	-	Houses, Fields, and Poultry	
	Kenedougou	22	1,443	
	Namentenga	N' Dorola	450	
	Oubritenga	Nagbingou	344	

Year	Provinces	Localities	Persons Affected	Loss / Damage
	Oudalan	Sect.1, 2,3,4	48	
	Seno	Gorom	514	
	Soum	Dori	300	
	Yatenga	Leri	1,953	
	Kossi	-	-	
	Kouritenga	Kouka	40	
	Mouhoun	Goughin	-	
	Tapoa	Bondokouy	1,500	
	Nahouri	Tenbaga	471	
	Sourou	14 Villages	137	
	Poni	Bomboro	150	
	Gourma	-	150	
	Ganzourgou	-	-	
	Sanmatenga	-	-	
		-		
	Bam	20 Localities	5,748	Houses, Fences, Wells, and Fields
	Bazega	02 Localities	1,938	Houses
	Boulgou	17 Localities	2,300	Houses and Fields
	Ganzourgou	05 Localities	1,340	Houses and Fields
1992	Gourma	03 Localities	825	Houses
	Oubritenga	09 Localities	11,713	Houses, Dams, and Cattle
	Sanmatenga	01 Localities	57	Houses and Fences
	Tapoa	02 Localities	59	Houses and Cattle
	Zoundweogo	02 Localities	86	Houses and Fields
	Bam	Sabcé	500	
	Sourou	Di	7,500	
	Seno	Dori	500	
	Kouritenga	Poutenga	2,500	
	Oudalan	Tinacof	560	
	Boulkiende	Siglé	200	
	Ganzourgou	Mobtédo	9,500	
	Namentenga	Boulsa	2,600	
	Boulgou	Bittou	2,200	
	Houet	Bama	450	
1994	Gourma	Fada	5,900	Houses, Fields, and Cattle
	Kossi	Konadougou	7,800	
	Mouhoun	Ouarkoye	2,500	
	Tapoa	Kantchari	10,800	
	Gnagna	Bogandé	500	
	Zoundweogo	Stuffed	121	
	Bazega	Sapné	4,510	
	Sanguie	Didyr	500	
	Sissili	Léo	1,500	
	Passore	Arbollé	-	
	Kenedougou	Djiguéra	40	

Year	Provinces	Localities	Persons Affected	Loss / Damage
	Nahouri	Pô	81	
	Bougouriba	Koper	201	
	Oubritenga	Loumbila	1,800	
	Kourwéogo	Toéghin	120	
	Kadiogo	Sector 29	19	
	Houet	Bama	-	
	Nayala	Des Villages	-	
	Louroum	Des Villages	1,211	
	Oudalan	-	1,522	
	Oubritenga	-	130	
	Basle	-	-	
	Kossi	Des Secteurs	122 Households	
	Kenedougou	-	10 Families	
	Tuy	-	1324	
	Sanmatenga	Des Secteurs	-	
1999	Sourou	Sourou	-	Houses, Fields, and Cattle
	Seno	Des Villages	-	
	Bam	Kiella	100	
	Banwa	Gossin	39,136	
	Mouhoun	Kassakongo	360	
	Passore	-	45	
	Ziro	-	220	
	Ioba	Des Villages	2,438	
	Bougouriba	Des Villages	136 Families	
	Nahouri	Des Villages	2,115	
	Tapoa	-	-	
	Konandjari	Des Secteurs	176	
	Gourma	Nagré	1,010	

Source: CONASUR

Ghana

Regional flood frequency curves have been approximately derived for the entire country of Ghana, but these were based on data from a limited period of time and data that are full of gaps (Ontoyin, 1985). In order to apply the Index-flood method, the country was divided into five provisional hydrologically homogenous regions based on rainfall, topography, and geology. The derived equations must be used with caution and the results should be treated as only provisional since they are primarily based on limited data. Only very few stations have continuous records of 20 years or more, giving rise to many inter-station correlation estimates.

Mali

Since 1989, the valley of Sourou has experienced unforeseen floods due to the management of the Léry Dam built in Burkina Faso. These floods often compromise harvests on the rice plantations.

Togo

Floods in Togo result from strong precipitation and from the release of water from the Kompienga Dam in Burkina Faso. Flooding results in the loss of human lives, destruction of infrastructure and property, and the outbreak of water-borne diseases. The damage recorded from the 1999 flood was evaluated at approximately \$42 million.

h. Data and information gaps

More complete data on the frequency, severity, locations, causes, and consequences (both human and economic losses) of floods will need to be included in the Final TDA. This, however, will be hampered by the lack of historical data necessary to estimate floods, as was found to be the case with Ghana's flood frequency curves. Nonetheless, additional information will need to be provided in order to address the problem of flooding through appropriate interventions.

5.5 Water-Borne Diseases

a. <u>Status of the problem/issue</u>

Water-borne diseases have arisen in the basin largely as a result of the creation of dams and ponds and of flooding. The natural flow rates of the streams and rivers before impoundments are altered (slowed) to suit the breeding of the disease vectors at the banks of the rivers. Additionally, the proliferation of aquatic weeds exacerbates the problem of water-borne diseases as the weeds serve as hosts for disease-causing parasites.

Segments of the society in the basin suffer from a variety of diseases such as river blindness and sleeping sickness. Water-borne diseases affect economic activities as the workforce becomes ill and as parasites sometimes cause changes to occur in fish resources in sections of the rivers.

See Figure 5.5-1 in Appendix D for a map of areas where water-borne diseases are prevalent.

b. Transboundary elements

Water-borne diseases can be transboundary because of the movement and spread of disease vectors in the basin. Diseases have been eradicated in one part of the basin, only to be reinfected from another area of the basin. Additionally, water-borne diseases have been exacerbated by transboundary activities such as the damming of rivers.

c. Environmental impacts

- Possible damage to fish resources
- Possible decline in biodiversity

d. <u>Socio-economic impacts</u>

- Loss of human life
- Effects on human health
- Migration of populations to escape water-borne diseases
- Economic loss due to illness in workforce
- Increased poverty and disease

e. <u>Causal chain analysis</u>

See Appendix B.

Major root causes include:

- Inadequate legal/regulatory basis
- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Poverty
- Insufficient economic incentives
- Inadequate technical infrastructure
- Inadequate political will
- Insufficient demonstration projects
- Inadequate intersectoral coordination
- Insufficient knowledge/understanding
- Inadequate technology
- Inadequate training
- Population pressure

f. Sectors and stakeholders

Some of the stakeholders include:

- Basin population
- Public health authorities
- Local authorities

g. <u>Supporting Data</u>

Benin

No information provided.

Burkina Faso

Water-borne diseases are prevalent in Burkina Faso and have become more widespread as more dams have been built. 52% of medical consultations in Ouagadougou are a result of water – either water-borne diseases or illnesses relating to contaminated water – with malaria topping the list of reasons that people visit doctors in the region. Other diseases commonly found in the region include dracunculose and schistosomiases. Onchocercose and trypanosomiase are also found, but they are under better control.

Côte d'Ivoire

Water-borne diseases have a high human and economic cost in the Volta River Basin. Prevalent diseases include malaria, Bilharzia, Guinea worm, as well as a number of others. These diseases occur primarily when waters are stagnant and there is inadequate drainage or water treatment, largely due to inadequate investment in infrastructure. The diseases are generally localized in the cities and villages.

- Malaria is the primary cause of death (20%) with a frequency of 0.12/1000 persons.
- Diarrhea represented the second most common cause of death (15%) with a frequency of 18.1/1000.
- Guinea worm has a frequency of 0.9/1000.
- Ulcer of Buruli has a frequency of 0.24/1000.
- Bilharzia has a frequency of 0.225/1000.
- Onchocercose whose habitat is along the rivers has caused the abandonment of productive activities and depopulated border zones.

Ghana

All of the water-related diseases occurring in Ghana are prevalent in the Volta Basin. These include Bilharzia, which is very widespread in all four sub-basins, except the Daka. Other diseases include onchocerciasis (except in the Lower Volta), Guinea worm, malaria, filariasis, which is particularly common in the White Volta Basin, and diarrhea. Yaws has also been recorded in all five basins.

Table 5.5-1. Water-Borne and Associated Diseases and Their Vectors in the Volta Basin

	Schristo	Oncho	Guinea worm	Malaria	Filariasis	Cholera	Diarh	Yaws
Black Volta	+	+	+	+	?	?	+	+
White Volta	+	+	+	+	+	+	+	+
Daka	+	+	+	+	?	?	+	+
Oti	-	+	+	+	?	?	+	+
Lower Volta	+	-	+	+	+	?	+	+

Source: Nii Consult (1998)

- + Diseases and vector recorded in area (1980-1996)
- Disease vector not recorded
- ? No specific study undertaken

Mali

The access and use of the same water sources by humans and animals has resulted in a number of human health problems. As a result, water-borne diseases are prevalent in the region. Guinea worm, diarrhea, cholera, skin diseases, and other infections are widespread.

Togo

Togo also suffers enormously from water-borne diseases in the Volta River Basin.

h. Data and information gaps

While the types of water-borne diseases and their causes have been provided, only Cote d'Ivoire provided data on the number of people affected. Additional data should be provided on the geographic extent and the number of inhabitants infected in order to assess and address this issue. Further, two countries provided no data on this issue.

5.6 Growth of Aquatic Weeds

a. <u>Status of the problem/issue</u>

The growth of aquatic weeds has been noted as an increasing problem in the Volta River Basin. This has been of particular concern on some of the tributaries, especially on the Oti River. The weeds were probably inadvertently introduced into the basin as ornamental plants. A tributary of the Black Volta in Burkina Faso has also been infested with water hyacinth. The growth of the weeds has been exacerbated by the contamination of the waterways with fertilizers and other pollutants.

The effects of aquatic weeds on the environment include the rise in water-borne diseases, reduction in fish-catch, disruption of lake/river transportation, and disruption to hydropower generation.

See Figure 5.6-1 in Appendix D for a map of the areas affected by aquatic weeds in the basin.

b. Transboundary elements

The causes of aquatic weeds include introduction of alien weeds into the basin, transfer of watercrafts and fishing gear as a result of migration. Additionally, the run-off of fertilizers and nutrients from farmlands exacerbates the growth of the weeds.

In the Oti Basin, aquatic weeds are located in both Togo and Ghana and this could be a transboundary issue.

c. Environmental impacts

- Reduction in biodiversity
- Degradation of water quality
- Reduction of fisheries
- Increase in water lost through evapotranspiration

d. <u>Socio-economic impacts</u>

- Reduction in transport along the waterways
- Reduction in power-generating capabilities of hydroelectric plants
- Exacerbation of water-borne diseases
- Increased poverty through loss of income to fishermen

e. Causal chain analysis

See Appendix B.

Major root causes include:

- Insufficient knowledge/understanding
- Inadequate legal/regulatory basis
- Insufficient government power
- Inadequate institutions
- Insufficient regional agreements
- Abuse of power
- Poverty

- Insufficient economic incentives
- Inadequate technical infrastructure
- Inadequate political will

f. Sectors and stakeholders

Some of the stakeholders include:

- Basin population engaged in fishing
- Basin population engaged in transport
- Hydroelectric dam authorities
- Basin population affected by water-borne diseases

g. <u>Supporting Data</u>

The damming of the rivers in the Volta River Basin is viewed as a significant contributor to the proliferation of aquatic weeds. Several hydraulic structures have been erected along waterways within the basin. Notable among these are the Akosombo and Kpong hydropower dams, and the Vea and Tono reservoirs. These together have the potential to generate about 4,800 GWh/year of energy and some of this power is supplied to Togo and Benin. The reduction in flow rate due to the dams has promoted the proliferation of aquatic weeds in the Lower Volta. This has resulted in high incidence of bilharzia, as weeds provide sanctuary for snail hosts of schistosoma.

Although not many exotic species have been introduced into the basin, the accidental introduction of water hyacinth into the Oti River is quickly becoming a significant threat to the integrity of the hydropower dam at Akosombo. Within three years after the first report of the incidence of water hyacinth on the Oti, the weed had spread to cover more than an estimated 2,000 ha of lake surface. Control measures have cost more than 170 million cedis annually (approximately 20,000 USD). The presence of the weed is hampering lake transport and fishing. It may also be contributing to the siltation of the lake, as well as to the reduction in the water availability for hydropower generation.

Harmful aquatic plants have begun to develop in the waters near the Mali border with Burkina Faso as well. Although these are not yet a serious problem, they could become more of a threat in the future.

h. <u>Data and information gaps</u>

While the countries provided a map of areas where aquatic weeds were becoming prevalent, little additional data was given on the extent of the problem. The one exception was that information was given on the Oti River and the threats to Akosombo Dam. Further information on other areas should be given, however.

5.7 Coastal Erosion

a. Status of the problem/issue

Some coastal countries observed high coastal erosion, some as a probable result of creation of the Akosombo Dam with the attendant deficit of sediments reaching the coast.

See Figure 5.3-1 in Appendix D for a map of areas experiencing coastal erosion.

b. Transboundary elements

- Upstream dams are affecting the downstream coastline
- Several countries use the electricity generated from the Akosombo Dam, the prime contributor to coastal erosion
- Migratory species' habitat is being degraded

c. Environmental impacts

- Degradation of coastal habitats, including migratory bird habitats
- Destruction of sandy beaches used as nesting sites by endangered marine turtles
- Change in coastal waters
- Loss of productivity of waterways
- Reduction in biodiversity
- Degradation of water quality

d. <u>Socio-economic impacts</u>

- Loss of fish landing sites
- Loss of aesthetic value and tourism
- Loss of coastal resources
- Increased storm damage
- Loss or damage to human life or infrastructure

e. <u>Causal chain analysis</u>

See Appendix B.

Major root causes include:

- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Insufficient demonstration projects
- Poverty
- Inadequate political will

f. Sectors and stakeholders

Some of the stakeholders include:

- Coastal and river-side residents
- Population engaged in fishing in coastal waters
- Tourist industry

g. Supporting Data

Burkina Faso and Mali

These are inland countries and therefore have no coasts.

Côte d'Ivoire

Côte d'Ivoire has experienced substantial coastal recession. Up to 2 m/year has been recorded in Grand – Lahon, with degradation of historic sites. Around Abidjan, tourist infrastructures are threatened by erosion of 1.5 m/year (UNEP RSRS 1999). While erosion takes place naturally due to storms and swells, man-made construction and activities have greatly exacerbated the problem. The main anthropogenic factors are the construction of jetties to protect the Abidjan harbor and the Vridi Canal and coastal sand mining.

Ghana

Approximately 99% of sandy sediments are held back by the Akosombo Dam in the Volta Lake (Cheng, 1980). This contributes significantly to the erosion of the coastal areas at the mouth of the Volta River, ranging from 5 to 20 m per year (Blivi, 1993).

The construction of the Akosombo and Kpong dams has precipitated serious environmental problems. The regulated flow regime engendered by the operations of the dam caused a reduction in the hydrological thrust at the estuary, which tends to minimise the effect of wave action on the coast, and also constitutes a kind of hydrological groyne which breaks the force of wave action against the coast. The apparent decay of this groyne has also increased the rate of coastal erosion along the eastern side of the estuary. It is estimated that in the Keta area, the rate of coastal erosion is about 4 metres per year (Armah and Amlalo 1998). This coastal erosion has led to the destruction of nesting sites for endangered marine turtles.

Togo and Benin

The construction of large breakwaters for the Ports of Lome and Cotonou has caused extensive erosion, sometimes exceeding 150 m east of Lome. East of the Port of Cotonou, recession of more than 300-500m has been observed (UNEP RSRS 1999).

h. Data and information gaps

According to the limited data provided, only Ghana's coasts are affected by the Volta River. Additional information will need to be provided on the relationship between the Volta River and coastal erosion occurring in countries other than Ghana in order to establish this as a priority issue.

5.8 Water Quality Degradation

a. Status of the problem/issue

Although there is little data on the problem, water quality degradation has been identified as an important issue in the basin.

Some of the causes of water quality degradation include poor farming practices, improper land use, intensive grazing activities of cattle and sheep, and bushfires. Improper application of fertilizers to agricultural lands promotes leaching into the waterbodies. These chemicals are transferred downstream into other countries without any possible restriction. Sediment transport across the riparian countries is the major source of degradation of shared water resources.

Discharge from untreated industrial effluents are not significantly present in the basin due to limited industrial activities, but some untreated sewage is discharged into the waters. Additionally, humans and animals defecating and bathing in rivers and water sources adds to the degradation of water quality. Another significant cause of water quality degradation is the introduction of urban waste, particularly from run-off from inland port communities and urban settlements located near banks of the rivers and reservoirs.

b. Transboundary elements

Surface water resources are shared throughout the basin, making the degradation of water quality a strongly transboundary problem.

- Pollution is distributed throughout the waterways
- Land clearing in upstream countries has downstream effects

c. <u>Environmental impacts</u>

- Loss of biodiversity
- Loss of fisheries
- Harmful effects on coastal waters
- Occasional harmful algal blooms

d. <u>Socio-economic impacts</u>

- Scarcity of potable drinking water
- Scarcity of non-polluted water for agriculture and animal husbandry
- Effects on human health
- Water-borne diseases
- Loss of fisheries

e. Causal chain analysis

Water pollution originates from industry, crop farming, fishing, raising of livestock, and unsanitary conditions around human settlements.

The socio-economic root causes are poor control or supervision of industrial activities, poor farming practices including application of chemical fertilizers, poor awareness and education about public health, poor planning of settlements, population pressure and urbanization, lack of effective legal systems for controlling discharge of effluents and lack of financial resources.

See Appendix B.

Major root causes include:

- Insufficient regional agreements
- Inadequate legal/regulatory basis
- Insufficient knowledge/understanding
- Insufficient government power
- Inadequate institutions
- Abuse of power
- Poverty
- Inadequate national legal/regulatory basis

- Inadequate technology
- Inadequate training
- Population pressure
- Insufficient demonstration projects
- Inadequate intersectoral coordination
- Insufficient economic incentives
- Inadequate political will

f. Sectors and stakeholders

Some of the stakeholders associated with water quality degradation include:

- Basin population engaged in farming and animal husbandry
- Basin population engaged in fishing
- Basin population dependent on surface water resources for daily needs
- Industry

g. Supporting Data

Benin

Water pollution in the Volta Basin in Benin is derived primarily from human waste, from the use of fertilizers in agriculture, and from livestock breeding. The human and agricultural waste, along with soils, is washed or blown from the land into the tributaries of the Oti River (Sarga, Kounne, and Tirgou). This causes the siltation of the rivers, the destruction of aquatic fauna and its habitat, and the invasion of these rivers by aquatic weeds. This state of affairs decreases the biological river resources and constitutes a threat to the aquatic habitat.

Burkina Faso

According to the document "Etats de lieux des ressources en eau et de leur cadre de gestion", representative data on quality and quantity of water poses a problem. The limited data available, however, indicate the following:

Quality of Groundwater

Groundwater is in general potable. Ninety percent of the values are lower than the WHO recommendations for drinking water. There are areas in the southwest, though, where the acidity level of the water is not in conformity with WHO standards. Additionally, there are some areas in the southeast where 72% of samples have higher conductivity than WHO recommendations. Drilling in the area of Mogtédo (in the basin of Nakanbé) produced water with a high arsenic content, which was naturally contaminated by minerals rich in arsenic. The recorded maximum values are quite localized, however.

Quality of Surface Water

Only the ONEA (National office of Water and the Cleansing) has reliable data on surface water. Whereas the quality is declining in general, it continues to be generally of good physicochemical quality. Suspended matter is present throughout the basin, however, and significant quantities of iron and phosphates can be found in the water. Suspended matter is of particular concern in Nakambé, especially at the Loumbila, Poutytenga, and Ouagadougou dams. In all of the basins,

iron is the most alarming variable, followed by phosphates. The other parameters meet acceptable levels.

The bacteria and parasites in the water also pose a serious health risk. Bacteria often results from the proximity of cattle and human settlements to water sources. Eutrophication could not be evaluated using the limited available data, but the risk is evident in the growth of water hyacinth.

A number of industries in the basin emit waste into the waterways, with the agro-processing industry among these. The Brakina brewery emits water rich in detergents that sometimes has a pH of 11.6. The slaughterhouses (in Ougadougou and Bobo Dioulasso) dump solid waste including manure and blood into the waterways, as well as wastewater that is rich in grease, proteins, and phosphates. In 1997, the slaughterhouses of Ouagadougou consumed 48.7 million m³ of water and produced approximately 10 tons of waste per day. Soap factories and oil mills emit solid waste and wastewater that is very basic.

There are also a number of industrial chemical facilities located primarily in Ouagadougou and Sore, including plants the produce plastics, cosmetics, drugs, paint, mattress foam, and matches. The most significant of these are Saphyto, Sofapil, Fasoplast, and Sap. Saphyto, producing pesticides and insecticides, emits chemicals into the atmosphere. Sofapil, producing dry cells, emits metals.

Textile and tanning factories in the basin also threaten water quality. The most prominent of these are Sofitex, SBMS, and Aliz, which are located in Ouagadougou, Sore, Koudougou, Dédougou, Fada Gourma and Houndé. The Sofitex factory emits significant amounts of air pollution. The leather manufacturer SBMC dumps 150 to 190 tons of chemicals annually without primary treatment. Effluents from the tanning company Aliz are contaminated with chemicals and proteins.

There are also two gold mines in the basin that affect water quality. Poura, an industrial mine, and Essakane, a semi-industrial mine, have resulted in the destruction of lands, the introduction of chemicals such as cyanide to the environment, and deforestation.

As agricultural production in Burkina Faso is still traditional, much less fertilizer and pesticides are used there than in developed countries, 8 kg/h as opposed to 240-250 kg/h.

Côte d'Ivoire

The water quality in Côte d'Ivoire is threatened by increasing urbanization and agriculture in the basin, as well as by pollution produced by households.

Ghana

Surface Water

The water quality of the major rivers within the Volta Basin is generally good for general purposes, although localized pollution occurs close to developed areas. On the Oti River, for example, mean pH values vary from 6.9 to 7.5 (WARM 1998). Mean suspended solid concentrations are generally less than 2000 mg/l. The dissolved oxygen concentrations generally indicate low levels of pollution since super saturation conditions are mostly noted. Values

ranged from 5.0 to 7.5mg/l. The waters are generally soft with total hardness not exceeding 25.0mg/l. Alkalinity, on the other hand, ranges from 19 to 52.0mg/l.

There are not many major industries in the Volta Basin, and those that do exist are generally small in scale. There are, however, two major textile factories in the basin. A fruit-processing factory, which processes tomatoes, also used to operate in the basin. These industries discharge their effluent, most of which is insufficiently treated, directly into water systems. Effluent quality from the Juapong factory is generally within EPA permissible standards, but has high BOD. The Akosombo factory's effluent contains high pH and a considerable amount of dye material. This could lead to the deterioration of water quality.

Table 5.8-1. Summary of Water Quality Parameters for Selected Rivers in the Volta Basin

		Suface Wat	ter Quality	
Parameters	White Volta (Dalon)	Black Volta (Bamboi)	Oti (Sabare)	Lower Volta (Sogakope)
Dissolved Oxygen (mg/l)	6.5	11.2	9.9	7.1
рН	7.1	7.0	7.0	7.3
Conductivity (µS/cm)	7.7	201	280	7.3
Total Dissolved Solids (mg/l)		87.2		59.2
Suspended solids (mg/l)	165			78
Alkalinity (mg/l)				39.8
Hardness (mg/l)				28.5
Silica (mg/l)		11.2		11.8
Nitrate-N (mg/l)	0.4			5.6
Phosphate-P (mg/l)	0.1			0.1
Chloride (mg/l)	17.5	7.0	5.4	10.4
Sulphate (mg/l)	19.9	7.0	5.7	2.7
Bicarbonate (mg/l)			35.3	46.2
Sodium (mg/l)	9.3			9.8
Potassium (mg/l)				2.8
Calcium (mg/l)	4.7	10.1	4.8	9.4
Magnesium (mg/l)	2.5	8.3	4.5	4.7
Iron (mg/l)				
Biochemical Oxygen Demand (mg/l)				4.0
Chemical Oxygen Demand (mg/l)	0.3			
Cadmium (mg/l)	0.03			< 0.03
Lead (mg/l)	0.1			< 0.03
Nickel (mg/l)				< 0.03
Mercury (mg/l)				< 0.03
Zinc (mg/l)	0.11			< 0.03
Copper (mg/l)	0.11			< 0.03
Total Coliforms (c/100ml)				
Faecal Coliforms (c/100ml)	16			18

1.1

0.4

0.1

3.0

4.1

Parameter Mean Std Dev. PH 7.0 0.2 Temperature 28.2 1.4 Alkalinity 40.1 12.9 **Total Hardness** 3.4 21.6 Silica 10.6 6.0 Chloride 7.1 5.6 Sulphate 2.4 4.4 Calcium 7.5 4.0 Magnesium

2.1

0.2

0.11.5

4.7

Table 5.8-2. Summary of Water Quality at Kpong (1995)

Nitrate

Iron

Manganese

Suspended Solids

Groundwater

The quality of groundwater is generally good for multipurpose use, except for the presence of low pH (3.5-6.0) waters, high levels of iron, manganese, and fluoride in certain localities, as well as occasional high mineralisation with TDS in the range of 2000-1458 mg/l in the southeastern coastal aquifers.

Iron originates partially from the attack of low pH waters on corrosive pump parts and partly from the aquifers. The percentage of iron derived from the aquifers is, however, unknown. High fluoride values in the range 1.5-5.0mg/l, on the other hand, are found in boreholes located in the granitic formation of the Upper East and West Regions.

The waters in many hand-dug wells are turbid and polluted as they contain high levels of nitrate, in the range of (30-60) mg/l, and abundant coliform. This could be avoided to some extent through improved construction and adequate protection of the well sites from surface run-off and animal droppings.

Table 5.8-3. Summary of Water Quality Parameters for Groundwater in the Volta Basin

Parameters	Ground W	ater Quality
rarameters	White Volta	Lower Volta
Dissolved Oxygen (mg/l)	-	-
PH	6.70	6.18 –6.96
Conductivity (µS/cm)	482	259 -2960
Total Dissolved Solids (mg/l)	-	233 - 1192
Suspended solids (mg/l)	=	-
Alkalinity (mg/l)	-	106 -1744
Hardness (mg/l)	-	146 - 303
Silica (mg/l)	29.1	32 - 485

Parameters	Ground W	ater Quality	
Farameters	White Volta	Lower Volta	
Nitrate-N (mg/l)	2.91	2.6 –19.0	
Phosphate-P (mg/l)	0.21	1.0 -0.37	
Chloride (mg/l)	3.6	98 – 981	
Sulphate (mg/l)	2.5	10 - 96	
Bicarbonate (mg/l)	179	94.0 - 148.0	
Sodium (mg/l)	22.0	30.0 – 431.0	
Potassium (mg/l)	1.7	5.0 - 19.0	
Calcium (mg/l)	31.74	30.0 –122.0	
Magnesium (mg/l)	10.97	9.0 - 63.0	
Iron (mg/l)	0 -	0 –5.0	
Biochemical Oxygen Demand (mg/l)			
Chemical Oxygen Demand (mg/l)			
Cadmium (mg/l)	0.16	< 0.03	
Lead (mg/l)	0.0003	< 0.03	
Nickel (mg/l)	0.0014	< 0.03	
Mercury (mg/l)	0.0018	< 0.03	
Zinc (mg/l)	0.04	< 0.03	
Copper (mg/l)	0.001	< 0.03	
Total Coliforms (c/100ml)	11	8	
Fecal Coliforms (c/100ml)	0	0	

Water in Mali is polluted from human, livestock, and agricultural waste. Fungicides, pesticides, and fertilizers are increasingly being used in the region and are being washed into waterways during the rainy season. Some prohibited and extremely detrimental chemicals, such as DDT, are even being used in the area, though exact data are missing. Limited data available on the Souron River show:

- PH:>8,2Turbidity: 40
- Incubation à 44°C : No fecal coliforms,
- Incubation à 37°C: numerous total coliforms, bacillus bacteria (both gram positive and negative)

Nitrates are frequently found in subsoil waters, but at levels below WHO standards for water consumption. Iron has been found at levels above WHO standards. In general, water quality is neutral to basic.

Togo

While data on water quality are insufficient, it is known that surface water quality in Togo has been degraded by a number of anthropogenic activities taking place in the Volta River Basin.

Water pollution in Togo comes from three sources: industry, agriculture, and transport. Industrial pollution can be found in the area of Kara where oils leak from the power station and the Brewery of Benin discharges its waste into the surrounding brooks. In other cities in the basin, garages and mechanical workshop leak oils into the rivers.

Agricultural practices used in riverbeds further pollute the waterways. Fertilizers and other chemicals used on the crops are washed into the waterways. The growing of cotton increases this threat as even greater amounts of artificial fertilizers and pesticides must be used to grow this crop than are needed for others.

The old automobiles that are used in the Volta Basin add to the pollution of the waterways. The trucks and cars emit significant amounts of particulate matter that are washed into the rivers.

Domestic and solid wastes further contribute to water quality degradation in the basin. Inhabitants of rural areas typically defecate outdoors, and often do so near water sources (wells, rivers, or reservoirs). At the same time, people use the rivers and waterways for bathing. Additionally, household garbage is usually not disposed of properly and often ends up in waterways. Urban areas do not have adequate wastewater treatment facilities.

While the data in the tables below on water quality in the Kara River show that organic matter, nitrites, and nitrates are not too high, there is a definite bacteriological problem.

Table 5.8-4. Physio-chemical Analysis of the Waters of the Kara River in Togo

N°	Date	Origin	Color	Suspended matter mg/1	Putrescibility 5 days	M.O. KMn 04 mg/1	РН	Nitrites mg/1	Nitrates mg/1	Comments
K2	28/12/88	Toundè	Clear		-	13,1	7,2	traces	5,3	
К3	"	Niveau nouveau pont	«		-	12,8	6,8	0,58	6,0	TogoElectricité
K4	"	Q. COFAC	«		-	10,3	6,8	0	1,2	
K5	"	Ancien pont	«	-	-	11,1	6,5	Traces	6,1	Amont
K6	"	«	«	-	-	10,6	6,7	0,3	1,32	Aval
K7	"	Q. Bataskom	«	-	-	10,1	7,1	traces	2,3	

Source :SOTED,1989 Etude pour l'Amélioration du cadre de vie de la population au Togo

Table 5.8-5. Physio-chemical Analysis from the Waters of the Brewery of Benin of Kara

N°	Date	Origin	Color	Suspende d matter mg/1	Putrescibili ty 5 days	M.O. KMn 04 Mg/1	PH	Nitrites	Nitrates	Comments
B1	28/1 2/88	Decanted water	White	1250	++++	132	9.52	30.21	133.8	Very degraded
В2	,,	After neutralization	White	1035	++	102.5	8.05	28.02	124.1	Degraded
В3	,,	After aeration	Yellow	1215	+	14.9	8.03	0.00	Traces	Degraded
K1	,,	Water from Kpiyinboa	Light yellow	1200	1	10.2	7.91	0.10	0.44	-

Source :SOTED,1989 Etude pour l'Amélioration du cadre de vie de la population au Togo

Table 5.8-6. Results of the Bacteriological Analysis of the Waters of the Kara River

N°	Date	Origin	Total Numbers	MPN coliformes	MPN E. Coli	MPS Str. fécaux	Nbre Sulf- red /ml	Salmonella	Nitrates	Comments
K2	28/12/88	Tomdè	2,500,000	250	90	8	50	+		Amoebae
К3	cc	Niveau nouveau pont /(C E E T)	1,750,000	600	50	70	12	0		Giardia algues
K4	"	Quartier COFAC	3,250,000	900	60	0	25	+		1
K5	"	Amont ancien pont	2,000,000	1200	0	0	20	0		-
K6	"	Aval ancien pont	500,000	2000	5	12	30	0		Giardia
K7	"	Quartier Batascom	3,500,000	600	120	50	0	0		Giardia Amoebae

Source :SOTED,1989 Etude pour l'Amélioration du cadre de vie de la population au Togo

Table 5.8-7. Amount of Chemical Products Used in the Volta Basin in Togo

						Manu	re	
	Insecticides	Fungicides	Herbicides	Fumigants	Urée (Kg)	NPK (Kg)	NPKSB (Kg)	Super Triple
Savannah Region	165.138	-	10	-	848.550	1.204.150	7.270.050	-
Kara Region	119.527	-	295	-	304.634	757.750	4.379.550	-
Sotouboua	38.950	-	-	-				
(canton Fazao)	144							
Plateau Region	132.326	-	-	-	956.870	179.500	3.571.400	-

					Manure			
	Insecticides	Fungicides	Herbicides	Fumigants	Urée (Kg)	NPK (Kg)	NPKSB (Kg)	Super Triple
Wawa	10.545	-	-	-	85.050	-	277.700	-
Kloto	24.617	-	-	-	353.450	-	950.870	-
Dayes	-	-	-	-	-	-	-	-
Blitta (Adélé)	35.871	-	-	-	123.300	-	845.000	-
Agou	7.368	-	-	-	77.500	-	293.550	-
Total	534.531		305		2.750.357	2.141.400	17.588.120	

h. <u>Data and information gaps</u>

Sufficient data to accurately assess the status of water quality in the basin were not provided. Limited data were given by Ghana and Togo on the effects of industry on water quality, but additional information needs to be included from all countries on the fecal coliform levels and degradation resulting from agriculture. More information should also be given on potential contaminant loads, such as the amount fertilizers and pesticides used in the basin. Additionally, eutrophication needs to be examined.

5.9 Emerging Issues

5.9.1 Urbanization

Problems associated with urbanization relate to increasing populations, including overall national population growth migration into urban areas. These changes will have significant consequences for waste management and the threat of degradation and scarcity of water supplies.

5.9.2 Increase in Industrial and Mining Activities

While industrial development has been slow in the Volta River Basin, it will continue to increase, particularly as the population expands. This industrial growth can be expected to produce potential new point sources of pollution that will have impacts on land and water resources in the basin. Mining activities in the basin, although currently relatively small in scale, could expand and pose an even greater threat to the environment than they currently do.

The rising population growth and increasing industrial development raise the demand for hydroelectric power. The general tendency in the region will be to continue impounding river basins for electricity generation. This threatens future availability of water resources, as well as the coastline of Ghana.

6.0 Stakeholder Analysis

TDA Guidance Documents recommend a stakeholder analysis be performed in support of the TDA, including "a description of all the stakeholders, including institutions, organizations, ministries, agencies, and industry related to the perceived issues should also be incorporated. The information pertaining to this list would include the effect of the issue on stakeholders, the nature and effectiveness of the interactions between the stakeholders as well as their strengths and weaknesses in view of their actual and/or potential role in managing water and water dependent resources."

Identification of the stakeholders and stakeholder groups provides a unique level of analysis of those most profoundly affected by environmental issues in the Volta River Basin. During the course of the project, a full stakeholder analysis should be undertaken following the Agenda 21 guidelines.

The National Reports revealed the following major stakeholders of the identified problems:

6.1 Land Degradation

Benin

- Ministry of Environment, Settlements and Urban Development
- Ministry of Agriculture, Livestock and Fishing
- Ministry of Interior and Security and Decentralization
- Ministry of Higher Education and Scientific Research
- Green Space NGO
- Protection of the Environment and Struggle Against Illiteracy (PELCA BENIN)
- RE/PAT ONG
- TIM-TIM ONG
- ODEX

Burkina Faso

- Ministry of Environment and Water
- Department of Agriculture
- Ministry in Charge of Animal Husbandry
- Department of Administration of Territories/Lands
- The regional and provincial councils of regional planning
- PNGT The National Programme of Management of the Soils
- National Waters and Sanitation Office (ONEA)
- Burkina National Electricity Company (SONABEL)
- Valleys Development Authority (AMVS, MOB)

Côte d'Ivoire

- Ministry of Water and Forests
- Ministry of Agriculture and Animal Resources
- Ministry of Environment and Life

- Ministry of Interior and Decentralization
- Professional agricultural organizations, CIDT and ANADER.

Ghana

- Ministry of Interior/Ghana National Fire Service
- Ministry of Works and Housing/Water Resources Commission
- Ministry of Environment and Science/Environmental Protection Agency
- Ministry of Food and Agriculture/Irrigation Development Authority
- Ministry of Environment and Science/Water Research Institute of CSIR
- Ministry of Lands and Forestry/Forestry Commission
- The Lands Commission established by Act 483 of 1994
- Land Valuation Board
- Survey Department
- Land Title Registry
- Ministry of Local Governments

Mali

- Ministry in Charge of Agriculture
- Ministry in Charge of Livestock
- Ministry in Charge of Environment
- Ministry in Charge of Territorial Administration
- Ministry in Charge of Planning
- Ministry in Charge of International Cooperation

Togo

- Women are particularly involved in the management of land, particularly with regards to the use of land for subsistence agriculture, as women have the ultimate responsibility to nourish their children.
- Village Committees of Development (VCD) address the issue of development in the rural areas, including environmental questions.
- Ministry of the Interior, Security and Decentralization
- Ministry of Equipment, Mines, Energy, Post and Telecommunication
- Ministry of Environment and Forest Resources/Department of General Ecology and Rehabilitation of the Environment
- Ministry of Agriculture, Animal Husbandry and Fishing

6.2 Water Scarcity

Benin

- Ministry of Agriculture, Livestock and Fishing
- Ministry of Mines, Energy and Hydraulics
- Ministry of Public Health
- Ministry of Interior and Security and Decentralization
- Ministry of Higher Education and Scientific Research
- Ministry of Finance and Economy

Protection of the Environment and Struggle Against Illiteracy (PELCA BENIN)

Burkina Faso

- Ministry of the Environment and Water
- Department of Energy and Mines
- Department of Agriculture
- Ministry in Charge of Animal Resources
- Department of Public Health
- Department of Transport and Tourism
- Department of Social Action and the Family
- National Water and Sanitation Office (ONEA)
- The regional and provincial councils of regional planning
- Green Cross International
- Burkina National Electricity Company (SONABEL)
- Valleys Development Authority (AMVS, MOB)
- Producers (Assocation)

Côte d'Ivoire

- Ministry of Water and Forests
- Ministry of Economic Infrastructure
- Ministry of Agriculture and Animal Resources
- Ministry of Mines and Energy
- Ministry of Environment and Life
- Ministry of Economy and Finances
- SODECI, Water Distribution Corporation, is responsible for supplying potable water to urban communities.

Ghana

- Ministry of Works and Housing/Water Resources Commission
- Ministry of Works and Housing/Community Water and Sanitation
- Ministry of Works and Housing/Hydrological Services Division
- Ministry of Environment and Science/Environmental Protection Agency
- Ministry of Food and Agriculture/Irrigation Development Authority
- Ministry of Environment and Science/Water Research Institute of CSIR
- Ministry of Mines/Public Utilities Regulatory Commission
- Ministry of Energy/Volta River Authority
- Ministry of Roads and Transport/Meteorological Services Department

Mali

- Ministry in Charge of Hydraulics
- Ministry in Charge of International Cooperation
- Ministry in Charge of Public Health
- Ministry in Charge of Livestock
- Ministry in Charge of Agriculture

- Ministry in Charge of Environment
- Women are the primary users of water for domestic needs.
- Regional and Local Water Councils
- Committees of Basin or Sub-Basin

Togo

- Women are very involved in the management of water resources. They are involved in drawing up water for domestic consumption and for agricultural production. When water is scarce, it is the task of women to traverse long distances in order to find water.
- Village Committees of Development (VCD) address the issue of development in the rural areas, including environmental questions.
- Ministry of Equipment, Mines and Hydraulic Resources/General Department of Hydraulics
- Ministry of Public Health
- Ministry of Environment and Forest Resources
- Ministry of Agriculture, Animal Husbandry and Fishing
- Ministry of Interior, Security, and Decentralization

6.3 Loss of Biodiversity

Benin

- Ministry of Environment, Settlements and Urban Development
- Ministry of Agriculture, Livestock and Fishing
- Ministry of Interior and Security and Decentralization
- Green Space NGO

Burkina Faso

- Ministry of Environment and Water
- Ministry of Agriculture
- Ministry in Charge of Animal Husbandry
- Department of Public Works, Settlements and Urban Development
- The regional and provincial councils of regional planning

Côte d'Ivoire

- Ministry of Water and Forests
- Ministry of Agriculture and Animal Resources
- Ministry of Environment and Life

Ghana

- Ministry of Environment and Science/Environmental Protection Agency
- Ministry of Lands and Forestry/Forestry Commission
- Ministry of Mines/Mineral Commission
- Ministry of Food and Agriculture

- Ministry in Charge of Environment
- Ministry in Charge of Agriculture
- Ministry in Charge of Livestock
- Ministry in Charge of Territorial Administration
- Ministry in Charge of Planning
- Women are primarily responsible for deforestation for firewood

Togo

- Women are the primary users of firewood and charcoal so they play an important role in the management of forests.
- Ministry of Environment and Forest Resources
- Ministry of Agriculture, Animal Husbandry and Fishing

6.4 Flooding

Benin

- Ministry of Environment, Settlements and Urban Development
- Ministry of Public Health
- Ministry of Mines, Energy and Hydraulics
- Ministry of Interior and Security and Decentralization

Burkina Faso

- Ministry of Environment and Water
- Department of Energy and Mines
- Department of Public Health
- Department of Transport and Tourism
- National Water and Sanitation Office (ONEA)

Côte d'Ivoire

- Ministry of Water and Forests
- Ministry of Economic Infrastructure
- Ministry of Mines and Energy
- Ministry of Transport
- Ministry of Environment and Life
- Ministry of Economy and Finances
- Ministry of Public Health

Ghana

- Ministry of Works and Housing/Water Resources Commission
- Ministry of Works and Housing/Hydrological Service Department
- National Disaster Management Organisation
- Ministry of Environment and Science/Environmental Protection Agency
- Ministry of Energy/Volta River Authority
- Ministry of Food and Agriculture/Irrigation Development Authority

- Ministry of Environment and Science/Water Research Institute of CSIR
- Ministry of Local Governments

- Ministry in Charge of Hydraulics
- Ministry in Charge of Environment
- Ministry in Charge of Agriculture

Togo

- The National Committee of Emergency Assistance was created in 1995 to address catastrophes such as floods. In 1997 the committee drafted a plan of Organization of Assistance in the Event of Catastrophes (Plan ORSEC). This committee is placed under the supervision of the Ministry for the Interior and Decentralization.
- Ministry of Equipment, Mines and Hydraulic Resources
- Ministry of Public Health
- Ministry of Environment and Forest Resources
- Ministry of Agriculture, Animal Husbandry and Fishing
- Ministry of Cooperation and Foreign Affairs

6.5 Water-Borne Diseases

Benin

- Ministry of Environment, Settlements and Urban Development
- Ministry of Public Health
- Association for the Social Integration of Poor Children (AISED)

Burkina Faso

- Department of Public Health
- Department of Transport and Tourism
- Department of Social Action and the Family
- National Water and Sanitation Office (ONEA)

Côte d'Ivoire

- Ministry of Water and Forests
- Ministry of Environment and Life
- Ministry of Public Health

Ghana

- Ministry of Environment and Sciences/Environmental Protection Agency
- Volta River Authority
- University of Ghana/Nogouchi Memorial Institute for Medical Research
- Ministry of Local Governments

- Ministry in Charge of Environment
- Ministry in Charge of Public Health

Togo

- Ministry of Public Health
- Ministry of Equipment, Mines and Hydraulic Resources
- Ministry of Agriculture, Animal Husbandry and Fishing
- Ministry of Environment and Forest Resources
- Ministry of Social Affairs and Promotion of Women

6.6 Growth of Aquatic Weeds

Benin

- Ministry of Environment, Settlements and Urban Development
- Ministry of Agriculture, Livestock and Fishing
- Ministry of Mines, Energy and Hydraulics
- Ministry of Interior and Security and Decentralization

Burkina Faso

- Department of Energy and Mines
- Ministry of Environment and Water
- Department of Transport and Tourism
- National and Water Sanitation Office (ONEA)

Côte d'Ivoire

- Ministry of Water and Forests
- Ministry of Mines and Energy
- Ministry of Transport
- Ministry of Agriculture and Animal Resources
- Ministry of Public Health

Ghana

- Ministry of Environment and Science/Environmental Protection Agency
- Ministry of Energy/Volta River Authority
- University of Ghana/Department of Zoology
- Ministry of Works and Housing/Hydrological Services Department
- Ministry of Environment and Science/Water Research Institute
- Water Resources Commission

Mali

- Ministry in Charge of Hydraulics
- Ministry in Charge of Environment

Togo

- Ministry of Equipment, Mines and Hydraulic Resources
- Ministry of Agriculture, Animal Husbandry and Fishing
- Ministry of Environment and Forest Resources

6.7 Coastal Erosion

Benin

- Ministry of Environment, Settlements and Urban Development
- Ministry of Agriculture, Livestock and Fishing

Burkina Faso

- Ministry of Environment and Water
- Department of Administration of Territories/Lands

Côte d'Ivoire

- Ministry of Environment and Life
- Ministry of Tourism

Ghana

• Ministry of Environment and Science/Environmental Protection Agency

Mali

Togo

- Ministry of Equipment, Mines and Hydraulic Resources
- Ministry of Agriculture, Animal Husbandry and Fishing
- Ministry of Environment and Forest Resources
- University of Lome

6.8 Water Quality Degradation

Benin

- Ministry of Environment, Settlements and Urban Development
- Ministry of Agriculture, Livestock and Fishing
- Ministry of Public Health
- Ministry of Interior and Security and Decentralization
- Association for the Social Integration of Poor Children (AISED)

Burkina Faso

- Ministry of Environment and Water
- Department of Agriculture
- Department of Public Health
- Department of Transport and Tourism
- Department of Social Action and the Family

• National Water and Sanitation Office (ONEA)

Côte d'Ivoire

- Ministry of Water and Forests
- Ministry of Economic Infrastructure
- Ministry of Agriculture and Animal Resources
- Ministry of Environment and Life
- Ministry of Economy and Finances
- Ministry of Public Health

Ghana

- Ministry of Works and Housing/Water Resources Commission
- Ministry of Environment and Science/Environmental Protection Agency
- Ministry of Mines/Public Utilities Regulatory Commission
- Ministry of Food and Agriculture/Irrigation Development Authority
- Ministry of Works and Housing/Ghana Water Company, Ltd.
- Ministry of Works and Housing/Community Water and Sanitation
- Ministry of Environment and Science/Water Research Institute of CSIR
- Ministry of Local Governments

Mali

- Ministry in Charge of Hydraulics
- Ministry in Charge of Environment
- Ministry in Charge of Public Health
- Ministry in Charge of Agriculture
- Ministry in Charge of Livestock

Togo

- Village Committees of Development (VCD) address the issue of development in the rural areas, including environmental questions.
- Ministry of Public Health
- Ministry of Equipment, Mines and Hydraulic Resources
- Ministry of Agriculture, Animal Husbandry and Fishing
- Ministry of Environment and Forest Resources

In addition, common Stakeholders for nearly all of these problems are:

- Women
- Children
- Inhabitants
- Resource users
- Academia

7.0 Environmental Quality Objectives

This section describes the major interventions and actions that are technical inputs for consideration by the six riparian countries as they develop and agree upon their Strategic Action Programme. These interventions were developed using Environmental Quality Objectives as tools, which were then assigned specific targets that were achievable over a 5-10 year period. Specific interventions and actions that would lead to achievement of these targets were identified.

The use of EQOs, targets, and interventions is consistent with the GEF approach for TDAs, although framed in a slightly different fashion. The EQOs are broad, policy-level statements of the desired condition of the Volta River Basin environment. Targets are specific, time-dependent and quantifiable steps towards achieving the EQOs. Finally, interventions or activities represent a list of steps necessary to achieve the target in the time frame and at the level specified. Consistent with GEF guidance, each Target and each Intervention/Activity is assigned an environmental indicator. GEF specifies three types of indicators, as follows:

Process Indicator

A step/activity which provides for future environmental improvements, but actually does not deliver any, e.g.:

- TDA
- NCAP/SAP
- Convention agreed, ratified, and comes into force
- Public awareness increases

Stress Reduction Indicator

A step/activity that actually reduces stress on the environment, e.g.:

- Municipal wastewater treatment plant built and operating
- Buffer zones created around river banks
- Farmers reduce use of fertilizer or pesticides
- Protected areas established and functional
- ICZM plan implemented
- Fishing quotas obeyed and/or enforced

Environment Status Indicator

An environmental parameter whose level can actually be measured to show improvement (or not), e.g.:

- Overall level of biodiversity increases
- Endangered/threatened species taken off list
- Fisheries yield stable or increasing and sustainable
- Concentration of pollutants in the Sea or basin river water or sediments decreases

The use of environmental indicators is a means to specify *a priori* the expected output or result of that activity or intervention. Therefore, activities such as new laws or regulations may represent a process indicator, improved industrial processes resulting from the new laws and regulations represent a Stress Reduction Indicator, and reduced levels of contaminants in the Volta River will represent an Environmental Status Indicator. Similarly, the targets can be classified by a series of environmental indicators.

Therefore, the use of EQOs and Targets is simply a novel step taken to develop an expert consensus on priority interventions/actions, complete with environmental indicators, as a step towards creation of the NCAPs and SAP.

7.1 Environmental Quality Objectives for the Volta River Basin

One of the final goals of the TDA is to identify possible interventions to address the major perceived issues through the root causes. Numerous possible interventions have been identified in the various National Reports. Lacking a framework to organize these interventions, and to facilitate their ranking and ordering, the concept of environmental quality objectives was used.

The three EQOs and their associated targets for the TDA /SAP process are:

- 1. Balanced aquatic ecosystem
 - Achieve adequate surface water quality by 2012
 - Restore natural surface water flow by 2012
 - Achieve sustainable fisheries development by 2012
 - Arrest wetland loss by 2012
 - Begin implementation of riverine biodiversity conservation strategy by 2008
- 2. Stabilized high-quality freshwater supplies
 - Achieve adequate freshwater quantity by 2012
 - Achieve adequate groundwater quality and quantity by 2012
- 3. Sustainable land use
 - Reduce rate of land degradation by 20% 2012
 - Reduce coastal erosion rates by 25% by 2012

7.2 Action Areas and Possible Specific Actions

Targets for each of the EQOs were identified. In addition, specific actions/ interventions were also determined.

Table 7.2-1 outlines targets, specific actions/interventions, and estimated costs identified. This table also categorizes the intervention by type. Categories of intervention were defined as:

- Legal / Regulatory
- Baseline investment
- Incremental investment

- Institutional strengthening
- Policy
- Scientific investigation
- Capacity building
- Data management

Although some actions / interventions may span several categories, the dominant category was selected as representative. In some cases, a single action / intervention was assigned to two categories, when no dominant type was apparent.

 Table 7.2-1.
 Environmental Quality Objectives, Targets, and Interventions

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
Balanced Aquatic Ecosystem	Achieve adequate surface water quality by 2012	Establish common methods for assessing water and sediment quality, including bioassays of coastal biota	Develop guidelines for methods of water, sediment, and biota monitoring and assessment (including sampling, analysis, risk assessment)	Legislative/ Regulatory	Insufficient scientific capacity
			Implement a first periodic assessment (3-year interval) of the river quality and trends	Investment	
			Develop and establish national/regional land-based activities data and information management system as a tool for contaminant assessment and management	Data Management	
		Fill gaps in knowledge of priority pollutants (contaminant levels) and major sources of pollutants (contaminant inputs)	Conduct regional assessment of priority land-based activities, sources of contaminants, and pollutant levels in water and sediments	Scientific Investigation	Insufficient scientific capacity
			Conduct routine targeted monitoring of riverine sediments and biota for purposes of identifying major hot spots of pollution and land-based activities	Investment	
		Exchange environmental data and information	Develop agreements and technology basis for the free and regular exchange of environmental data and information within the region	Data Management	Insufficient scientific capacity; Inadequate technical infrastructure
		Reduce impacts of urban areas on water quality	Construct or extend sewage collection systems in all major cities in the basin and route discharges to treatment plant	Investment	
			Upgrade/renovate existing treatment plants for mechanical and biological treatment	Investment	
			Expand solid waste collection in all major cities and improve disposal methods so waste does not run-off or leach into waterways	Investment	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
		Reduce impacts of industry and mining on water quality	Develop and enforce regulations on the disposal of industrial and mining effluents	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Inadequate institutions; Insufficient demonstration projects; Inadequate of technology
			Strengthen the capacity of institutions to enforce mining and industry regulations	Institutional Strengthening	
			Implement demonstration projects to bring best technology and practice to industrial discharges (e.g., pre-treatment, source control, process control)	Investment	
			Identify major pollutants affecting water quality, and regulatory levels for those pollutants	Scientific Investigation	
		Halt the spread of aquatic weeds by 2010	Improve knowledge of distribution of aquatic weeds using regional working groups	Scientific Investigation	Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Inadequate river basin management
			Develop national and regional aquatic weed management strategies/plans/frameworks combined with monitoring and GIS capabilities	Policy	
			Establish and implement a control system for the import and export of exotic species into and from the Volta River Basin	Legislative/ Regulatory	
	Restore natural surface water flow by 2012	Improve water basin management	Agree regionally on extraction of river water and control of river flow regimes	Legislative/ Regulatory	Inadequate water basin management; Insufficient regional agreements; Inadequate intersectoral

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
					coordination
			Conduct baseline investigation to establish the minimum threshold required for ecosystem function.	Scientific Investiation	
			Manage water release from hydro-electric dams in accordance with natural requirements	Legislative/ Regulatory	
			Manage water usage for agriculture and other uses in order to maintain more natural river water level and prevent detrimental impact on the ecosystem	Legislative/ Regulatory	
			Develop a regional commission with appropriate policy/legal basis to monitor regional water quantity and quality	Policy	
			Implement regional EIA for water management projects, perhaps through the ESPOO Convention, to enhance broad stakeholder involvement in major water projects	Legislative/ Regulatory	
			Develop regional basin water management plan of action	Policy	
			Strengthen the capacity of institutions to implement regional basin water management plan of action.	Institutional Strengthening	
	Achieve sustainable fisheries development by 2012	Strengthen legal basis	Assure that legislation regulating fishing gear, quotas, size limits, seasons and allowed fishing areas are in place	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient scientific capacity; Insufficient regional agreements; Inadequate institutions
			Strengthen enforcement of quotas, size limits, seasons, etc., relying on community-based fishery management activities	Policy	
			Help harmonize fishing regulations amongst Volta River Basin countries	Policy	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Strengthen capacity of institutions to enforce fisheries regulations	Institutional Strengthening	
			Establish "no take zones" either geographically or seasonally	Legislative/ Regulatory	
			Establish criteria for "healthy" fisheries situation	Scientific Investigation	
		Develop site-specific or species-specific management plans that promote sustainable utilization and protect nursery or reproduction areas	Develop management plans, and implement and monitor them with local communities and user groups	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient economic incentives; Inadequate institutions
			Strengthen capacity of local communities to implement and monitor management plans	Institutional Strengthening	
		Provide alternative technologies	Develop and demonstrate mechanisms to reduce by- catch	Policy	Inadequate technology
	Arrest wetland loss by 2012	Fill gaps in knowledge of priorities in protecting wetlands	Undertake inventory of selected wetlands sites in the basin to establish extent and condition of habitat and management challenges	Scientific Investigation	Insufficient scientific capacity; Insufficient knowledge/ understanding
		Strengthen regional legal basis for protection of wetlands	Review, harmonize, and strengthen relevant local, national, regional, and international legislation and conventions relevant to the conservation and management of wetlands	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient regional agreements
		Develop management plans for selected wetlands sites of global and ecological importance by 2007	Develop national wetlands management strategies/ plans/ frameworks (including community participation and empowerment)	Policy	Inadequate legal/ regulatory basis; Inadequate human capacity; Inadequate institutions
			Strengthen the capacity of local conservation groups to conserve wetlands	Institutional Strengthening	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
	Begin implementation of riverine biodiversity conservation strategy by 2008	Develop and implement regional biodiversity strategy	Prepare a regional biodiversity strategy document, including a gap analysis, and obtain endorsement by riparian states	Policy	Insufficient regional agreements; Inadequate water basin management; Insufficient knowledge/ understanding
			Implement biodiversity strategy, including species specific action plans	Scientific Investigation/ Investment	
		Prevention of adverse human activity on sensitive areas	Evaluate sensitivity of areas and habitats in the Volta River Basin and evaluate levels of human impacts on them	Scientific Investigation	Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis
			If necessary, develop legislation for the protection of areas not currently covered or included in protected zones	Legislative/ Regulatory	
			Develop and implement action plans for those sensitive areas where human impact is adverse	Investment	
		Reduce impacts of agriculture, land grazing, and hunting on loss of biodiversity	Implement alternatives to agricultural expansion, unchecked grazing, and poor hunting practices, including bushfires and poaching, to conserve biodiversity	Investment	Insufficient economic incentives
Stabilized high- quality freshwater supplies	Achieve adequate freshwater quantity by 2012	Rationing of water use through international agreements on shared water basins	Review and strengthen existing regional river system agreements; develop new agreements	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient knowledge/ understanding; Insufficient economic incentives; Inadequate water basin management

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Harmonize environmental and economic policy regarding water use	Policy	
			Monitor supply and quality of water in major rivers	Investment	
			Prepare environmental impact assessments (EIAs) for major investments that may affect water quantity or quality	Investment	
			Support freshwater resource tenure and valuation	Investment	
	Achieve adequate groundwater quality and quantity by 2012	Fill gaps in knowledge	Develop common guidelines for periodic assessment of groundwater quality and quantity trends	Scientific Investigations	Insufficient scientific capacity; Insufficient knowledge/ understanding
			Develop and implement a groundwater quality trend monitoring programme	Investment	
			Conduct the first periodic assessment of groundwater quality and its trends	Investment	
			Evaluate sustainable groundwater use rates, and appropriate monitoring systems	Scientific Investigations	
		Improve efficiency and availability of high-quality well water	Based on the sustainable groundwater use rates, improve water extraction and transport systems to rural and urban areas	Investment	Inadequate technical infrastructure; Insufficient economic incentives; Insufficient demonstration projects
			Institute a water use fee structure for all water users	Investment	
		Reduce evaporative losses in drainage basin	Rationalize the use of small dams and barrages for local communities	Policy	Inadequate technical infrastructure
			Revegetate (reforest, replant) the drainage basin to increase natural evapotranspiration processes	Investment	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
Sustainable land use	Reduce rate of land degradation by 20% by 2012	Strengthen regional legal basis for preventing land degradation	National review of policy, legal, and regulatory frameworks, and institutional structure for addressing land-based activities (including international conventions such as climate change)	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Insufficient regional agreements; Low government priority on environment
			Draft Regional EIA process review in a regional workshop; adopt regional EIA	Legislative/ Regulatory	
			Develop realistic National Plans of Action for land- based sources and activities	Capacity Building	
			Develop common regional guidelines containing appropriate recommendations for decision makers for management of land-based point and non-point pollutant sources	Scientific Investigation	
			Strengthen capacity of institutions to implement National Plans of Action and EIA process review	Institutional Strengthening	
		Strengthen monitoring capacity for evaluating land degradation rates	Develop a regional commission with appropriate policy/legal basis to monitor regional land degradation	Policy	Insufficient regional agreements; Inadequate training; Inadequate human capacity; Inadequate institutions
			Develop training and educational programs to train regional personnel on monitoring and use of GIS as a planning tool	Capacity Building	
			Develop regional and national institutions to perform ongoing monitoring of land degradation, including geographic areas, causes, and rates	Investment	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Involve stakeholders, including NGOs and natural resource users, by communicating the results of monitoring and communicating alternative strategies for resource use	Capacity Building	
		Determine and satisfy training needs in region for land-based activities and sources	Conduct survey on training needs and conduct training on land-based activities and sources (for high officials, mid-level government, community, resource users, experts, industry, etc.)	Capacity Building	Inadequate training; Inadequate human capacity
		Improve Stakeholder knowledge of causes of land degradation, and involve the stakeholders in its solution	Develop outreach and public awareness program regarding land degradation	Investment	Insufficient knowledge/ understanding
			Create community-based agent network to educate and advise stakeholders on alternatives to traditional, harmful activities causing land degradation	Investment	
		Develop educational programs at all levels on land-based activities and sources	Conduct survey on educational needs to support reduction of land-based activities and sources and implement the activities to address three top priority regional educational needs, in appropriate languages	Capacity Building	Insufficient knowledge/ understanding; Inadequate training; Inadequate technology
			Develop necessary training at different levels on public awareness, applying Best and Cost Effective Technology, Best Agricultural Practices, Integrated Pest Management, increasing irrigation efficiency and fertilizer use, etc.	Capacity Building	
		Develop Regional/ Governmental/ Private Sector partnerships on LB activities and sources	Integrate private sector into activities of this project, as appropriate, as sub-contractor, consultant, or cosponsor of specific activities	Policy	Insufficient economic incentives
		Strengthen legal basis and institutional capacity to reduce impacts of agriculture and animal husbandry	Develop and enforce land use codes for agriculture and animal husbandry	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Inadequate institutions

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Strengthen institutional capacity to support rangeland management; develop community rangelands	Institutional Capacity	
		Develop programs to reduce impacts of agriculture and animal husbandry	Riparian countries agree to a list of banned agrochemicals and develop a program to destroy stored banned products	Legislative/ Regulatory	Insufficient regional agreements; Inadequate training; Inadequate legal/ regulatory basis; Inadequate technology; Insufficient scientific capacity
			Riparian countries agree on limits to the application of agrochemicals and develop strategies to encourage the sustainable use of organic manure fertilizer	Legislative/ Regulatory	
			Riparian countries agree on regional controls on bushfires for agriculture, pasturage, and hunting, and enforce the controls	Policy	
			Conduct training courses at farmer and industry level to apply the most appropriate and new findings in their practice by 2008	Capacity Building	
			Strengthen and enforce regulations on the disposal of animal waste	Legislative/ Regulatory	
			Develop more efficient ways to use existing land, increasing yields through better land management, crop rotation, or crop selection	Investment	
			Develop basin-wide corridors for seasonal migration of livestock through adjacent countries, based on historical common use zones	Policy	
			Develop community-based agricultural/ animal husbandry networks for transfer of technology and best practice	Institutional Strengthening	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
, and the second			Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of agriculture and animal husbandry, including protection objectives. Broadly disseminate the results to rural inhabitants.	Investment	
		Establish and maintain a network of well-managed protected areas in the Volta River Basin	Establish a functioning regional protected area working group for protection and management functions, financial arrangements, recommending new protected areas and addressing management of protected areas located along international borders	Institutional Strengthening	Inadequate institutions; Insufficient regional agreements; Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Insufficient economic incentives; Inadequate training; Insufficient scientific capacity
			Obtain government endorsement for the recommended protected areas	Policy	
			Evaluate the priority targets for protection in each protected area and how these fit into regional priorities	Scientific Investigation	
			Review and propose revisions for national legislation on protected areas to permit environmentally friendly uses of the protected areas Allocate a zone within protected areas or adjacent to	Legislative/ Regulatory Legislative/	
			them for ecotourism activities Provide training in national protected area management and development of ecotourism	Regulatory Capacity Building	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Reduce poaching in protected areas by ensuring that legislation regulating hunting equipment, quotas, seasons and allowed hunting areas are in place and strengthening enforcement of these regulations	Legislative/ Regulatory	
			Increase stakeholder participation, including community ownership, of protected areas	Capacity Building	
			Establish regional and national capacities to monitor, examine causes, and map (using GIS) geographic locations of protected areas, including protection objectives. Broadly disseminate the results to rural inhabitants.	Investment	
		Reduce rates of deforestation	Identify main contributors to deforestation, including public and private sector, as well as legal and regulatory failures	Scientific Investigation	Insufficient demonstration projects Insufficient economic incentives; Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Inadequate human capacity
			Identify alternative sources for products historically produced from forests, and link with appropriate incentives and disincentives	Scientific Investigation	
			Identify means to increase efficiency and reduce waste in use of forest products, through demonstration projects	Investment	
			Establish legislation to reduce rates of deforestation based on economic incentives and disincentives	Legislative/ Regulatory	
			Establish reforestation programs and begin their implementation in affected areas, at village, community, national, and regional levels	Investment	

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Establish regional and national capacities to monitor, examine causes, and map (using GIS) rates and geographic locations of deforestation and reforestation. Broadly disseminate the results to rural inhabitants.	Investment	
		Reduce rates of loss of land to desertification	Increase awareness of local populations of the desertification process, perhaps working through existing mechanisms	Capacity Building	Insufficient knowledge/ understanding; Inadequate legal/ regulatory basis; Insufficient scientific capacity; Insufficient demonstration projects
			Improve legal basis in each country for combating desertification, including: criteria to define land degradation; amended laws on forestry, water resources and land; and, strengthened legal mechanisms such as EIA and planning procedures	Legislative/ Regulatory	
			Develop a desertification monitoring system and widely disseminate results	Capacity Building	
			Demonstrate ways to reverse desertification	Investment	
		Reduce land degradation due to mining	Evaluate national legislation addressing mining and use of non-living resources	Scientific Investigation	Inadequate legal/ regulatory basis; Inadequate intersectoral coordination; Insufficient regional agreements; Insufficient demonstration projects

Environmental Quality Objectives	Targets	Activities	Interventions	Type of Intervention	Root Cause
			Create regional working group on land degradation due to mining, and recommend specific common regional improvements to policy and legislation	Policy	
			Implement recommendations of regional working group in national laws and regulations	Legislative/ Regulatory	
			Perform demonstration projects of ways to avoid adverse environmental impacts of mining	Investment	
		Develop culturally-adapted improvements to land tenure systems/property rights in the region	Perform investigation of the policy, legal, and cultural basis for land tenure policies in the Volta River Basin	Scientific Investigation	Inadequate legal/ regulatory basis; Insufficient economic incentives
			Develop more effective methods of land tenure to reduce tendency for migration to fresh lands, and to encourage "investment" in lands (e.g., efficient irrigation, improved crop methods)	Policy	
			Implement environmentally sustainable land tenure systems in the region, perhaps as a "special planning zone"	Investment	
	Reduce coastal erosion rates by 25% by 2012	Fill gaps in knowledge	Conduct assessment of the effects of Akosombo Dam on coastal erosion on the Gulf of Guinea coast	Scientific Investigation	Insufficient knowledge/ understanding
		Develop coastal erosion management plan through a participatory process	Promote environmental and community-based tourism	Capacity Building	Insufficient economic incentives; inadequate human capacity
		Strengthen legal basis for protection of coastline	Review, harmonize and strengthen relevant local and national policies and legislation regarding coastal zone and river basin management	Legislative/ Regulatory	Inadequate legal/ regulatory basis; Inadequate intersectoral coordination

Appendix A

List of Abbreviations

ACOPS Advisory Committee on Protection of the Sea

BOD Biological Oxygen Demand CAF Center for Africa Wetlands

CILSS Comité Permanent Inter Etats de Lutte Contre la Sécheresse

CITES Convention on International Trade in Endangered Species of Wild Fauna

and Flora

DANIDA Danish International Development Agency
ECOWAS Economic Community of West African States

EPA Environmental Protection Agency EQO Environmental Quality Objective

FAO Food and Agriculture Organization of the United Nations

GDP Gross Domestic Product GEF Global Environment Facility

GEPRENAF Project for the Participative Management of Natural Resources and Fauna

GNP Gross National Product GWL Groundwater Laterite

GWP/WATAC Global Water Partnership/West African Technical Advisory Committee

ICARM Integrated Coastal Area and River Basin Management

ITCZ Inter-Tropical Coverage Zone
IUCN The World Conservation Union

LOICZ Land-Ocean Interactions in the Coastal Zones

MPPI Major Perceived Problem and Issue

NAP National Action Plan

NEPAD New Partnership for Africa's Development

NGO Non-Governmental Organization SAP Strategic Action Programme TDA Transboundary Diagnostic Analysis

UEMOA Economic and Monetary Union of West Africa
UNEP United Nations Environment Programme

UNESCO United Nations Educational, Scientific and Cultural Organization

UNIDO United Nations International Development Organization USAID Untied States Agency for International Development

VRA Volta River Authority

WACAF West and Central Africa Action Plan for Abidjan Convention
WARAP-IWRM Regional Action Plan for Integrated Water Resources Management

WHO World Health Organization

Appendix C

Bibliography

ACOPS. WGPI (Working Group on Programme on Interventions): WGPI-I (2001); WGPI-II (2002)

ACOPS. WGPIA (Working Group on Integrated Problem Analysis): WGPIA –I (2000); WGPI-II (2001); WGPI-III (2001).

Andreini M., Vlek, P. D. Nick van de Giesen, 2002. Water sharing in the Volta basin. FRIEND 2002 – Regional Hydrology: Bridging the Gap between Research and practice. IAHS Publ. No. 274.

Andreini M., van de Geisen, N., van Edig, A., Fosu, M. and W. Andah, 2000. Volta Basin Water Balance. ZEF Discussion Papers on Development and Policy No. 21.

Armah, A.K. and D.S. Amlao. 1998. Coastal Zone Profile of Ghana. Gulf of Guinea Large Marine Ecosystem Project. Ministry of Environment, Science and Technology. Accra, Ghana.

CONAGESE 10 BP 6486 Ouagadougou 10 – National Action Plan for the Fight Against Desertification, Burkina Faso – 1999.

Cote d'Ivoire, 2001. Plan of Installation of the National Park of Comoé and of Development of its Periphery, 2002-2001.

Gyau-Boakye and P. Tumbulto, 2000. The Volta Lake and declining rainfall and streamflow in the Volta River basin. Environment, Development, and Sustainability, 2, 1 - 10.

GCLME. UNIDO/UNDP/NOAA/UNEP Guinea Current Large Marine Ecosystem, Review of Existing Information and Recommendations on Transboundary Priority Issues: Regional Report for Stocktaking Meeting, May 2001.

GCLME. INTEGRATED ENVIRONMENTAL AND LIVING RESOURCES MANAGEMENT IN THE GULF OF GUINEA – The Large Marine Ecosystem Approach. Proceedings of the first Regional Symposium on the Gulf of Guinea Large Marine Ecosystem. GOG (1998).

GCLME. PERSPECTIVES IN INTEGRATED COASTAL AREAS MANAGEMENT IN THE GULF OF GUINEA. Gulf of Guinea Large Marine Ecosystem Project. GOG (1998).

GCLME. STATE OF THE COASTAL AND MARINE ENVIRONMENT OF THE GULF OF GUINEA. Gulf of Guinea Large Marine Ecosystem Project. GOG (1998).

GCLME. TOWARDS INTEGRATED COASTAL ZONE MANAGEMENT IN THE GULF OF GUINEA. Gulf of Guinea Large Marine Ecosystem Project. GOG (1998).

GCLME. GEF: REGIONAL REPORT FROM THE STOCKTAKING WORKSHOP (May 2001)— PDF -B "Development of a Strategic Action Program (SAP) for the Guinea Current Large Marine Ecosystem (GCLME)"

Mali, 1983. Inventory Project of Terrestrial Resources.

Minister of Environment and Water (BURKINA FASO).- National Monograph on the Biological Diversity of Burkina Faso – Ouagadougou, February 1999.

Moniod, F., B. Pouyaud, and P. Sechet, 1977. Le Bassin du Fleuve Volta. Monogaphies Hydrologiques Orstom, No. 5. Paris.

Nathan Consortium, 1970. Framework for River Basin Planning. Ghana Sector Studies. Interim Report for Ministry of Finance and Economic Planning.

Nicholson, S.E., 1983. Sub-Saharan rainfall in the years 1976 - 80: Evidence of continued drought. Monthly Weather Review. III. 1646 - 1654.

Opoku-Ankomah, Y., 2000. Impacts of Potential Climate Change on River Discharge in *Climate Change Vulnerability and Adaptation Assessment on Water Resources of Ghana*. Water Research Institute (CSIR), Accra. Ghana.

Opoku-Ankomah, Y., 1998. Volta Basin System Surface Water Resources in Water Resources Management Study. Information Building Block. Part II, Vol. 2. Ministry of Works and Housing. Accra. Ghana.

UNEP, 2001. Ghana Country Report for the Integrated Management of the Volta River Basin Project, Accra.

UNEP, 2001. Mali Country Report for the Integrated Management of the Volta River Basin Project, Accra.

UNEP, 2001. Togo Country Report for the Integrated Management of the Volta River Basin Project, Accra.

UNEP, 2001. Benin Country Report for the Integrated Management of the Volta River Basin Project, Accra.

UNEP, 2001. Burkina Faso Country Report for the Integrated Management of the Volta River Basin Project, Accra.

UNEP, 2001. Cote d'Ivoire Country Report for the Integrated Management of the Volta River Basin Project, Accra.

UNEP, 2001. Report of the first Regional Meeting of the National Coordinators for the Preparatory Process of a full GEF Project Proposal, Accra, Ghana, June 5-8.

UNEP, 2001. Some Technical Information and country Reports, Integrated Management of the Volta River Basin, PDF B. Accra, Ghana, June, 5 - 8.

UNEP, 2001. Presentations on other Initiatives. First Regional Meeting of the National Coordinators. Integrated Management of the Volta River Basin, PDF B. Accra, Ghana, June 5 – 8.

UNEP, 2001. Proceedings of the first Steering Committee Meeting. Integrated Management of the Volta River Basin. Accra, Ghana, June 8, 2001.

UNEP, 2001. Report on the Second Regional Meeting of the National Coordinators. Integrated management of the Volta River Basin, PDF B. Accra, Ghana, November 27-30.

UNEP, 2001. Some technical Information. Second Regional Meeting of the National Coordinators. Integrated Management of the Volta River Basin, PDF B. Accra, Ghana November 27 – 30.

UNEP, 2001. Proceedings of the Second Steering Committee Meeting. Integrated Management of the Volta river Basin. Accra, Ghana, November 30.

UNEP, 1999. Regional Seas Reports and Studies No. 171, "Overview of Land-based Sources and Activities Affecting the Marine, Coastal and Associated Freshwater Environment in the West and Central African Region."

UNEP/GEF/VOLTA/SCM.1/1, 2001. Proceedings of the First Steering Committee meeting. Accra.

UNEP/GEF/VOLTA/SCM.2/1, 2001. Proceedings of the Second Steering Committee meeting. Accra.

UNEP/GEF/VOLTA/NCM.1/1, 2001. Report of the First Regional Meeting of the National Coordinators for the preparatory process of a full GEF project proposal. Accra.

UNEP/GEF/VOLTA/NCM.2/1, 2001. Report of the Second Regional Meeting of the National Coordinators. Accra.

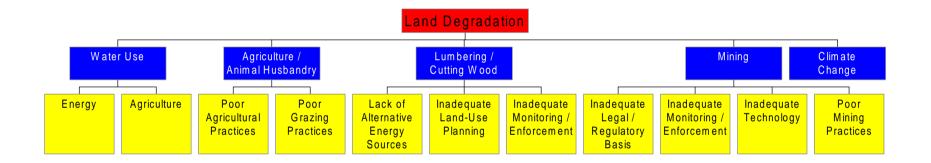
Water Resources Management Study (WARM), 1997. Information Building Block, Part III, Vol. 1.

World Bank.. World Development Report 2000/2001.

Appendix B

Casual Chain Analysis

Table of Contents


Figure B-1.	MPPI #1: Land Degradation	2
Figure B-2.	MPPI #1: Land Degradation	3
Figure B-3.	Primary Cause of Land Degradation: Agriculture / Animal Husbandry	4
Figure B-4.	Primary Cause of Land Degradation: Lumbering / Cutting Wood	5
Figure B-5.	Primary Cause of Land Degradation: Mining	6
Figure B-6.	MPPI #2: Water Scarcity	7
Figure B-7.	Primary Cause of Land Degradation: Water Use Primary Cause of Land Degradation: Agriculture / Animal Husbandry. Primary Cause of Land Degradation: Lumbering / Cutting Wood. Primary Cause of Land Degradation: Mining MPPI #2: Water Scarcity Primary Cause of Water Scarcity: Declining Precipitation Primary Cause of Water Scarcity: Increased Evaporation Primary Cause of Water Scarcity: Increased Grazing. Primary Cause of Water Scarcity: Increased Population MPPI #3: Loss of Biodiversity.	8
Figure B-8.	Primary Cause of Water Scarcity: Increased Evaporation	9
Figure B-9.	Primary Cause of Water Scarcity: Increased Grazing	10
Figure B-10.	Primary Cause of Water Scarcity: Increased Population	11
i iguic D i i .	141 1 1 1/3. E000 01 Blodivelsity	12
Figure B-12.	MPPI #4: Flooding	13
Figure B-13.	MPPI #5: Water – Borne Diseases	14
Figure B-14.	MPPI #6: Growth of Aquatic Weeds MPPI #6: Growth of Aquatic Weeds MPPI #7: Coastal Erosion.	14
Figure B-14.	MPPI #6: Growth of Aquatic Weeds	15
Figure B-15.	MPPI #7: Coastal Erosion	16
Figure B-16.	MPPI #8: Water Quality Degradation	17
Figure B-17.	Summary	18

Recurring blocks are only detailed once where they first occur, and then are referenced where appropriate. These include:

- 1. Poor Irrigation Practices
- 2. Inadequate Water Basin Management
- 3. Inadequate Enforcement / Monitoring
- 4. Inadequate Political Will
- 5. Insufficient Government Budget
- 6. Insufficient Regional Cooperation

Figure B-1. MPPI #1: Land Degradation

Causal Chain Analysis

Primary causes of land degradation are detailed on the following pages.

Figure B-2. Primary Cause of Land Degradation: Water Use

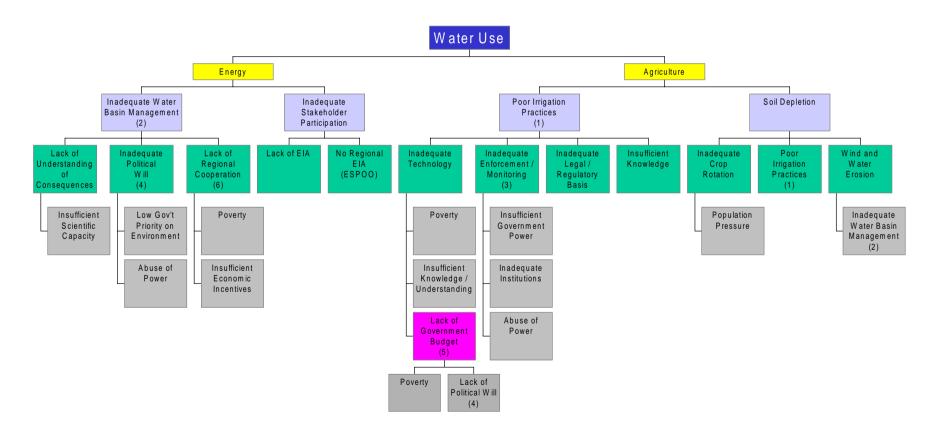


Figure B-3. Primary Cause of Land Degradation: Agriculture / Animal Husbandry

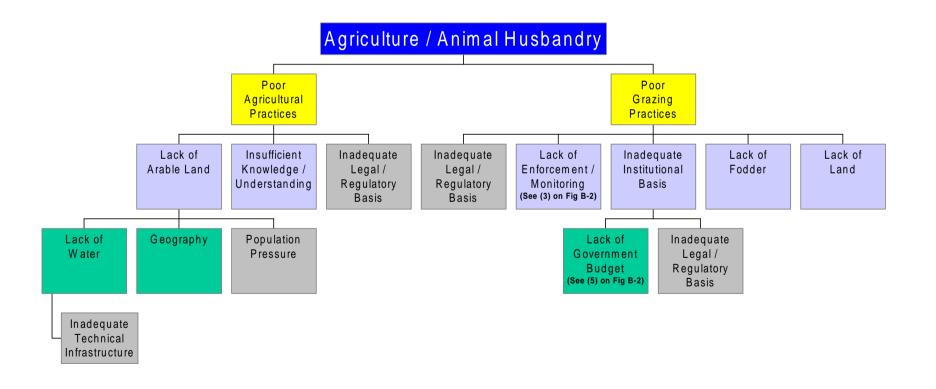


Figure B-4. Primary Cause of Land Degradation: Lumbering / Cutting Wood

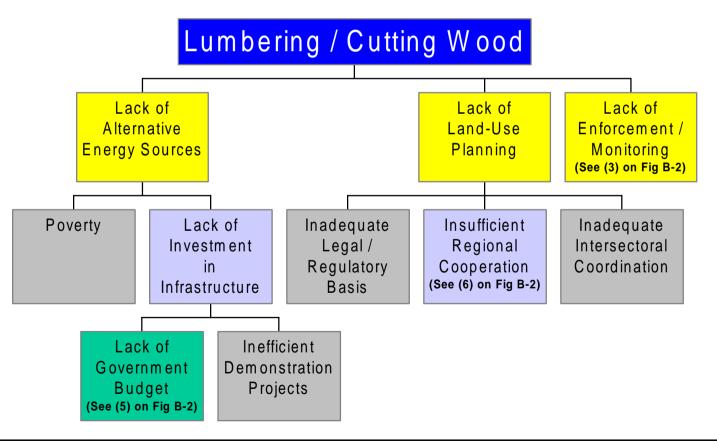


Figure B-5. Primary Cause of Land Degradation: Mining

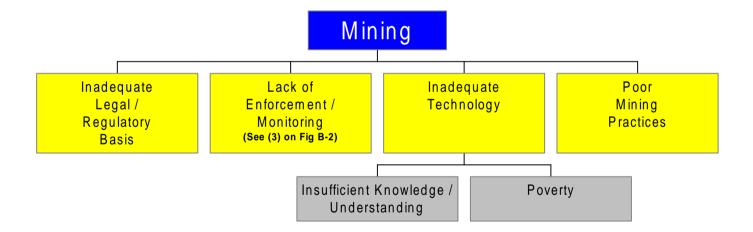


Figure B-6. MPPI #2: Water Scarcity

Primary causes of water scarcity are detailed on the following pages.

Figure B-7. Primary Cause of Water Scarcity: Declining Precipitation

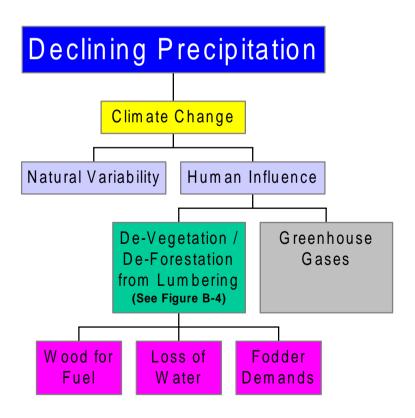


Figure B-8. Primary Cause of Water Scarcity: Increased Evaporation

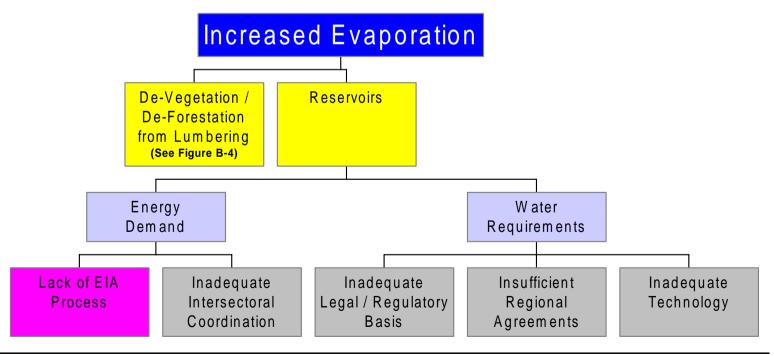


Figure B-9. Primary Cause of Water Scarcity: Increased Grazing

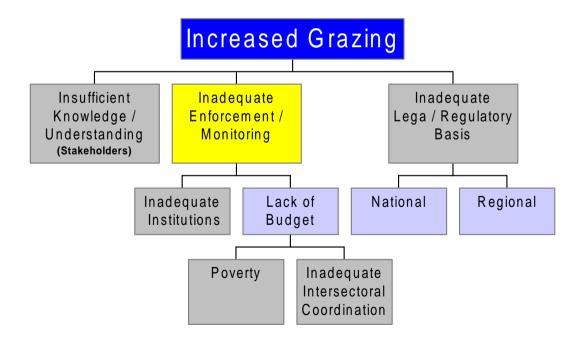


Figure B-10. Primary Cause of Water Scarcity: Increased Population

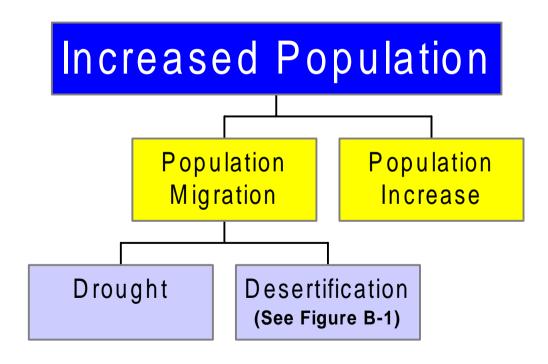


Figure B-11. MPPI #3: Loss of Biodiversity

Loss of Biodiversity

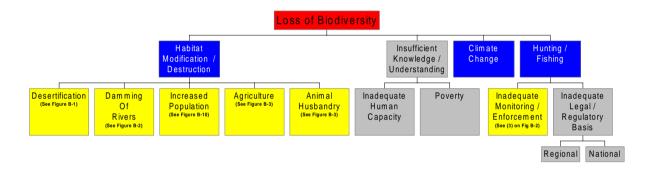


Figure B-12. MPPI #4: Flooding

Flooding Causal Chain Analysis

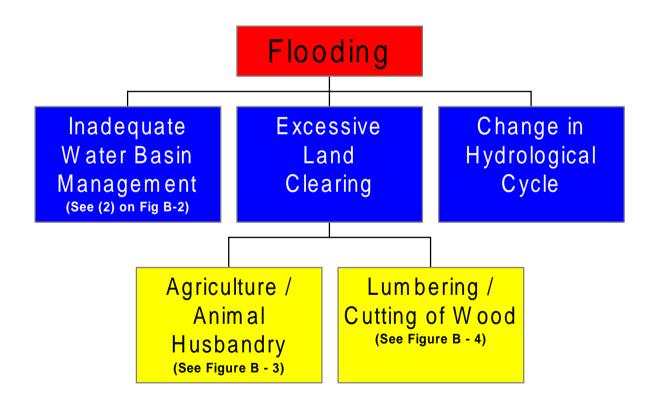


Figure B-13. MPPI #5: Water – Borne Diseases

Water – Borne Diseases



Figure B-14. MPPI #6: Growth of Aquatic Weeds

Growth of Aquatic Weeds

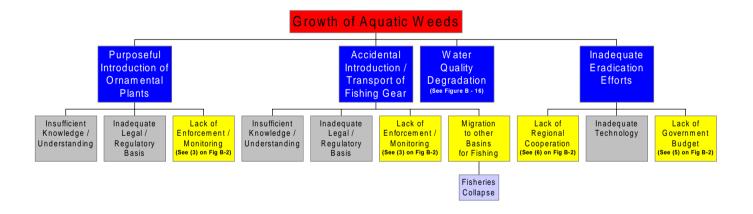


Figure B-15. MPPI #7: Coastal Erosion

Coastal Erosion

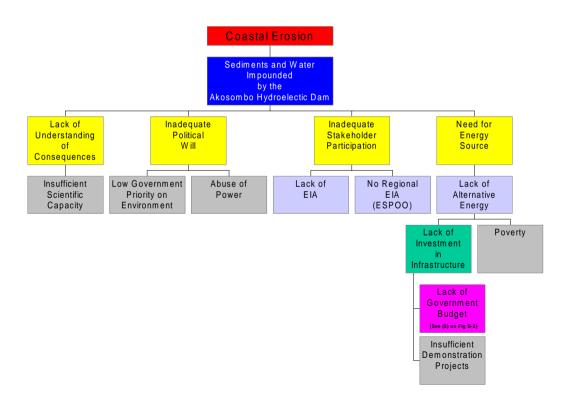
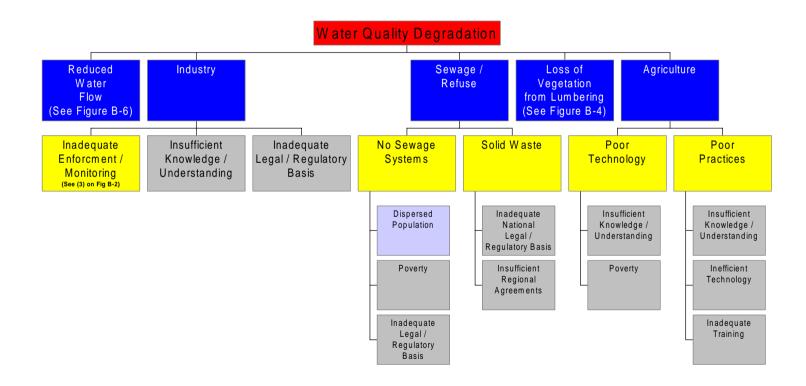



Figure B-16. MPPI #8: Water Quality Degradation

Water Quality Degradation

Figure B-17. Summary

Common Major Root Causes for the Volta River Basin

- Insufficient scientific capacity
- Low government priority on environment
- Abuse of power
- Poverty
- Insufficient knowledge / understanding
- Population pressure
- Inadequate legal / regulatory basis
- Inadequate technical infrastructure
- Insufficient demonstration projects
- Inadequate intersectoral coordination
- Insufficient economic incentives
- Inadequate political will
- Inadequate water basin management
- Insufficient regional agreements
- Drought
- Inadequate human capacity
- Inadequate institutions
- Inadequate technology
- Insufficient government power
- Inadequate training

Volta Annex F Public Involvement Plan Summary

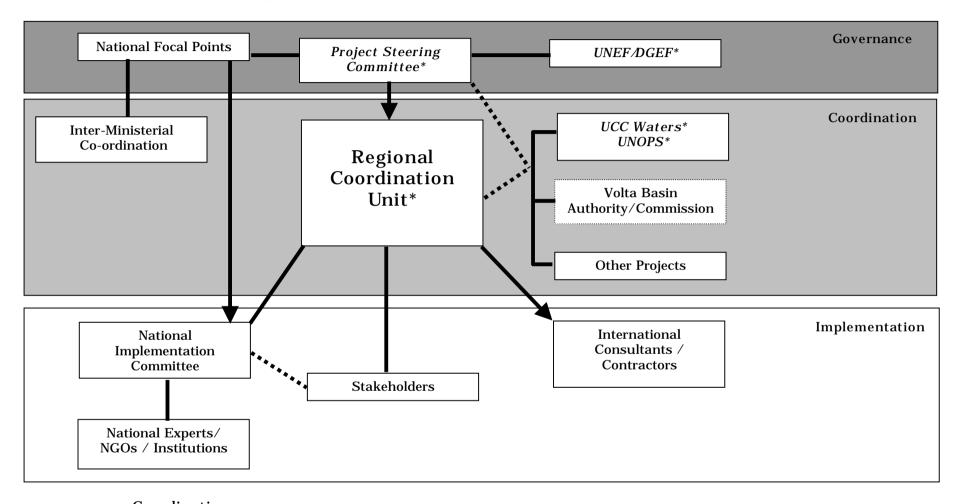
Effective stakeholder participation in project implementation plan is essential for enhancing the social, environmental, and financial sustainability of projects. For any project, stakeholders generally include recipient country governments, implementation groups, project executing agencies, groups contracted to conduct project activities at various stages of the project, and other groups in the civil society, which may have an interest in the project. Stakeholders who will be involved in the Volta Basin project would include the national and local governments of the participating countries, the private sector, the scientific community, non-governmental organizations, environmental and advocacy groups, local communities, and business organizations. Developing strategies for incorporating stakeholder participation throughout the project cycle is particularly necessary in projects as it ensures transparency in the planning and execution of project activities.

Objective I of the project document entail activities for public involvement: "Achieve sustainable capacity and regional institutional framework for the effective management of the Volta Basin". Here specific subcomponents are directed at stakeholder involvement. These include identifying, strengthening and involving stakeholders. Activities for achieving this subcomponent will involve preparing a public participation and awareness plan for the project and implementing the Workplan through committees of, including NGOs, natural resource users and other interested parties. There will also be training at different levels to increase stakeholder knowledge in causes, effects and control of land degradation along the Volta basin. Capacity strengthening through workshops and the integration of private sector into the activities of the project will also be accomplished. Regional specialists will carry out much of these activities, with annual reviews on the progress of implementing the Stakeholder/Public Involvement plan, by an independent consultant.

Under Objective 1, the stakeholder activities have been clearly delineated, however stakeholder outreach and involvement is critical for each of the three objectives and the overall success of the projects as defined by stakeholder ownership and the long-term sustainability of the project.

A summary of how different stakeholders will be involved in the Volta basin project is given in the table below.

STAKEHOLDER	INVOLVEMENT
National governments	Consultation, implementation, steering
	committees, international conventions, policy,
	legislation, investment, capacity development,
	public-private partnerships, institutional reform
Local government	Consultation, implementation, coastal
	management, capacity development, public-
	private partnerships, national steering
	committees.
Private sector: including fishermen, fishing	Consultation, technology and financial
companies, mining, inland shipping transport	investment, public-private partnerships,
industry, etc.	steering committees and management advisory
	committee membership, participation in TDA /
	SAP process, post-SAP implementation phase.
Scientific community	Consultation, research, information technology,
	risk assessment, monitoring, training


STAKEHOLDER	INVOLVEMENT
Non-governmental organizations	Consultation, implementation, public awareness, steering committees and management advisory committee membership, training, participation in the TDA / SAP process
Chiefs and traditional authorities, community-	Consultation, monitoring, training, community
based organizations, youth and women groups	mobilization
Environmental advocacy groups	Workshops, training, seminars, public
	awareness
People's organization	Community mobilization, habitat protection

In view of the fact that the purpose of the project, among others things, is to foster partnerships, there is an urgent need for the integration of relevant stakeholders early into project implementation. The idea is to identify and develop the role and specific contribution to be made by each interest group within the project framework.

VOLTA ANNEX G LIST OF PUBLICATIONS PREPARED DURING THE PDF-B

- UNEP, 2002. Volta River Basin Preliminary Transboundary Diagnostic Analysis, Accra, Ghana, June.
- UNEP, 2002. Volta River Basin Preliminary Strategic Action Programme, Accra, Ghana, June.
- UNEP, 2002. Ghana Country Report for the Integrated Management of the Volta River Basin Project, Accra.
- UNEP, 2002. Mali Country Report for the Integrated Management of the Volta River Basin Project, Accra.
- UNEP, 2002. Togo Country Report for the Integrated Management of the Volta River Basin Project, Accra.
- UNEP, 2002. Benin Country Report for the Integrated Management of the Volta River Basin Project, Accra.
- UNEP, 2002. Burkina Faso Country Report for the Integrated Management of the Volta River Basin Project, Accra.
- UNEP, 2002. Cote d'Ivoire Country Report for the Integrated Management of the Volta River Basin Project, Accra.
- UNEP/GEF/VOLTA/NCM.2/1, 2001. Report on the Second Regional Meeting of the National Coordinators. Integrated Management of the Volta River Basin, PDF B. Accra, Ghana, November 30, 2001.
- UNEP/GEF/VOLTA/NCM.2/1 2/4 INFO, 2/11 2/14 INFO, 2001. Some Technical Information. Second Regional Meeting of the National Coordinators. Integrated Management of the Volta River Basin, PDF B. Accra, Ghana November 30, 2001.
- UNEP/GEF/VOLTA/NCM.2/1, 2001. Proceedings of the Second Steering Committee Meeting. Integrated Management of the Volta River Basin. Accra, Ghana, November 30, 2001.
- UNEP/GEF/VOLTA/SCM.1/1, 2001. Proceedings of the First Steering Committee Meeting. Integrated Management of the Volta River Basin. Accra, Ghana, June 8, 2001.
- UNEP/GEF/VOLTA/NCM.1/1, 2001. Report of the First Regional Meeting of the National Coordinators for the preparatory process of a full GEF project proposal. Integrated Management of the Volta River Basin. Accra, Ghana, June 8, 2001.
- UNEP/GEF/VOLTA/NCM.1/1 INFO –1/9 INFO, 2001. Some Technical Information and Country Reports. Integrated Management of the Volta River Basin. Accra, Ghana, June 8, 2001.
- UNEP/GEF/VOLTA/NCM.1/10 INFO 1/14 INFO, 2001. Presentations on Other Initiatives. Integrated Management of the Volta River Basin. Accra, Ghana, June 8, 2001.

ANNEX H Institutional Arrangements

Coordination Reporting *Tri-Partite Review Process

A line with no arrows indicate the relationship goes both directions