

Equitable Payment for Watershed Services-EPWS:

Ecosystem Based Approach in Water Resource Management.

A case of Lake Naivasha Basin, Kenya

2nd Targeted Regional Workshop for GEF-IW Projects in Africa November 12-15, 2012

UN Convention Centre; Addis Ababa, Ethiopia

Josephat Mukele Nyongesa

WWF-Kenya

Cell: +254(0)722990670 +254(0)735710863

Email: nyongesajm@yahoo.com

Presentation layout

☐ Introduction

- ☐ Basin Ecosystem Services
- PES Concept and Approach
- ☐ Some of the Results
- ☐ PES Conclusions and Lessons

Introduction

☐ L. Naivasha Basin features

- Basin coverage: 3,400 Km²
- Altitude; 1,860-3906m
- Rainfall 600mm around the lake and1700mm on Aberdare ranges
- Basin Population 650,000 people
- Socio-economics; Agric, tourism, geothermal, livestock, fishing, off-farm SMEs
- Naivasha local GDP KSh 40 billion (2% 3% of Kenyan GDP)

Lake Naivasha Basin Environmental issues

☐ What are Basin Wide concerns?:

- Catchment degradation
- Unsustainable land mgt
- Siltation of water bodies
- Increased pollution
- Declining water inflows
- Lake water Levels fluctuation and invasive species
- Weak policy enforcement

Drivers Population growth-Unsustainable Development Diminishing Livelihoods Weak institutional framework

EPW mechanism for Watershed Management

☐ Why EPWS Solution?

Manage ecosystems-maintain supply of ES goods and services

- Improve water quality and quantity
- Improve livelihoods
- Investments
- Protect biodiversity
- ☐ EPWS Naivasha initiated through WWF-CARE Kenya joint partnership

Section of flower farms around Lake Naivasha

Targeted Ecosystem Services-Hydrological Quesn?

- ☐ Watershed services-Form of PES concept in Naivasha
- □4Broad Categories of ES:(Millennium Ecosystem Assessment, 2005)

Business Question?

☐ A market based voluntary scheme: ES stewards sell ES to buyers/beneficiaries

Mechanism (Incentive approach)

- Involves land use transformations by the upstream farmers
- ✓ rehabilitation & maintenance of riparian zones,
- ✓ grass strips,
- √ terracing along steep slopes,
- ✓ reduction in fertilizer & pesticide use
- √ tree planting along riparian land
- Contract: sellers-Buyers sign binding agreement

Phased Approach

Three phased Approach:

- Phase 1; feasibility assessment.
- ✓ Hydrological; socio-economic: identify ES buyers/sellers, HHs characteristics, farm activities, PWS potential; CBA: business case
- Phase 2; implementation; initiating PES on a pilot scale
- ✓ Engage community in land transformation, build local capacity, EIA M&E, incentives
- Phase 3; scale-up exit
- ✓ Project scale-up, Institutionalise PES, long term PES contracts, learning and sharing, intermediaries exit

Hydrology Study: Sub-basin Selection Criteria

- ☐ Water yield from sub basins
 - Total water yield
 - surface water yield
 - Groundwater contribution to flow
- ☐ Sediment yield from sub basins

- ☐ Also considered
 - Population density and poverty
 - Land use/ land cover dynamics
 - Potential buyers and sellers
- ☐ Hotspot farms selection; Steep-slopes exceeding 35%,Lack of protection or very little soil protection activities; river bank cultivation; land ownership, willingness to participate

Feasibility studies

Hydrology-Results:

☐ Sub-basins significant to hydrological problem identified based on Soil Water Assessment Tool (SWAT) model- to predict impact of land Mgt practices on water, sediment and agro-chemical yields, (WWF, 2007)

Target	SWAT Subbasin	River	Area (Ha)	Surface Runoff (mm)	Groundwater discharge (mm)	Net water Yield(mm)	Sediment yield(tons/Ha)
1	39	River Wanjohi near Geta	700	82	369	483	62
	179	"	2074	55	198	327	50
	40	"	1906	34	213	286	31
3	84	Mkungi /Sasini	952	90	139	261	39
4	93	Kitirii/Rumaru	1418	90	159	253	10
2	166	Mkungi/Kangoya in Mkungi settlement	672	15	188	242	12
5	123	Turasha near Engineer	639	84	39	201	61

Feasibility studies...

Cost benefit Analysis(CBA)

☐ Objective; to assess costs and benefits of PWS implementation

☐ CBA linked to core hydrological problem and land use changes-Lus

- ☐ Economic valuation tool; quantify stakeholders preference cost/benefits to change ecosystem status in monetary terms
- ☐ Approaches;
- Value Productivity change from change of ecosystem status; crops& livestock
- Restoration cost (Riparian Land, eroded land/soil infertility)
- Willingness to pay and to accept pay

Cost benefit Analysis(CBA)

- Choice Modelling; to prioritize LUC interventions-based on different characteristic
- Cost-benefit valuation of ES provision; opportunity cost, cost and benefit of the alternatives
- ☐ Techniques; Random sampling(for 3 sub-basins), Litt. Review, Mapping resources/current LU patterns, questionnaire, FGD, descriptive analysis; NPV computation
- ☐ CBA concern;
- ✓ Buyers: Are proposed LUCs efficient & have +ve significance to core problem?
- ✓ Sellers: Is PWS or PES effective and fair incentive to change land use practices?

Why Cost Benefit Analysis?-need for results

- ☐ Build/establish Business Case(BC); adopt PWS to changes Land use practices
- ☐ Base for buyer-seller agreement negotiations
- ✓ Justify Economic –Ecological opportunities to ES buyers and sellers (how they will both benefit)-for informed socio-economic decision making

☐ Value linkages; livelihoods-ecosystem-long term return on investment for ES buyer-business case/financial capital

☐ Determine willingness to sell and Willingness to pay

☐ So CBA will prove PES as *Eba* solution to water and land management

Cost Benefit Analysis...

☐ CBA computed (Fishers Effect)

$$NPV = \sum_{t=1}^{N} \left[\frac{NACF_{t}}{(1+k)^{t}} \right] - I$$

by expression: (1+r)(1+i) = (1+k), Where;

NPV= net present value,

N =sample size,

NACFt=net annual cash flow over period t=14 years (hypothetical project life)

k= nominal cost of capital weighted over the 14 year period,

i = average inflation rate and r= real cost of capital based lending rates

I= initial PES cash outlay-total cost

- ☐ Opportunity cost (I) computed: Ksh. 18,981.97/year/ one acre (WWF, 2007)
- ☐ NPV \$430 /acre/farmer/yr
- ☐ CBA established PWS a feasible mechanism (+NPV)

Farm characteristics and subjective measures of willingness to pay for water resource conservation (WWF, 2007)

	Minimu m Statistic	Maximum Statistic	Mean Statistic	Std. Error	Std Deviation Statistic
Expected cost of conservation in ksh/acre/year	0.00	150,000.00	16,686.89	4,096.12	31,991.73
Estimated loss in revenue by allocating land to conservation ksh/acre/year	0.00	200,000.00	18,981.97	4,853.48	37,906.91
Expected future private gain in ksh/acre/year	0.00	3,000,000.00	141,663.93	50,579.06	395,035.11
Amount willing to be given to conserve river water ksh/acre/year	0.00	250,000.00	54,688.54	7,560.30	59,047.86
Amount willing to be paid to change to agro forestry only ksh/acre/year	0.00	1,800,000.00	137,979.18	32,345.20	252,624.09
Amount willing to be paid to change to pasture only ksh/acre/year	0.00	800,000.00	95,204.92	16,691.62	130,365.68
Amount willing to be paid to change to strip cropping only ksh/acre/year	0.00	300,000.00	35,834.43	7,018.50	54,816.26
Amount to be paid to plant 10M of strip grass ksh/acre/year	0.00	400,000.00	74,368.85	11,835.13	92,435.29
Amount to be paid to plant 25M of strip grass ksh/acre /year	0.00	550,000.00	79,657.38	15,250.31	119,108.76
Amount to be paid to plant 100Mof strip grass ksh/acre /year	0.00	400,000.00	75,172.13	12,969.56	101,295.48

PES Sites Indentified

PES Project sub-basin targets

WWF., 2007

Pilot sites: Upper Turasha –Kinja WRUA (Turasha River and its tributaries) & Wanjohi –Geta WRUA (River Wanjohi & tributaries)

PES entry point and design

Current buyers

- LNGG-Lake Naivasha Growers Group
- -FBP-Flower Business Park
- -Maraju
- -Van Den Berg
- -Beauty Line

Potential buyers

- -NARUWASCO-Nakuru Water and Sanitation Company
- -KENGEN-Kenya Electricity Generating Company Limited
- -Hotels

Results

Strategic Partnerships - PES and Markets

- Redeemable for farm inputs
- Through selected agro-dealers
- ■Voucher value US\$ 17 /farmer (flat rate)
- ■Current PES farmers-785
- Contractual fulfillment

ES Buyers Incentives Equity contribution (Negotiation Bundles)

Categories based on Water use and Hotel Ratings		Water use M³ (per day)	Contribution- Ksh (per year)	
1.	Commercial water users;			
	Irrigators, ranchers	Over 750	250,000	
		250-750	150,000	
		Up to 250	80,000	
2.	Hotels and Camping sites-			
	categories are based on Hotel rating star rating	5 & 4	250,000	
	rating star rating	3 & 2	150,000	
		1 & not rated	80,000	
		Camps	80,000	

Results...

- ☐ Adoption of new farming technologies
- ☐ 1570 acres(800 Wanjohi;770 Upper Turasha) (under Sustainable land management practices: 785 farmers(400 Wanjohi; Upper Turasha385)
- ☐ Gender equity and involvement of marginalized community in socio-economic development

Results...

- □ Improved crop varieties, nutrition
- □40% increase in farm yield translating into improved livelihoods
- □Community gain Knowledge /Skills; Hay/Silage Making

Results... Monitoring

Soil build up along the grass strip-PES farm (Left) and Mature grass strips-notice s marked peg: less soil gets into the rivers(Right); water quality analysis (far Right)

Conclusion-Lessons

□ PES benefits both environmental stewards and beneficiaries, and therefore a sustainable mechanism for integrated ecosystem management through People private partnership)
 □ The more the ES sellers and buyers the greater the impact and success (indeed mutual agreements between sellers and buyers is indeed as perquisite)
 □ Equity, Efficiency and Effectiveness are key to PES sustainability
 □ Ecosystem changes can be realised in the long-run so the need for patience to realize impact
 □ Need to integrate PES in National Policy(s)

> Related links

- http://www.guardian.co.uk/global-development/video/2012/may/15/flower-kenya-lake-naivasha-video?INTCMP=SRCH
- http://gvn.panda.org/?c=1746&k=385e7fbe2b

Acknowledgement

2nd Targeted Regional Workshop for GEF-IW Projects in Africa

Special thanks to IUCN

