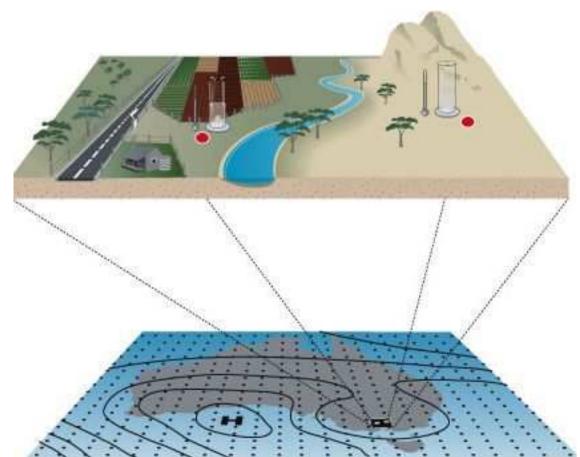
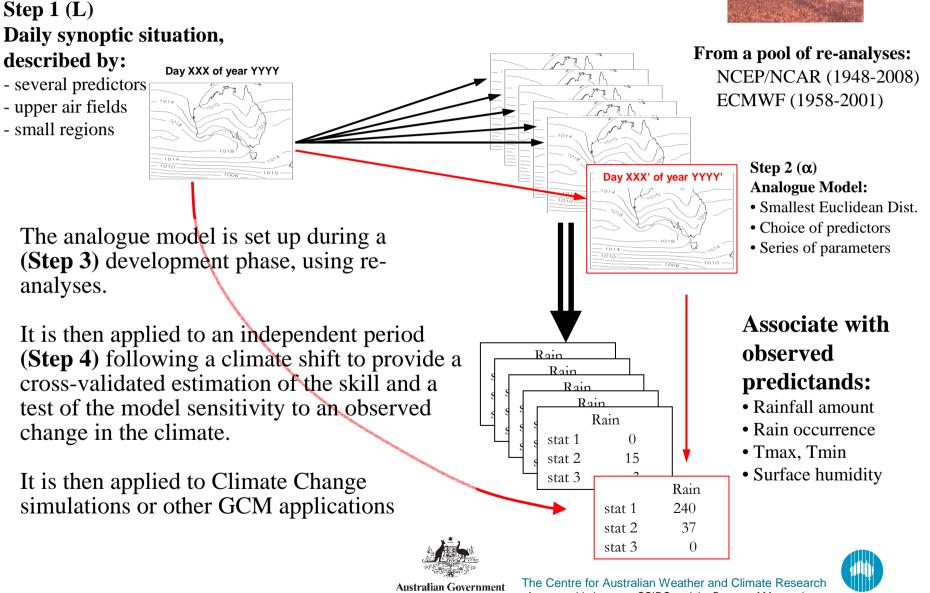
Downscaling climate change information potential hydrological applications and water management in the Murray-Darling Basin

Bureau of Meteorology, CAWCR 5th GEF-IWC, Cairns, Australia, October 2009

Australian Government Bureau of Meteorology


The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

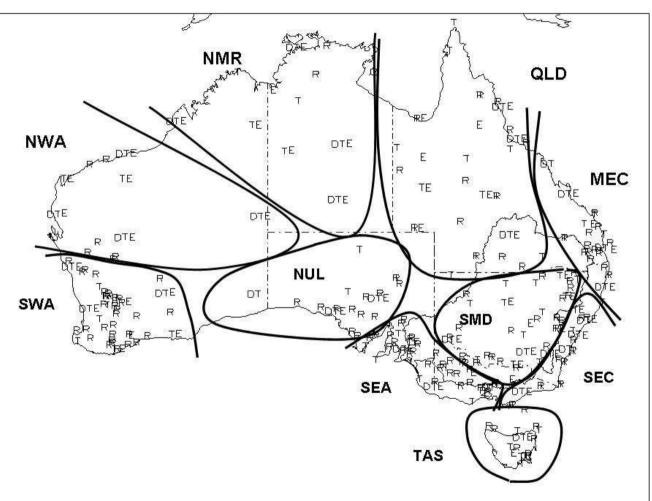

Statistical downscaling for Hydrological applications

Outline:

- Statistical downscaling: how do we do it?
- Application toward integrated hydrological impact assessments
- Need for *daily* site data that have the same statistics as observed
- Daily at-site data is used to drive models of natural resource systems
- Getting *daily* statistics correct is very important.
- GCMs provide grid-average

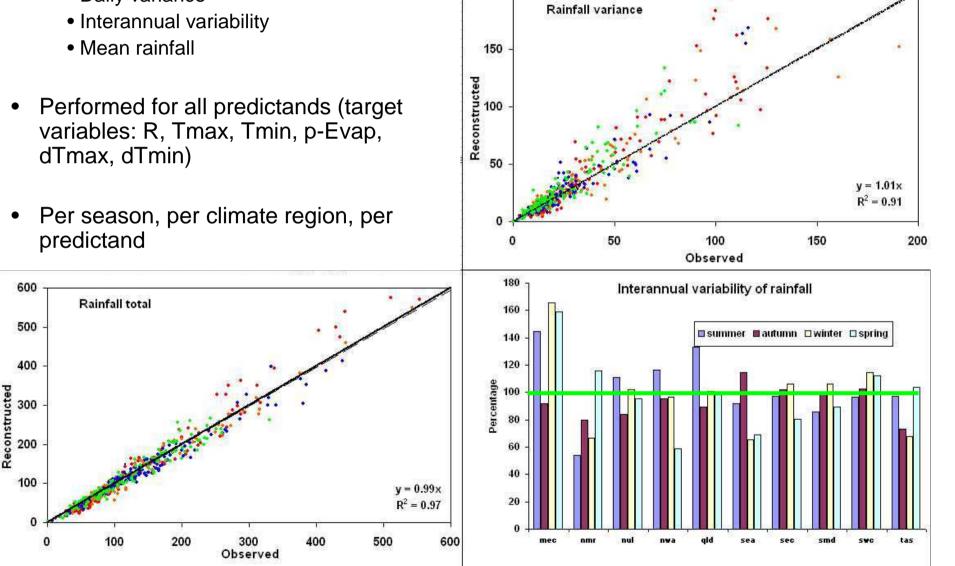
BoM Statistical Downscaling Model (BoM-SDM): daily meteorological analogues

CSIRO

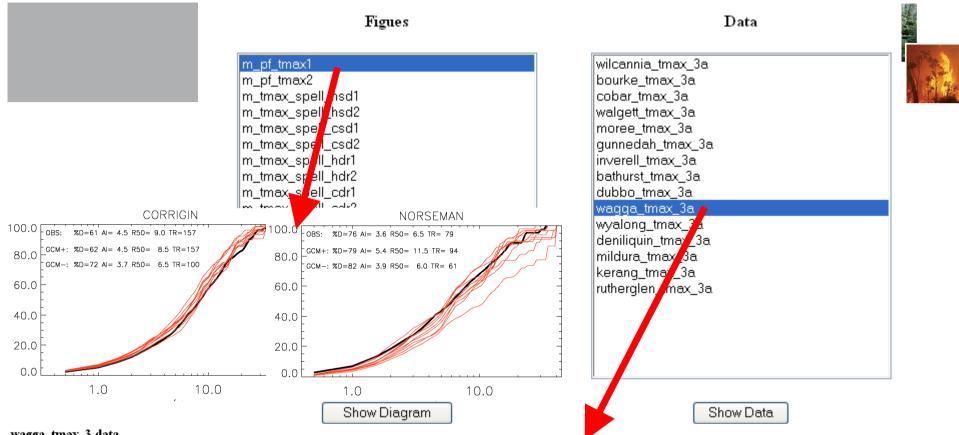

Bureau of Meteorology

A partnership between CSIRO and the Bureau of Meteorology

Application Australia wide of the BoM-SDM

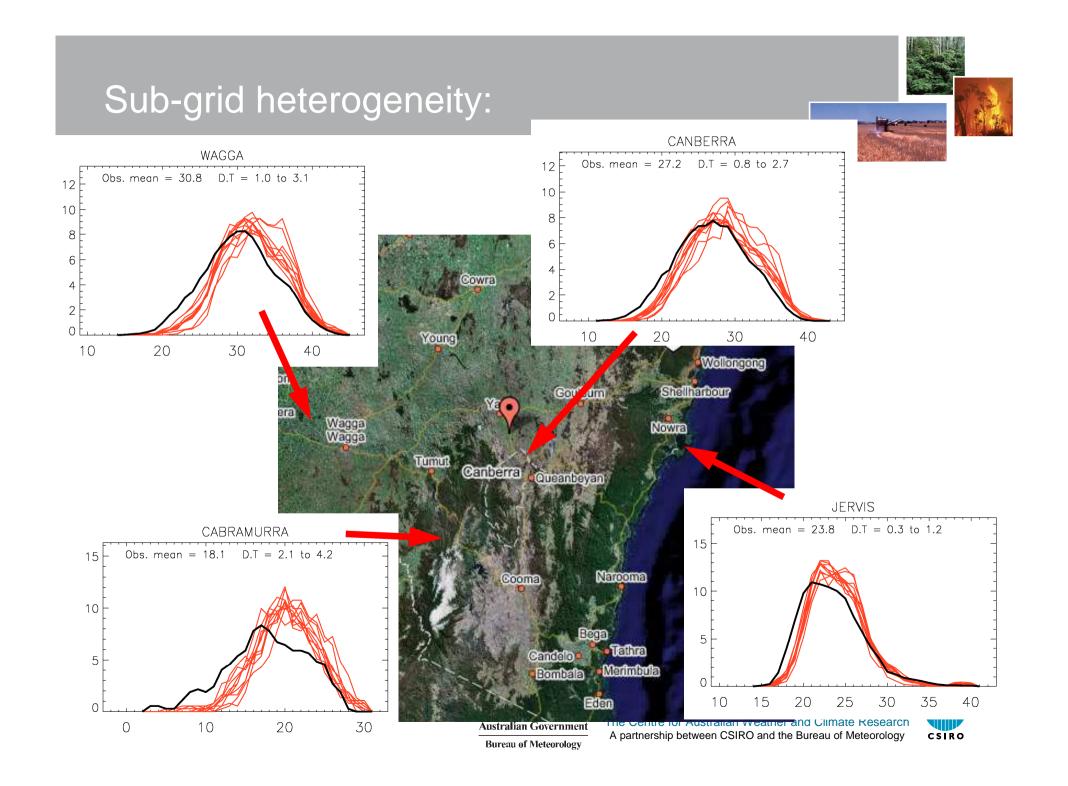

- Australian continent divided in physically based climate "entities"
- Several climate type recognised across the MDB
- SMD optimised on the very sparse HQ dataset network

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

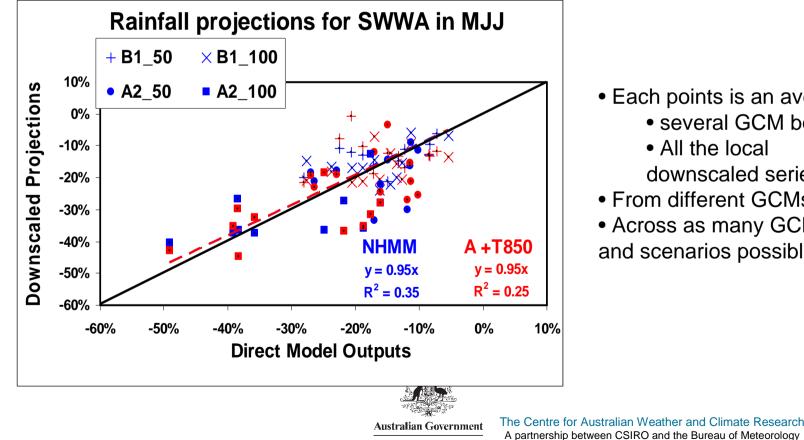

200

Optimisation of the individual SDM

- Range of statistics evaluated:
 - Daily variance


A graphical interface to access local projections **A Downscaling Technique** Home | Documentation | Contact Map Satellite Hybrid €Ð Ivn Step 1: Choice redictors options Papua New Season + F V Model Scenario Select M-S aling Technique Delete M-S Home | Documentation | Contact Northern Territory Step 2: Choice of predictand optic Queensland Predictand Australia Map Satellite Hybrid Western Selected Regio Australia Select all Stn Australia Remove Stn Wales Step 3: Choice of graphs Victoria **Choices:** • predictands (R, Tx, Tn, pE, dT) Atlas, Europa Technologies -• 4 calendar seasons eniove our 3: Choice of graphs Emissions scenarios: A2 and B1 plots ensity Function ter-annual Variability • Time-slices (20th and 21st century) 4: Run Downscaling Process • 12 IPCC AR4 models Run Downscaling Clear

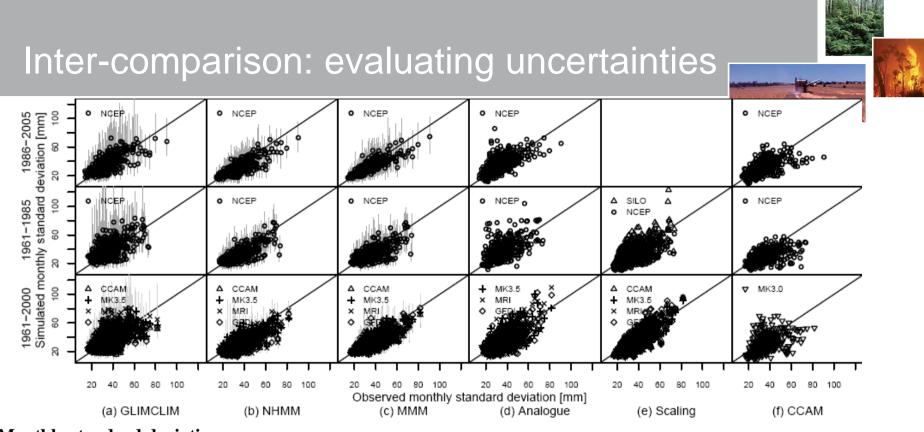
ata 62009 MapData Sciences Pty Ltd, PSMA - Ter


wagga tinax 3.data

Date	CCM	CNRM	CSIRO	GFDL1	GFDL2	GISSR	IPSL	MIROC	MPI	MRI	Observation
01061961	7.80	19.10	12.90	14.00	13.30	14.60	13.80	13.60	15.10	13.70	17.40
02061961	12.60	15.20	10.70	14.30	13.10	14.60	12.50	11.30	9.00	13.30	15.20
03061961	13.30	12.90	17.60	9.90	11.40	14.60	14.30	11.60	13.40	14.70	16.30
04061961	10.60	11.90	9.30	13.30	16.00	16.20	9.90	14.50	19.60	13.40	17.10
05061961	10.70	14.10	12.40	15.60	12.40	14.60	11.70	14.80	14.20	14.60	20.50
06061961	10.60	12.40	10.00	15.40	13.70	15.90	12.50	14.90	15.30	18.20	17.80
07061961	13.20	9.80	13.80	15.40	9.30	15.40	11.00	15.80	16.90	18.80	16.20
08061961	13.00	10.10	12.00	15.00	13.20	13.90	10.70	15.90	15.00	18.80	17.70
09061961	8.90	13.50	12.80	16.60	12.20	12.40	11.00	14.10	13.70	18.80	14.40
10061961	12.40	13.40	10.80	10.10	18.10	13.30	13.00	14.80	13.90	18.20	10.70
11061961	12.40	14.90	13.90	13.60	14.50	11.70	13.10	13.10	14.80	20.50	11.60
12061961	11.40	16.40	12.90	17.20	9.60	10.20	13.30	17.10	13.80	21.50	16.00
13061961	10.30	15.40	11.90	14.80	12.40	12.00	8.80	16.10	13.80	13.80	16.90
14061961	13.10	12.10	12.90	14.30	12.50	13.40	13.10	12.20	16.60	14.40	15.70
15061961	13.10	13.00	7.30	12.80	14.70	13.40	8.90	12.80	14.30	14.80	12.70
16061961	15.20	12.70	12.40	11.90	14.70	13.40	14.20	13.40	15.00	15.00	15.20
17061961	15.60	11.80	10.90	14.50	15.50	14.00	14.20	14.90	15.00	12.00	11.60
18061961	13.90	13.10	10.30	15.00	11.20	13.00	16.40	15.00	12.10	12.10	11.80
19061961	13.90	13.30	13.10	16.10	15.80	12.50	14.30	14.80	12.10	12.70	9.70
20061961	14.30	13.00	11.70	15.10	15.00	14.80	14.00	15.40	11.80	10.20	7.90
21061961	13.70	11.00	13.10	13.60	14.30	16.70	12.10	13.60	13.90	8.40	8.40
22061961	7.90	12.40	11.90	12.90	14.80	19.60	10.00	11.60	11.80	11.50	9.60
23061961	15.00	15.60	11.90	16.40	12.20	17.90	10.00	18.10	13.90	14.20	9.80

Large-scale consistency:

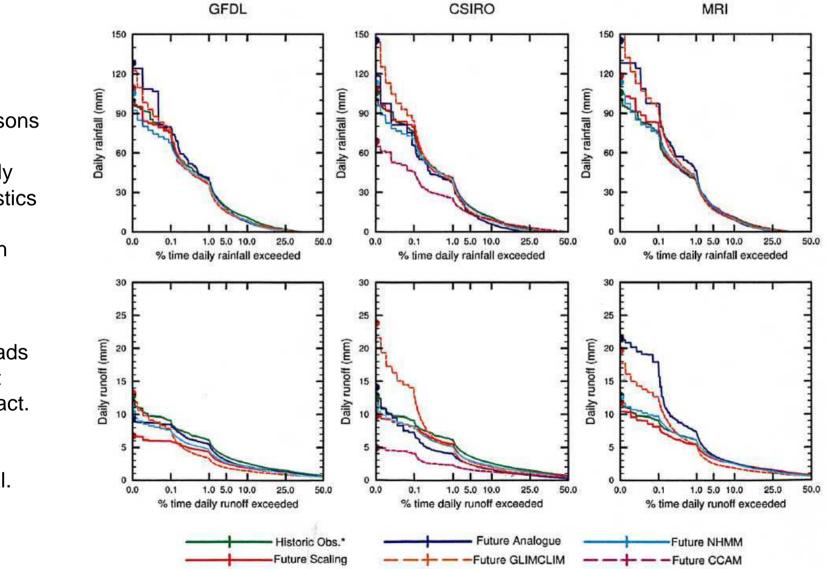
- Evaluate the consistency of statistical downscaling vs. Direct Climate Model projections
- Two SDMs were compared (**BoM Analogue** and **CSIRO NHMM**)
- The choice of predictors is *essential* to match the dynamical projections



Bureau of Meteorology

- Each points is an average
 - several GCM boxes
 - All the local
 - downscaled series
- From different GCMs
- Across as many GCMs and scenarios possible

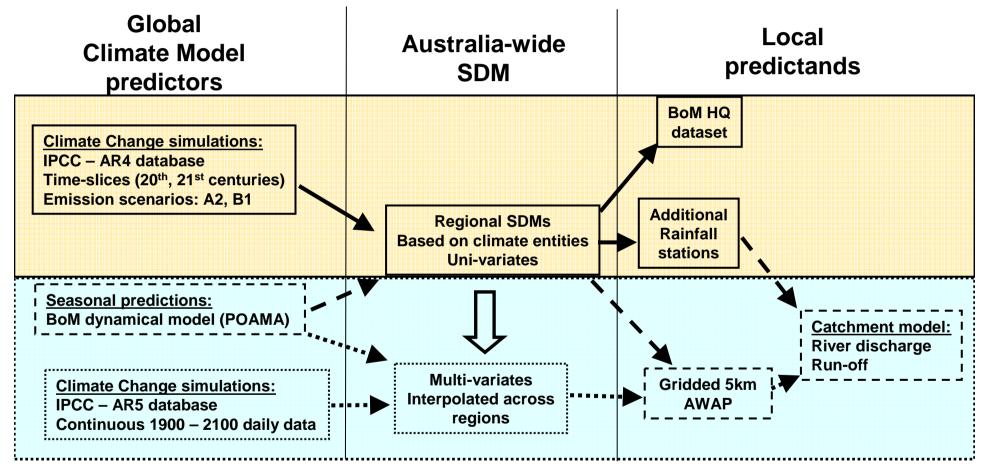
Monthly standard deviation


On-going intercomparison by Frost et al. (2009)

- insight on
 - the issue of statistical fitting (and over-fitting)
 - ability to deal with GCM biases
 - strength and weakness of each technique on different key stats.

Inter-comparison: future projections uncertainties

• Comparisons of future rainfall daily characteristics


• Impact on runoff

• Scaling method leads to different future impact.

• Paper by Chiew et al. (2009)

Long-term development of the BoM-SDM

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Conclusions:

Statistical Downscaling for Hydrological applications:

We have available SDMs:

- BoM-SDM
- developed Australia-wide
- For rainfall and additional meteorological variables
- Being used for integrated hydrological assessment (SEACI, WIRADA) (Seasonal Forecast and Climate Change projections)

Downscaling is needed:

- To provide sub-grid heterogeneity
- Scaling method can be misleading (no heterogeneity, constant PDFs)
- SDMs on large-scale should be consistent with GCMs but not locally
- All elements will impact hydrological variables

Framework in place to deliver integrated hydrological climate change impact assessment across Australia with the next round climate simulations: IPCC-AR5

Bureau of Meteorology

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Dr. Bertrand Timbal - Email: <u>b.timbal@bom.gov.au</u>

BoM-SDM documentation:

Science: Timbal, Fernandez and Li. 2009: "Generalization of a statistical downscaling model to provide local climate change projections for Australia", *Environmental Modelling and Software*, 24, 341-358
GUI: Timbal, Li and Fernandez. 2008: "The Bureau of meteorology Statistical Downscaling Model Graphical User Interface: user manual and software documentation", *CAWCR research report*, 4, pp 95

